1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
|
//===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "Detail/DimLvlMapParser.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/ADT/Bitset.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.cpp.inc"
// Forward declarations, following custom print/parsing methods are referenced
// by the generated code for SparseTensorTypes.td.
static mlir::ParseResult parseLevelRange(mlir::AsmParser &,
mlir::sparse_tensor::Level &,
mlir::sparse_tensor::Level &);
static void printLevelRange(mlir::AsmPrinter &, mlir::sparse_tensor::Level,
mlir::sparse_tensor::Level);
#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
using namespace mlir;
using namespace mlir::sparse_tensor;
// Support hashing LevelType such that SparseTensorEncodingAttr can be hashed as
// well.
namespace mlir::sparse_tensor {
llvm::hash_code hash_value(LevelType lt) {
return llvm::hash_value(static_cast<uint64_t>(lt));
}
} // namespace mlir::sparse_tensor
//===----------------------------------------------------------------------===//
// Local Convenience Methods.
//===----------------------------------------------------------------------===//
static constexpr bool acceptBitWidth(unsigned bitWidth) {
switch (bitWidth) {
case 0:
case 8:
case 16:
case 32:
case 64:
return true;
default:
return false;
}
}
static SmallVector<Size>
getSparseFieldShape(const SparseTensorEncodingAttr enc,
std::optional<ArrayRef<int64_t>> dimShape) {
assert(enc);
// With only encoding, we can not determine the static shape for leading
// batch levels, we therefore return a dynamic shape memref instead.
SmallVector<int64_t> memrefShape(enc.getBatchLvlRank(), ShapedType::kDynamic);
if (dimShape.has_value()) {
// If the actual tensor shape is provided, we can then refine the leading
// batch dimension.
SmallVector<int64_t> lvlShape =
enc.translateShape(*dimShape, CrdTransDirectionKind::dim2lvl);
memrefShape.assign(lvlShape.begin(),
lvlShape.begin() + enc.getBatchLvlRank());
}
// Another dynamic dimension to store the sparse level.
memrefShape.push_back(ShapedType::kDynamic);
return memrefShape;
}
//===----------------------------------------------------------------------===//
// SparseTensorDialect StorageLayout.
//===----------------------------------------------------------------------===//
static constexpr Level kInvalidLevel = -1u;
static constexpr Level kInvalidFieldIndex = -1u;
static constexpr FieldIndex kDataFieldStartingIdx = 0;
void StorageLayout::foreachField(
llvm::function_ref<bool(FieldIndex, SparseTensorFieldKind, Level,
LevelType)>
callback) const {
const auto lvlTypes = enc.getLvlTypes();
const Level lvlRank = enc.getLvlRank();
SmallVector<COOSegment> cooSegs = enc.getCOOSegments();
FieldIndex fieldIdx = kDataFieldStartingIdx;
ArrayRef cooSegsRef = cooSegs;
// Per-level storage.
for (Level l = 0; l < lvlRank; /*l += 1 or l += AoSCooLen*/) {
const auto lt = lvlTypes[l];
if (isWithPosLT(lt)) {
if (!(callback(fieldIdx++, SparseTensorFieldKind::PosMemRef, l, lt)))
return;
}
if (isWithCrdLT(lt)) {
if (!(callback(fieldIdx++, SparseTensorFieldKind::CrdMemRef, l, lt)))
return;
}
if (!cooSegsRef.empty() && cooSegsRef.front().isSegmentStart(l)) {
if (!cooSegsRef.front().isSoA) {
// AoS COO, all singletons are fused into one memrefs. Skips the entire
// COO segement.
l = cooSegsRef.front().lvlRange.second;
} else {
// SoA COO, each singleton level has one memref.
l++;
}
// Expire handled COO segment.
cooSegsRef = cooSegsRef.drop_front();
} else {
// Non COO levels.
l++;
}
}
// The values array.
if (!(callback(fieldIdx++, SparseTensorFieldKind::ValMemRef, kInvalidLevel,
LevelFormat::Undef)))
return;
// Put metadata at the end.
if (!(callback(fieldIdx++, SparseTensorFieldKind::StorageSpec, kInvalidLevel,
LevelFormat::Undef)))
return;
}
void sparse_tensor::foreachFieldAndTypeInSparseTensor(
SparseTensorType stt,
llvm::function_ref<bool(Type, FieldIndex, SparseTensorFieldKind, Level,
LevelType)>
callback) {
assert(stt.hasEncoding());
SmallVector<int64_t> memrefShape =
getSparseFieldShape(stt.getEncoding(), stt.getDimShape());
const Type specType = StorageSpecifierType::get(stt.getEncoding());
// memref<[batch] x ? x pos> positions
const Type posMemType = MemRefType::get(memrefShape, stt.getPosType());
// memref<[batch] x ? x crd> coordinates
const Type crdMemType = MemRefType::get(memrefShape, stt.getCrdType());
// memref<[batch] x ? x eltType> values
const Type valMemType = MemRefType::get(memrefShape, stt.getElementType());
StorageLayout(stt).foreachField([specType, posMemType, crdMemType, valMemType,
callback](FieldIndex fieldIdx,
SparseTensorFieldKind fieldKind,
Level lvl, LevelType lt) -> bool {
switch (fieldKind) {
case SparseTensorFieldKind::StorageSpec:
return callback(specType, fieldIdx, fieldKind, lvl, lt);
case SparseTensorFieldKind::PosMemRef:
return callback(posMemType, fieldIdx, fieldKind, lvl, lt);
case SparseTensorFieldKind::CrdMemRef:
return callback(crdMemType, fieldIdx, fieldKind, lvl, lt);
case SparseTensorFieldKind::ValMemRef:
return callback(valMemType, fieldIdx, fieldKind, lvl, lt);
};
llvm_unreachable("unrecognized field kind");
});
}
unsigned StorageLayout::getNumFields() const {
unsigned numFields = 0;
foreachField([&numFields](FieldIndex, SparseTensorFieldKind, Level,
LevelType) -> bool {
numFields++;
return true;
});
return numFields;
}
unsigned StorageLayout::getNumDataFields() const {
unsigned numFields = 0; // one value memref
foreachField([&numFields](FieldIndex fidx, SparseTensorFieldKind, Level,
LevelType) -> bool {
if (fidx >= kDataFieldStartingIdx)
numFields++;
return true;
});
numFields -= 1; // the last field is StorageSpecifier
assert(numFields == getNumFields() - kDataFieldStartingIdx - 1);
return numFields;
}
std::pair<FieldIndex, unsigned>
StorageLayout::getFieldIndexAndStride(SparseTensorFieldKind kind,
std::optional<Level> lvl) const {
FieldIndex fieldIdx = kInvalidFieldIndex;
unsigned stride = 1;
if (kind == SparseTensorFieldKind::CrdMemRef) {
assert(lvl.has_value());
const Level cooStart = enc.getAoSCOOStart();
const Level lvlRank = enc.getLvlRank();
if (lvl.value() >= cooStart && lvl.value() < lvlRank) {
lvl = cooStart;
stride = lvlRank - cooStart;
}
}
foreachField([lvl, kind, &fieldIdx](FieldIndex fIdx,
SparseTensorFieldKind fKind, Level fLvl,
LevelType lt) -> bool {
if ((lvl && fLvl == lvl.value() && kind == fKind) ||
(kind == fKind && fKind == SparseTensorFieldKind::ValMemRef)) {
fieldIdx = fIdx;
// Returns false to break the iteration.
return false;
}
return true;
});
assert(fieldIdx != kInvalidFieldIndex);
return std::pair<FieldIndex, unsigned>(fieldIdx, stride);
}
//===----------------------------------------------------------------------===//
// SparseTensorDialect Attribute Methods.
//===----------------------------------------------------------------------===//
std::optional<uint64_t> SparseTensorDimSliceAttr::getStatic(int64_t v) {
return isDynamic(v) ? std::nullopt
: std::make_optional(static_cast<uint64_t>(v));
}
std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticOffset() const {
return getStatic(getOffset());
}
std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticStride() const {
return getStatic(getStride());
}
std::optional<uint64_t> SparseTensorDimSliceAttr::getStaticSize() const {
return getStatic(getSize());
}
bool SparseTensorDimSliceAttr::isCompletelyDynamic() const {
return isDynamic(getOffset()) && isDynamic(getStride()) &&
isDynamic(getSize());
}
std::string SparseTensorDimSliceAttr::getStaticString(int64_t v) {
return isDynamic(v) ? "?" : std::to_string(v);
}
void SparseTensorDimSliceAttr::print(llvm::raw_ostream &os) const {
assert(getImpl() && "Uninitialized SparseTensorDimSliceAttr");
os << '(';
os << getStaticString(getOffset());
os << ", ";
os << getStaticString(getSize());
os << ", ";
os << getStaticString(getStride());
os << ')';
}
void SparseTensorDimSliceAttr::print(AsmPrinter &printer) const {
print(printer.getStream());
}
static ParseResult parseOptionalStaticSlice(int64_t &result,
AsmParser &parser) {
auto parseResult = parser.parseOptionalInteger(result);
if (parseResult.has_value()) {
if (parseResult.value().succeeded() && result < 0) {
parser.emitError(
parser.getCurrentLocation(),
"expect positive value or ? for slice offset/size/stride");
return failure();
}
return parseResult.value();
}
// Else, and '?' which represented dynamic slice
result = SparseTensorDimSliceAttr::kDynamic;
return parser.parseQuestion();
}
Attribute SparseTensorDimSliceAttr::parse(AsmParser &parser, Type type) {
int64_t offset = kDynamic, size = kDynamic, stride = kDynamic;
if (failed(parser.parseLParen()) ||
failed(parseOptionalStaticSlice(offset, parser)) ||
failed(parser.parseComma()) ||
failed(parseOptionalStaticSlice(size, parser)) ||
failed(parser.parseComma()) ||
failed(parseOptionalStaticSlice(stride, parser)) ||
failed(parser.parseRParen()))
return {};
return parser.getChecked<SparseTensorDimSliceAttr>(parser.getContext(),
offset, size, stride);
}
LogicalResult
SparseTensorDimSliceAttr::verify(function_ref<InFlightDiagnostic()> emitError,
int64_t offset, int64_t size, int64_t stride) {
if (!isDynamic(offset) && offset < 0)
return emitError() << "expect non-negative value or ? for slice offset";
if (!isDynamic(size) && size <= 0)
return emitError() << "expect positive value or ? for slice size";
if (!isDynamic(stride) && stride <= 0)
return emitError() << "expect positive value or ? for slice stride";
return success();
}
SparseTensorEncodingAttr
SparseTensorEncodingAttr::withDimToLvl(AffineMap dimToLvl) const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return SparseTensorEncodingAttr::get(
getContext(), getLvlTypes(), dimToLvl, AffineMap(), getPosWidth(),
getCrdWidth(), getExplicitVal(), getImplicitVal());
}
SparseTensorEncodingAttr
SparseTensorEncodingAttr::withDimToLvl(SparseTensorEncodingAttr enc) const {
return withDimToLvl(enc ? enc.getDimToLvl() : AffineMap());
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutDimToLvl() const {
return withDimToLvl(AffineMap());
}
SparseTensorEncodingAttr
SparseTensorEncodingAttr::withBitWidths(unsigned posWidth,
unsigned crdWidth) const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return SparseTensorEncodingAttr::get(
getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), posWidth,
crdWidth, getExplicitVal(), getImplicitVal());
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutBitWidths() const {
return withBitWidths(0, 0);
}
SparseTensorEncodingAttr
SparseTensorEncodingAttr::withExplicitVal(Attribute explicitVal) const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return SparseTensorEncodingAttr::get(
getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(),
getCrdWidth(), explicitVal, getImplicitVal());
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutExplicitVal() const {
return withExplicitVal(Attribute());
}
SparseTensorEncodingAttr
SparseTensorEncodingAttr::withImplicitVal(Attribute implicitVal) const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return SparseTensorEncodingAttr::get(
getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(),
getCrdWidth(), getExplicitVal(), implicitVal);
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutImplicitVal() const {
return withImplicitVal(Attribute());
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withDimSlices(
ArrayRef<SparseTensorDimSliceAttr> dimSlices) const {
return SparseTensorEncodingAttr::get(
getContext(), getLvlTypes(), getDimToLvl(), getLvlToDim(), getPosWidth(),
getCrdWidth(), getExplicitVal(), getImplicitVal(), dimSlices);
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutDimSlices() const {
return withDimSlices(ArrayRef<SparseTensorDimSliceAttr>{});
}
uint64_t SparseTensorEncodingAttr::getBatchLvlRank() const {
ArrayRef<LevelType> lvlTypes = getLvlTypes();
auto lastBatch = std::find_if(lvlTypes.rbegin(), lvlTypes.rend(), isBatchLT);
return std::distance(lastBatch, lvlTypes.rend());
}
bool SparseTensorEncodingAttr::isAllDense() const {
return !getImpl() || llvm::all_of(getLvlTypes(), isDenseLT);
}
bool SparseTensorEncodingAttr::isAllOrdered() const {
return !getImpl() || llvm::all_of(getLvlTypes(), isOrderedLT);
}
Type SparseTensorEncodingAttr::getCrdElemType() const {
if (!getImpl())
return nullptr;
if (getCrdWidth())
return IntegerType::get(getContext(), getCrdWidth());
return IndexType::get(getContext());
}
Type SparseTensorEncodingAttr::getPosElemType() const {
if (!getImpl())
return nullptr;
if (getPosWidth())
return IntegerType::get(getContext(), getPosWidth());
return IndexType::get(getContext());
}
MemRefType SparseTensorEncodingAttr::getCrdMemRefType(
std::optional<ArrayRef<int64_t>> dimShape) const {
SmallVector<Size> shape = getSparseFieldShape(*this, dimShape);
return MemRefType::get(shape, getCrdElemType());
}
MemRefType SparseTensorEncodingAttr::getPosMemRefType(
std::optional<ArrayRef<int64_t>> dimShape) const {
SmallVector<Size> shape = getSparseFieldShape(*this, dimShape);
return MemRefType::get(shape, getPosElemType());
}
bool SparseTensorEncodingAttr::isIdentity() const {
return !getImpl() || !getDimToLvl() || getDimToLvl().isIdentity();
}
bool SparseTensorEncodingAttr::isPermutation() const {
return !getImpl() || !getDimToLvl() || getDimToLvl().isPermutation();
}
Dimension SparseTensorEncodingAttr::getDimRank() const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
const auto dimToLvl = getDimToLvl();
return dimToLvl ? dimToLvl.getNumDims() : getLvlRank();
}
Level SparseTensorEncodingAttr::getLvlRank() const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return getLvlTypes().size();
}
LevelType SparseTensorEncodingAttr::getLvlType(Level l) const {
if (!getImpl())
return LevelFormat::Batch;
assert(l < getLvlRank() && "Level is out of bounds");
return getLvlTypes()[l];
}
bool SparseTensorEncodingAttr::isSlice() const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return !getDimSlices().empty();
}
SparseTensorDimSliceAttr
SparseTensorEncodingAttr::getDimSlice(Dimension dim) const {
assert(isSlice() && "Is not a slice");
const auto dimSlices = getDimSlices();
assert(dim < dimSlices.size() && "Dimension is out of bounds");
return dimSlices[dim];
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticDimSliceOffset(Dimension dim) const {
return getDimSlice(dim).getStaticOffset();
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticDimSliceStride(Dimension dim) const {
return getDimSlice(dim).getStaticStride();
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticLvlSliceOffset(Level lvl) const {
return getStaticDimSliceOffset(toDim(*this, lvl));
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticLvlSliceStride(Level lvl) const {
return getStaticDimSliceStride(toDim(*this, lvl));
}
SmallVector<int64_t>
SparseTensorEncodingAttr::translateShape(ArrayRef<int64_t> srcShape,
CrdTransDirectionKind dir) const {
if (isIdentity())
return SmallVector<int64_t>(srcShape);
SmallVector<int64_t> ret;
unsigned rank =
dir == CrdTransDirectionKind::dim2lvl ? getLvlRank() : getDimRank();
ret.reserve(rank);
if (isPermutation()) {
for (unsigned r = 0; r < rank; r++) {
unsigned trans = dir == CrdTransDirectionKind::dim2lvl ? toDim(*this, r)
: toLvl(*this, r);
ret.push_back(srcShape[trans]);
}
return ret;
}
// Handle non-permutation maps.
AffineMap transMap =
dir == CrdTransDirectionKind::dim2lvl ? getDimToLvl() : getLvlToDim();
SmallVector<AffineExpr> dimRep;
dimRep.reserve(srcShape.size());
for (int64_t sz : srcShape) {
if (!ShapedType::isDynamic(sz)) {
// Push back the max coordinate for the given dimension/level size.
dimRep.push_back(getAffineConstantExpr(sz - 1, getContext()));
} else {
// A dynamic size, use a AffineDimExpr to symbolize the value.
dimRep.push_back(getAffineDimExpr(dimRep.size(), getContext()));
}
};
for (AffineExpr exp : transMap.getResults()) {
// Do constant propagation on the affine map.
AffineExpr evalExp =
simplifyAffineExpr(exp.replaceDims(dimRep), srcShape.size(), 0);
// use llvm namespace here to avoid ambiguity
if (auto c = llvm::dyn_cast<AffineConstantExpr>(evalExp)) {
ret.push_back(c.getValue() + 1);
} else {
if (auto mod = llvm::dyn_cast<AffineBinaryOpExpr>(evalExp);
mod && mod.getKind() == AffineExprKind::Mod) {
// We can still infer a static bound for expressions in form
// "d % constant" since d % constant \in [0, constant).
if (auto bound = llvm::dyn_cast<AffineConstantExpr>(mod.getRHS())) {
ret.push_back(bound.getValue());
continue;
}
}
ret.push_back(ShapedType::kDynamic);
}
}
assert(ret.size() == rank);
return ret;
}
ValueRange
SparseTensorEncodingAttr::translateCrds(OpBuilder &builder, Location loc,
ValueRange crds,
CrdTransDirectionKind dir) const {
if (!getImpl())
return crds;
SmallVector<Type> retType(
dir == CrdTransDirectionKind::lvl2dim ? getDimRank() : getLvlRank(),
builder.getIndexType());
auto transOp = builder.create<CrdTranslateOp>(loc, retType, crds, dir, *this);
return transOp.getOutCrds();
}
Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
// Open "<{" part.
if (failed(parser.parseLess()))
return {};
if (failed(parser.parseLBrace()))
return {};
// Process the data from the parsed dictionary value into struct-like data.
SmallVector<LevelType> lvlTypes;
SmallVector<SparseTensorDimSliceAttr> dimSlices;
AffineMap dimToLvl = {};
AffineMap lvlToDim = {};
unsigned posWidth = 0;
unsigned crdWidth = 0;
Attribute explicitVal;
Attribute implicitVal;
StringRef attrName;
SmallVector<StringRef, 5> keys = {"map", "posWidth", "crdWidth",
"explicitVal", "implicitVal"};
while (succeeded(parser.parseOptionalKeyword(&attrName))) {
// Detect admissible keyword.
auto *it = find(keys, attrName);
if (it == keys.end()) {
parser.emitError(parser.getNameLoc(), "unexpected key: ") << attrName;
return {};
}
unsigned keyWordIndex = it - keys.begin();
// Consume the `=` after keys
if (failed(parser.parseEqual()))
return {};
// Dispatch on keyword.
switch (keyWordIndex) {
case 0: { // map
ir_detail::DimLvlMapParser cParser(parser);
auto res = cParser.parseDimLvlMap();
if (failed(res))
return {};
const auto &dlm = *res;
const Level lvlRank = dlm.getLvlRank();
for (Level lvl = 0; lvl < lvlRank; lvl++)
lvlTypes.push_back(dlm.getLvlType(lvl));
const Dimension dimRank = dlm.getDimRank();
for (Dimension dim = 0; dim < dimRank; dim++)
dimSlices.push_back(dlm.getDimSlice(dim));
// NOTE: the old syntax requires an all-or-nothing approach to
// `dimSlices`; therefore, if any slice actually exists then we need
// to convert null-DSA into default/nop DSA.
const auto isDefined = [](SparseTensorDimSliceAttr slice) {
return static_cast<bool>(slice.getImpl());
};
if (llvm::any_of(dimSlices, isDefined)) {
const auto defaultSlice =
SparseTensorDimSliceAttr::get(parser.getContext());
for (Dimension dim = 0; dim < dimRank; dim++)
if (!isDefined(dimSlices[dim]))
dimSlices[dim] = defaultSlice;
} else {
dimSlices.clear();
}
dimToLvl = dlm.getDimToLvlMap(parser.getContext());
lvlToDim = dlm.getLvlToDimMap(parser.getContext());
break;
}
case 1: { // posWidth
Attribute attr;
if (failed(parser.parseAttribute(attr)))
return {};
auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
if (!intAttr) {
parser.emitError(parser.getNameLoc(),
"expected an integral position bitwidth");
return {};
}
posWidth = intAttr.getInt();
break;
}
case 2: { // crdWidth
Attribute attr;
if (failed(parser.parseAttribute(attr)))
return {};
auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
if (!intAttr) {
parser.emitError(parser.getNameLoc(),
"expected an integral index bitwidth");
return {};
}
crdWidth = intAttr.getInt();
break;
}
case 3: { // explicitVal
Attribute attr;
if (failed(parser.parseAttribute(attr)))
return {};
if (auto result = llvm::dyn_cast<FloatAttr>(attr)) {
explicitVal = result;
} else if (auto result = llvm::dyn_cast<IntegerAttr>(attr)) {
explicitVal = result;
} else if (auto result = llvm::dyn_cast<complex::NumberAttr>(attr)) {
explicitVal = result;
} else {
parser.emitError(parser.getNameLoc(),
"expected a numeric value for explicitVal");
return {};
}
break;
}
case 4: { // implicitVal
Attribute attr;
if (failed(parser.parseAttribute(attr)))
return {};
if (auto result = llvm::dyn_cast<FloatAttr>(attr)) {
implicitVal = result;
} else if (auto result = llvm::dyn_cast<IntegerAttr>(attr)) {
implicitVal = result;
} else if (auto result = llvm::dyn_cast<complex::NumberAttr>(attr)) {
implicitVal = result;
} else {
parser.emitError(parser.getNameLoc(),
"expected a numeric value for implicitVal");
return {};
}
break;
}
} // switch
// Only last item can omit the comma.
if (parser.parseOptionalComma().failed())
break;
}
// Close "}>" part.
if (failed(parser.parseRBrace()))
return {};
if (failed(parser.parseGreater()))
return {};
// Construct struct-like storage for attribute.
if (!lvlToDim || lvlToDim.isEmpty()) {
lvlToDim = inferLvlToDim(dimToLvl, parser.getContext());
}
return parser.getChecked<SparseTensorEncodingAttr>(
parser.getContext(), lvlTypes, dimToLvl, lvlToDim, posWidth, crdWidth,
explicitVal, implicitVal, dimSlices);
}
void SparseTensorEncodingAttr::print(AsmPrinter &printer) const {
auto map = static_cast<AffineMap>(getDimToLvl());
// Empty affine map indicates identity map
if (!map)
map = AffineMap::getMultiDimIdentityMap(getLvlTypes().size(), getContext());
printer << "<{ map = ";
printSymbols(map, printer);
printer << '(';
printDimensions(map, printer, getDimSlices());
printer << ") -> (";
printLevels(map, printer, getLvlTypes());
printer << ')';
// Print remaining members only for non-default values.
if (getPosWidth())
printer << ", posWidth = " << getPosWidth();
if (getCrdWidth())
printer << ", crdWidth = " << getCrdWidth();
if (getExplicitVal()) {
printer << ", explicitVal = " << getExplicitVal();
}
if (getImplicitVal())
printer << ", implicitVal = " << getImplicitVal();
printer << " }>";
}
void SparseTensorEncodingAttr::printSymbols(AffineMap &map,
AsmPrinter &printer) const {
if (map.getNumSymbols() == 0)
return;
printer << '[';
for (unsigned i = 0, n = map.getNumSymbols() - 1; i < n; i++)
printer << 's' << i << ", ";
if (map.getNumSymbols() >= 1)
printer << 's' << map.getNumSymbols() - 1;
printer << ']';
}
void SparseTensorEncodingAttr::printDimensions(
AffineMap &map, AsmPrinter &printer,
ArrayRef<SparseTensorDimSliceAttr> dimSlices) const {
if (!dimSlices.empty()) {
for (unsigned i = 0, n = map.getNumDims() - 1; i < n; i++)
printer << 'd' << i << " : " << dimSlices[i] << ", ";
if (map.getNumDims() >= 1) {
printer << 'd' << map.getNumDims() - 1 << " : "
<< dimSlices[map.getNumDims() - 1];
}
} else {
for (unsigned i = 0, n = map.getNumDims() - 1; i < n; i++)
printer << 'd' << i << ", ";
if (map.getNumDims() >= 1)
printer << 'd' << map.getNumDims() - 1;
}
}
void SparseTensorEncodingAttr::printLevels(AffineMap &map, AsmPrinter &printer,
ArrayRef<LevelType> lvlTypes) const {
for (unsigned i = 0, n = map.getNumResults() - 1; i < n; i++) {
map.getResult(i).print(printer.getStream());
printer << " : " << toMLIRString(lvlTypes[i]) << ", ";
}
if (map.getNumResults() >= 1) {
auto lastIndex = map.getNumResults() - 1;
map.getResult(lastIndex).print(printer.getStream());
printer << " : " << toMLIRString(lvlTypes[lastIndex]);
}
}
LogicalResult SparseTensorEncodingAttr::verify(
function_ref<InFlightDiagnostic()> emitError, ArrayRef<LevelType> lvlTypes,
AffineMap dimToLvl, AffineMap lvlToDim, unsigned posWidth,
unsigned crdWidth, Attribute explicitVal, Attribute implicitVal,
ArrayRef<SparseTensorDimSliceAttr> dimSlices) {
if (!acceptBitWidth(posWidth))
return emitError() << "unexpected position bitwidth: " << posWidth;
if (!acceptBitWidth(crdWidth))
return emitError() << "unexpected coordinate bitwidth: " << crdWidth;
// Verify every COO segment.
auto *it = std::find_if(lvlTypes.begin(), lvlTypes.end(), isSingletonLT);
while (it != lvlTypes.end()) {
if (it == lvlTypes.begin() ||
!(it - 1)->isa<LevelFormat::Compressed, LevelFormat::LooseCompressed>())
return emitError() << "expected compressed or loose_compressed level "
"before singleton level";
auto *curCOOEnd = std::find_if_not(it, lvlTypes.end(), isSingletonLT);
if (!std::all_of(it, curCOOEnd,
[](LevelType i) { return isSingletonLT(i); }))
return emitError() << "expected all singleton lvlTypes "
"following a singleton level";
// We can potentially support mixed SoA/AoS singleton levels.
if (!std::all_of(it, curCOOEnd, [it](LevelType i) {
return it->isa<LevelPropNonDefault::SoA>() ==
i.isa<LevelPropNonDefault::SoA>();
})) {
return emitError() << "expected all singleton lvlTypes stored in the "
"same memory layout (SoA vs AoS).";
}
it = std::find_if(curCOOEnd, lvlTypes.end(), isSingletonLT);
}
auto lastBatch = std::find_if(lvlTypes.rbegin(), lvlTypes.rend(), isBatchLT);
if (!std::all_of(lastBatch, lvlTypes.rend(), isBatchLT))
return emitError() << "Batch lvlType can only be leading levels.";
// SoA property can only be applied on singleton level.
auto soaLvls = llvm::make_filter_range(lvlTypes, [](LevelType lt) {
return lt.isa<LevelPropNonDefault::SoA>();
});
if (llvm::any_of(soaLvls, [](LevelType lt) {
return !lt.isa<LevelFormat::Singleton>();
})) {
return emitError() << "SoA is only applicable to singleton lvlTypes.";
}
// TODO: audit formats that actually are supported by backend.
if (auto it = std::find_if(lvlTypes.begin(), lvlTypes.end(), isNOutOfMLT);
it != std::end(lvlTypes)) {
if (it != lvlTypes.end() - 1)
return emitError() << "expected n_out_of_m to be the last level type";
if (!std::all_of(lvlTypes.begin(), it,
[](LevelType i) { return isDenseLT(i); }))
return emitError() << "expected all dense lvlTypes "
"before a n_out_of_m level";
if (dimToLvl && (dimToLvl.getNumDims() != dimToLvl.getNumResults())) {
if (!isBlockSparsity(dimToLvl)) {
return emitError()
<< "expected 1xm block structure for n_out_of_m level";
}
auto sizes = getBlockSize(dimToLvl);
unsigned coefficient = 0;
for (const auto &elem : sizes) {
if (elem != 0) {
if (elem != coefficient && coefficient != 0) {
return emitError() << "expected only one blocked level "
"with the same coefficients";
}
coefficient = elem;
}
}
if (coefficient != getM(*it)) {
return emitError() << "expected coeffiencts of Affine expressions "
"to be equal to m of n_out_of_m level";
}
}
}
// Before we can check that the level-rank is consistent/coherent
// across all fields, we need to define it. The source-of-truth for
// the `getLvlRank` method is the length of the level-types array,
// since it must always be provided and have full rank; therefore we
// use that same source-of-truth here.
const Level lvlRank = lvlTypes.size();
if (lvlRank == 0)
return emitError() << "expected a non-empty array for lvlTypes";
// We save `dimRank` here because we'll also need it to verify `dimSlices`.
const Dimension dimRank = dimToLvl ? dimToLvl.getNumDims() : lvlRank;
if (dimToLvl) {
if (dimToLvl.getNumResults() != lvlRank)
return emitError()
<< "level-rank mismatch between dimToLvl and lvlTypes: "
<< dimToLvl.getNumResults() << " != " << lvlRank;
auto inferRes = inferLvlToDim(dimToLvl, dimToLvl.getContext());
// Symbols can't be inferred but are acceptable.
if (!inferRes && dimToLvl.getNumSymbols() == 0)
return emitError() << "failed to infer lvlToDim from dimToLvl";
if (lvlToDim && (inferRes != lvlToDim))
return emitError() << "expected lvlToDim to be an inverse of dimToLvl";
if (dimRank > lvlRank)
return emitError() << "unexpected dimToLvl mapping from " << dimRank
<< " to " << lvlRank;
}
if (!dimSlices.empty()) {
if (dimSlices.size() != dimRank)
return emitError()
<< "dimension-rank mismatch between dimSlices and dimToLvl: "
<< dimSlices.size() << " != " << dimRank;
// Compiler support for `dimSlices` currently requires that the two
// ranks agree. (However, it does allow `dimToLvl` to be a permutation.)
if (dimRank != lvlRank)
return emitError()
<< "dimSlices expected dimension-rank to match level-rank: "
<< dimRank << " != " << lvlRank;
}
return success();
}
LogicalResult SparseTensorEncodingAttr::verifyEncoding(
ArrayRef<Size> dimShape, Type elementType,
function_ref<InFlightDiagnostic()> emitError) const {
// Check structural integrity. In particular, this ensures that the
// level-rank is coherent across all the fields.
if (failed(verify(emitError, getLvlTypes(), getDimToLvl(), getLvlToDim(),
getPosWidth(), getCrdWidth(), getExplicitVal(),
getImplicitVal(), getDimSlices())))
return failure();
// Check integrity with tensor type specifics. In particular, we
// need only check that the dimension-rank of the tensor agrees with
// the dimension-rank of the encoding.
const Dimension dimRank = dimShape.size();
if (dimRank == 0)
return emitError() << "expected non-scalar sparse tensor";
if (getDimRank() != dimRank)
return emitError()
<< "dimension-rank mismatch between encoding and tensor shape: "
<< getDimRank() << " != " << dimRank;
if (auto expVal = getExplicitVal()) {
Type attrType = llvm::dyn_cast<TypedAttr>(expVal).getType();
if (attrType != elementType) {
return emitError() << "explicit value type mismatch between encoding and "
<< "tensor element type: " << attrType
<< " != " << elementType;
}
}
if (auto impVal = getImplicitVal()) {
Type attrType = llvm::dyn_cast<TypedAttr>(impVal).getType();
if (attrType != elementType) {
return emitError() << "implicit value type mismatch between encoding and "
<< "tensor element type: " << attrType
<< " != " << elementType;
}
// Currently, we only support zero as the implicit value.
auto impFVal = llvm::dyn_cast<FloatAttr>(impVal);
auto impIntVal = llvm::dyn_cast<IntegerAttr>(impVal);
auto impComplexVal = llvm::dyn_cast<complex::NumberAttr>(impVal);
if ((impFVal && impFVal.getValue().isNonZero()) ||
(impIntVal && !impIntVal.getValue().isZero()) ||
(impComplexVal && (impComplexVal.getImag().isNonZero() ||
impComplexVal.getReal().isNonZero()))) {
return emitError() << "implicit value must be zero";
}
}
return success();
}
Level mlir::sparse_tensor::SparseTensorEncodingAttr::getAoSCOOStart() const {
SmallVector<COOSegment> coo = getCOOSegments();
assert(coo.size() == 1 || coo.empty());
if (!coo.empty() && coo.front().isAoS()) {
return coo.front().lvlRange.first;
}
return getLvlRank();
}
SmallVector<COOSegment>
mlir::sparse_tensor::SparseTensorEncodingAttr::getCOOSegments() const {
SmallVector<COOSegment> ret;
if (getLvlRank() <= 1)
return ret;
ArrayRef<LevelType> lts = getLvlTypes();
Level l = 0;
while (l < getLvlRank()) {
auto lt = lts[l];
if (lt.isa<LevelFormat::Compressed, LevelFormat::LooseCompressed>()) {
auto cur = lts.begin() + l;
auto end = std::find_if(cur + 1, lts.end(), [](LevelType lt) {
return !lt.isa<LevelFormat::Singleton>();
});
unsigned cooLen = std::distance(cur, end);
if (cooLen > 1) {
// To support mixed SoA/AoS COO, we should break the segment when the
// storage scheme changes, for now we faithfully assume that all
// consecutive singleton levels have the same storage format as verified
// STEA.
ret.push_back(COOSegment{std::make_pair(l, l + cooLen),
lts[l + 1].isa<LevelPropNonDefault::SoA>()});
}
l += cooLen;
} else {
l++;
}
}
return ret;
}
//===----------------------------------------------------------------------===//
// SparseTensorType Methods.
//===----------------------------------------------------------------------===//
bool mlir::sparse_tensor::SparseTensorType::isCOOType(Level startLvl,
bool isUnique) const {
if (!hasEncoding())
return false;
if (!isCompressedLvl(startLvl) && !isLooseCompressedLvl(startLvl))
return false;
for (Level l = startLvl + 1; l < lvlRank; ++l)
if (!isSingletonLvl(l))
return false;
// If isUnique is true, then make sure that the last level is unique,
// that is, when lvlRank == 1, the only compressed level is unique,
// and when lvlRank > 1, the last singleton is unique.
return !isUnique || isUniqueLvl(lvlRank - 1);
}
RankedTensorType
mlir::sparse_tensor::SparseTensorType::getCOOType(bool ordered) const {
SmallVector<LevelType> lvlTypes;
lvlTypes.reserve(lvlRank);
// A non-unique compressed level at beginning (unless this is
// also the last level, then it is unique).
lvlTypes.push_back(
*buildLevelType(LevelFormat::Compressed, ordered, lvlRank == 1));
if (lvlRank > 1) {
// Followed by n-2 non-unique singleton levels.
std::fill_n(std::back_inserter(lvlTypes), lvlRank - 2,
*buildLevelType(LevelFormat::Singleton, ordered, false));
// Ends by a unique singleton level.
lvlTypes.push_back(*buildLevelType(LevelFormat::Singleton, ordered, true));
}
auto enc = SparseTensorEncodingAttr::get(
getContext(), lvlTypes, getDimToLvl(), getLvlToDim(), getPosWidth(),
getCrdWidth(), getExplicitVal(), getImplicitVal());
return RankedTensorType::get(getDimShape(), getElementType(), enc);
}
//===----------------------------------------------------------------------===//
// Convenience Methods.
//===----------------------------------------------------------------------===//
SparseTensorEncodingAttr
mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
if (auto ttp = llvm::dyn_cast<RankedTensorType>(type))
return llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(ttp.getEncoding());
if (auto mdtp = llvm::dyn_cast<StorageSpecifierType>(type))
return mdtp.getEncoding();
return nullptr;
}
AffineMap mlir::sparse_tensor::inferLvlToDim(AffineMap dimToLvl,
MLIRContext *context) {
auto map = static_cast<AffineMap>(dimToLvl);
AffineMap lvlToDim;
// Return an empty lvlToDim when inference is not successful.
if (!map || map.getNumSymbols() != 0) {
lvlToDim = AffineMap();
} else if (map.isPermutation()) {
lvlToDim = inversePermutation(map);
} else if (isBlockSparsity(map)) {
lvlToDim = inverseBlockSparsity(map, context);
}
return lvlToDim;
}
AffineMap mlir::sparse_tensor::inverseBlockSparsity(AffineMap dimToLvl,
MLIRContext *context) {
SmallVector<AffineExpr> lvlExprs;
auto numLvls = dimToLvl.getNumResults();
lvlExprs.reserve(numLvls);
// lvlExprComponents stores information of the floordiv and mod operations
// applied to the same dimension, so as to build the lvlToDim map.
std::map<unsigned, SmallVector<AffineExpr, 3>> lvlExprComponents;
for (unsigned i = 0, n = numLvls; i < n; i++) {
auto result = dimToLvl.getResult(i);
if (auto binOp = dyn_cast<AffineBinaryOpExpr>(result)) {
if (result.getKind() == AffineExprKind::FloorDiv) {
// Position of the dimension in dimToLvl.
auto pos = dyn_cast<AffineDimExpr>(binOp.getLHS()).getPosition();
assert(lvlExprComponents.find(pos) == lvlExprComponents.end() &&
"expected only one floordiv for each dimension");
SmallVector<AffineExpr, 3> components;
// Level variable for floordiv.
components.push_back(getAffineDimExpr(i, context));
// Multiplier.
components.push_back(binOp.getRHS());
// Map key is the position of the dimension.
lvlExprComponents[pos] = components;
} else if (result.getKind() == AffineExprKind::Mod) {
auto pos = dyn_cast<AffineDimExpr>(binOp.getLHS()).getPosition();
assert(lvlExprComponents.find(pos) != lvlExprComponents.end() &&
"expected floordiv before mod");
// Add level variable for mod to the same vector
// of the corresponding floordiv.
lvlExprComponents[pos].push_back(getAffineDimExpr(i, context));
} else {
assert(false && "expected floordiv or mod");
}
} else {
lvlExprs.push_back(getAffineDimExpr(i, context));
}
}
// Build lvlExprs from lvlExprComponents.
// For example, for il = i floordiv 2 and ii = i mod 2, the components
// would be [il, 2, ii]. It could be used to build the AffineExpr
// i = il * 2 + ii in lvlToDim.
for (auto &components : lvlExprComponents) {
assert(components.second.size() == 3 &&
"expected 3 components to build lvlExprs");
auto mulOp = getAffineBinaryOpExpr(
AffineExprKind::Mul, components.second[0], components.second[1]);
auto addOp =
getAffineBinaryOpExpr(AffineExprKind::Add, mulOp, components.second[2]);
lvlExprs.push_back(addOp);
}
return dimToLvl.get(dimToLvl.getNumResults(), 0, lvlExprs, context);
}
SmallVector<unsigned> mlir::sparse_tensor::getBlockSize(AffineMap dimToLvl) {
assert(isBlockSparsity(dimToLvl) &&
"expected dimToLvl to be block sparsity for calling getBlockSize");
SmallVector<unsigned> blockSize;
for (auto result : dimToLvl.getResults()) {
if (auto binOp = dyn_cast<AffineBinaryOpExpr>(result)) {
if (result.getKind() == AffineExprKind::Mod) {
blockSize.push_back(
dyn_cast<AffineConstantExpr>(binOp.getRHS()).getValue());
}
} else {
blockSize.push_back(0);
}
}
return blockSize;
}
bool mlir::sparse_tensor::isBlockSparsity(AffineMap dimToLvl) {
if (!dimToLvl)
return false;
std::map<unsigned, int64_t> coeffientMap;
bool hasBlock = false;
for (auto result : dimToLvl.getResults()) {
if (auto binOp = dyn_cast<AffineBinaryOpExpr>(result)) {
// Check for "dim op const".
auto dimOp = dyn_cast<AffineDimExpr>(binOp.getLHS());
auto conOp = dyn_cast<AffineConstantExpr>(binOp.getRHS());
if (!dimOp || !conOp || conOp.getValue() <= 0)
return false;
// Inspect "dim / const" or "dim % const".
auto pos = dimOp.getPosition();
if (binOp.getKind() == AffineExprKind::FloorDiv) {
// Expect only one floordiv for each dimension.
if (coeffientMap.find(pos) != coeffientMap.end())
return false;
// Record coefficient of the floordiv.
coeffientMap[pos] = conOp.getValue();
} else if (binOp.getKind() == AffineExprKind::Mod) {
// Expect floordiv before mod.
if (coeffientMap.find(pos) == coeffientMap.end())
return false;
// Expect mod to have the same coefficient as floordiv.
if (conOp.getValue() != coeffientMap[pos])
return false;
hasBlock = true;
} else {
return false;
}
} else if (auto dimOp = dyn_cast<AffineDimExpr>(result)) {
auto pos = dimOp.getPosition();
// Expect dim to be unset.
if (coeffientMap.find(pos) != coeffientMap.end())
return false;
coeffientMap[pos] = 0;
} else {
return false;
}
}
return hasBlock;
}
bool mlir::sparse_tensor::hasAnyNonIdentityOperandsOrResults(Operation *op) {
auto hasNonIdentityMap = [](Value v) {
auto stt = tryGetSparseTensorType(v);
return stt && !stt->isIdentity();
};
return llvm::any_of(op->getOperands(), hasNonIdentityMap) ||
llvm::any_of(op->getResults(), hasNonIdentityMap);
}
Dimension mlir::sparse_tensor::toDim(SparseTensorEncodingAttr enc, Level l) {
if (enc) {
assert(enc.isPermutation() && "Non permutation map not supported");
if (const auto dimToLvl = enc.getDimToLvl())
return dimToLvl.getDimPosition(l);
}
return l;
}
Level mlir::sparse_tensor::toLvl(SparseTensorEncodingAttr enc, Dimension d) {
if (enc) {
assert(enc.isPermutation() && "Non permutation map not supported");
if (const auto lvlToDim = enc.getLvlToDim())
return lvlToDim.getDimPosition(d);
}
return d;
}
/// We normalized sparse tensor encoding attribute by always using
/// ordered/unique LT such that "compressed_nu_no" and "compressed_nu" (as well
/// as other variants) lead to the same storage specifier type, and stripping
/// irrelevant fields that do not alter the sparse tensor memory layout.
static SparseTensorEncodingAttr
getNormalizedEncodingForSpecifier(SparseTensorEncodingAttr enc) {
SmallVector<LevelType> lts;
for (auto lt : enc.getLvlTypes())
lts.push_back(lt.stripStorageIrrelevantProperties());
return SparseTensorEncodingAttr::get(
enc.getContext(), lts,
AffineMap(), // dimToLvl (irrelevant to storage specifier)
AffineMap(), // lvlToDim (irrelevant to storage specifier)
// Always use `index` for memSize and lvlSize instead of reusing
// `getPosWidth` and `getCrdWidth`. It allows us to reuse the same SSA
// value for different bitwidth, it also avoids casting between index and
// integer (returned by DimOp)
0, 0,
Attribute(), // explicitVal (irrelevant to storage specifier)
Attribute(), // implicitVal (irrelevant to storage specifier)
enc.getDimSlices());
}
StorageSpecifierType
StorageSpecifierType::get(MLIRContext *ctx, SparseTensorEncodingAttr encoding) {
return Base::get(ctx, getNormalizedEncodingForSpecifier(encoding));
}
//===----------------------------------------------------------------------===//
// SparseTensorDialect Operations.
//===----------------------------------------------------------------------===//
static LogicalResult lvlIsInBounds(Level lvl, Value tensor) {
return success(lvl < getSparseTensorType(tensor).getLvlRank());
}
static LogicalResult isMatchingWidth(Value mem, unsigned width) {
const Type etp = getMemRefType(mem).getElementType();
return success(width == 0 ? etp.isIndex() : etp.isInteger(width));
}
static LogicalResult verifySparsifierGetterSetter(
StorageSpecifierKind mdKind, std::optional<Level> lvl,
TypedValue<StorageSpecifierType> md, Operation *op) {
if (mdKind == StorageSpecifierKind::ValMemSize && lvl) {
return op->emitError(
"redundant level argument for querying value memory size");
}
const auto enc = md.getType().getEncoding();
const Level lvlRank = enc.getLvlRank();
if (mdKind == StorageSpecifierKind::DimOffset ||
mdKind == StorageSpecifierKind::DimStride)
if (!enc.isSlice())
return op->emitError("requested slice data on non-slice tensor");
if (mdKind != StorageSpecifierKind::ValMemSize) {
if (!lvl)
return op->emitError("missing level argument");
const Level l = lvl.value();
if (l >= lvlRank)
return op->emitError("requested level is out of bounds");
if (mdKind == StorageSpecifierKind::PosMemSize && enc.isSingletonLvl(l))
return op->emitError(
"requested position memory size on a singleton level");
}
return success();
}
static Type getFieldElemType(SparseTensorType stt, SparseTensorFieldKind kind) {
switch (kind) {
case SparseTensorFieldKind::CrdMemRef:
return stt.getCrdType();
case SparseTensorFieldKind::PosMemRef:
return stt.getPosType();
case SparseTensorFieldKind::ValMemRef:
return stt.getElementType();
case SparseTensorFieldKind::StorageSpec:
return nullptr;
}
llvm_unreachable("Unrecognizable FieldKind");
}
static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape,
SparseTensorType stt,
RankedTensorType valTp,
TypeRange lvlTps) {
if (requiresStaticShape && !stt.hasStaticDimShape())
return op->emitError("the sparse-tensor must have static shape");
if (!stt.hasEncoding())
return op->emitError("the sparse-tensor must have an encoding attribute");
// Verifies the trailing COO.
Level cooStartLvl = stt.getAoSCOOStart();
if (cooStartLvl < stt.getLvlRank()) {
// We only supports trailing COO for now, must be the last input.
auto cooTp = llvm::cast<ShapedType>(lvlTps.back());
// The coordinates should be in shape of <? x rank>
unsigned expCOORank = stt.getLvlRank() - cooStartLvl;
if (cooTp.getRank() != 2 || expCOORank != cooTp.getShape().back()) {
op->emitError("input/output trailing COO level-ranks don't match");
}
}
// Verifies that all types match.
StorageLayout layout(stt.getEncoding());
if (layout.getNumDataFields() != lvlTps.size() + 1) // plus one value memref
return op->emitError("inconsistent number of fields between input/output");
unsigned idx = 0;
bool misMatch = false;
layout.foreachField([&idx, &misMatch, stt, valTp,
lvlTps](FieldIndex fid, SparseTensorFieldKind fKind,
Level lvl, LevelType lt) -> bool {
if (fKind == SparseTensorFieldKind::StorageSpec)
return true;
Type inputTp = nullptr;
if (fKind == SparseTensorFieldKind::ValMemRef) {
inputTp = valTp;
} else {
assert(fid == idx && stt.getLvlType(lvl) == lt);
inputTp = lvlTps[idx++];
}
// The input element type and expected element type should match.
Type inpElemTp = llvm::cast<TensorType>(inputTp).getElementType();
Type expElemTp = getFieldElemType(stt, fKind);
if (inpElemTp != expElemTp) {
misMatch = true;
return false; // to terminate the iteration
}
return true;
});
if (misMatch)
return op->emitError("input/output element-types don't match");
return success();
}
LogicalResult AssembleOp::verify() {
const auto valuesTp = getRankedTensorType(getValues());
const auto lvlsTp = getLevels().getTypes();
const auto resTp = getSparseTensorType(getResult());
return verifyPackUnPack(*this, true, resTp, valuesTp, lvlsTp);
}
LogicalResult DisassembleOp::verify() {
if (getOutValues().getType() != getRetValues().getType())
return emitError("output values and return value type mismatch");
for (auto [ot, rt] : llvm::zip_equal(getOutLevels(), getRetLevels()))
if (ot.getType() != rt.getType())
return emitError("output levels and return levels type mismatch");
const auto valuesTp = getRankedTensorType(getRetValues());
const auto lvlsTp = getRetLevels().getTypes();
const auto srcTp = getSparseTensorType(getTensor());
return verifyPackUnPack(*this, false, srcTp, valuesTp, lvlsTp);
}
LogicalResult ConvertOp::verify() {
if (auto tp1 = llvm::dyn_cast<RankedTensorType>(getSource().getType())) {
if (auto tp2 = llvm::dyn_cast<RankedTensorType>(getDest().getType())) {
if (tp1.getRank() != tp2.getRank())
return emitError("unexpected conversion mismatch in rank");
auto dstEnc =
llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(tp2.getEncoding());
if (dstEnc && dstEnc.isSlice())
return emitError("cannot convert to a sparse tensor slice");
auto shape1 = tp1.getShape();
auto shape2 = tp2.getShape();
// Accept size matches between the source and the destination type
// (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or
// matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10).
for (Dimension d = 0, dimRank = tp1.getRank(); d < dimRank; d++)
if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamic)
return emitError("unexpected conversion mismatch in dimension ") << d;
return success();
}
}
return emitError("unexpected type in convert");
}
OpFoldResult ConvertOp::fold(FoldAdaptor adaptor) {
if (getType() == getSource().getType())
return getSource();
return {};
}
bool ConvertOp::needsExtraSort() {
SparseTensorType srcStt = getSparseTensorType(getSource());
SparseTensorType dstStt = getSparseTensorType(getDest());
// We do not need an extra sort when returning unordered sparse tensors or
// dense tensor since dense tensor support random access.
if (dstStt.isAllDense() || !dstStt.isAllOrdered())
return false;
if (srcStt.isAllOrdered() && dstStt.isAllOrdered() &&
srcStt.hasSameDimToLvl(dstStt)) {
return false;
}
// Source and dest tensors are ordered in different ways. We only do direct
// dense to sparse conversion when the dense input is defined by a sparse
// constant. Note that we can theoretically always directly convert from dense
// inputs by rotating dense loops but it leads to bad cache locality and hurt
// performance.
if (auto constOp = getSource().getDefiningOp<arith::ConstantOp>())
if (isa<SparseElementsAttr>(constOp.getValue()))
return false;
return true;
}
LogicalResult CrdTranslateOp::verify() {
uint64_t inRank = getEncoder().getLvlRank();
uint64_t outRank = getEncoder().getDimRank();
if (getDirection() == CrdTransDirectionKind::dim2lvl)
std::swap(inRank, outRank);
if (inRank != getInCrds().size() || outRank != getOutCrds().size())
return emitError("Coordinate rank mismatch with encoding");
return success();
}
LogicalResult CrdTranslateOp::fold(FoldAdaptor adaptor,
SmallVectorImpl<OpFoldResult> &results) {
if (getEncoder().isIdentity()) {
results.assign(getInCrds().begin(), getInCrds().end());
return success();
}
if (getEncoder().isPermutation()) {
AffineMap perm = getDirection() == CrdTransDirectionKind::dim2lvl
? getEncoder().getDimToLvl()
: getEncoder().getLvlToDim();
for (AffineExpr exp : perm.getResults())
results.push_back(getInCrds()[cast<AffineDimExpr>(exp).getPosition()]);
return success();
}
// Fuse dim2lvl/lvl2dim pairs.
auto def = getInCrds()[0].getDefiningOp<CrdTranslateOp>();
bool sameDef = def && llvm::all_of(getInCrds(), [def](Value v) {
return v.getDefiningOp() == def;
});
if (!sameDef)
return failure();
bool oppositeDir = def.getDirection() != getDirection();
bool sameOracle =
def.getEncoder().getDimToLvl() == getEncoder().getDimToLvl();
bool sameCount = def.getNumResults() == getInCrds().size();
if (!oppositeDir || !sameOracle || !sameCount)
return failure();
// The definition produces the coordinates in the same order as the input
// coordinates.
bool sameOrder = llvm::all_of(llvm::zip_equal(def.getOutCrds(), getInCrds()),
[](auto valuePair) {
auto [lhs, rhs] = valuePair;
return lhs == rhs;
});
if (!sameOrder)
return failure();
// l1 = dim2lvl (lvl2dim l0)
// ==> l0
results.append(def.getInCrds().begin(), def.getInCrds().end());
return success();
}
void LvlOp::build(OpBuilder &builder, OperationState &state, Value source,
int64_t index) {
Value val = builder.create<arith::ConstantIndexOp>(state.location, index);
return build(builder, state, source, val);
}
LogicalResult LvlOp::verify() {
if (std::optional<uint64_t> lvl = getConstantLvlIndex()) {
auto stt = getSparseTensorType(getSource());
if (static_cast<uint64_t>(lvl.value()) >= stt.getLvlRank())
emitError("Level index exceeds the rank of the input sparse tensor");
}
return success();
}
std::optional<uint64_t> LvlOp::getConstantLvlIndex() {
return getConstantIntValue(getIndex());
}
Speculation::Speculatability LvlOp::getSpeculatability() {
auto constantIndex = getConstantLvlIndex();
if (!constantIndex)
return Speculation::NotSpeculatable;
assert(constantIndex <
cast<RankedTensorType>(getSource().getType()).getRank());
return Speculation::Speculatable;
}
OpFoldResult LvlOp::fold(FoldAdaptor adaptor) {
auto lvlIndex = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getIndex());
if (!lvlIndex)
return {};
Level lvl = lvlIndex.getAPSInt().getZExtValue();
auto stt = getSparseTensorType(getSource());
if (lvl >= stt.getLvlRank()) {
// Follows the same convention used by tensor.dim operation. Out of bound
// indices produce undefined behavior but are still valid IR. Don't choke on
// them.
return {};
}
// Helper lambda to build an IndexAttr.
auto getIndexAttr = [this](int64_t lvlSz) {
return IntegerAttr::get(IndexType::get(getContext()), APInt(64, lvlSz));
};
SmallVector<Size> lvlShape = stt.getLvlShape();
if (!ShapedType::isDynamic(lvlShape[lvl]))
return getIndexAttr(lvlShape[lvl]);
return {};
}
void ReinterpretMapOp::build(OpBuilder &odsBuilder, OperationState &odsState,
SparseTensorEncodingAttr dstEnc, Value source) {
auto srcStt = getSparseTensorType(source);
SmallVector<int64_t> srcLvlShape = srcStt.getLvlShape();
SmallVector<int64_t> dstDimShape =
dstEnc.translateShape(srcLvlShape, CrdTransDirectionKind::lvl2dim);
auto dstTp =
RankedTensorType::get(dstDimShape, srcStt.getElementType(), dstEnc);
return build(odsBuilder, odsState, dstTp, source);
}
LogicalResult ReinterpretMapOp::verify() {
auto srcStt = getSparseTensorType(getSource());
auto dstStt = getSparseTensorType(getDest());
ArrayRef<LevelType> srcLvlTps = srcStt.getLvlTypes();
ArrayRef<LevelType> dstLvlTps = dstStt.getLvlTypes();
if (srcLvlTps.size() != dstLvlTps.size())
return emitError("Level rank mismatch between source/dest tensors");
for (auto [srcLvlTp, dstLvlTp] : llvm::zip(srcLvlTps, dstLvlTps))
if (srcLvlTp != dstLvlTp)
return emitError("Level type mismatch between source/dest tensors");
if (srcStt.getPosWidth() != dstStt.getPosWidth() ||
srcStt.getCrdWidth() != dstStt.getCrdWidth()) {
return emitError("Crd/Pos width mismatch between source/dest tensors");
}
if (srcStt.getElementType() != dstStt.getElementType())
return emitError("Element type mismatch between source/dest tensors");
SmallVector<Size> srcLvlShape = srcStt.getLvlShape();
SmallVector<Size> dstLvlShape = dstStt.getLvlShape();
for (auto [srcLvlSz, dstLvlSz] : llvm::zip(srcLvlShape, dstLvlShape)) {
if (srcLvlSz != dstLvlSz) {
// Should we allow one side to be dynamic size, e.g., <?x?> should be
// compatible to <3x4>? For now, we require all the level sizes to be
// *exactly* matched for simplicity.
return emitError("Level size mismatch between source/dest tensors");
}
}
return success();
}
OpFoldResult ReinterpretMapOp::fold(FoldAdaptor adaptor) {
if (getSource().getType() == getDest().getType())
return getSource();
if (auto def = getSource().getDefiningOp<ReinterpretMapOp>()) {
// A -> B, B -> A ==> A
if (def.getSource().getType() == getDest().getType())
return def.getSource();
}
return {};
}
template <typename ToBufferOp>
static LogicalResult inferSparseBufferType(ValueRange ops, DictionaryAttr attr,
OpaqueProperties prop,
RegionRange region,
SmallVectorImpl<mlir::Type> &ret) {
typename ToBufferOp::Adaptor adaptor(ops, attr, prop, region);
SparseTensorType stt = getSparseTensorType(adaptor.getTensor());
Type elemTp = nullptr;
bool withStride = false;
if constexpr (std::is_same_v<ToBufferOp, ToPositionsOp>) {
elemTp = stt.getPosType();
} else if constexpr (std::is_same_v<ToBufferOp, ToCoordinatesOp> ||
std::is_same_v<ToBufferOp, ToCoordinatesBufferOp>) {
elemTp = stt.getCrdType();
if constexpr (std::is_same_v<ToBufferOp, ToCoordinatesOp>)
withStride = stt.getAoSCOOStart() <= adaptor.getLevel();
} else if constexpr (std::is_same_v<ToBufferOp, ToValuesOp>) {
elemTp = stt.getElementType();
}
assert(elemTp && "unhandled operation.");
SmallVector<int64_t> bufShape = stt.getBatchLvlShape();
bufShape.push_back(ShapedType::kDynamic);
auto layout = withStride ? StridedLayoutAttr::StridedLayoutAttr::get(
stt.getContext(), ShapedType::kDynamic,
{ShapedType::kDynamic})
: StridedLayoutAttr();
ret.emplace_back(MemRefType::get(bufShape, elemTp, layout));
return success();
}
LogicalResult ToPositionsOp::verify() {
auto stt = getSparseTensorType(getTensor());
if (failed(lvlIsInBounds(getLevel(), getTensor())))
return emitError("requested level is out of bounds");
if (failed(isMatchingWidth(getResult(), stt.getPosWidth())))
return emitError("unexpected type for positions");
return success();
}
LogicalResult
ToPositionsOp::inferReturnTypes(MLIRContext *ctx, std::optional<Location> loc,
ValueRange ops, DictionaryAttr attr,
OpaqueProperties prop, RegionRange region,
SmallVectorImpl<mlir::Type> &ret) {
return inferSparseBufferType<ToPositionsOp>(ops, attr, prop, region, ret);
}
LogicalResult ToCoordinatesOp::verify() {
auto stt = getSparseTensorType(getTensor());
if (failed(lvlIsInBounds(getLevel(), getTensor())))
return emitError("requested level is out of bounds");
if (failed(isMatchingWidth(getResult(), stt.getCrdWidth())))
return emitError("unexpected type for coordinates");
return success();
}
LogicalResult
ToCoordinatesOp::inferReturnTypes(MLIRContext *ctx, std::optional<Location> loc,
ValueRange ops, DictionaryAttr attr,
OpaqueProperties prop, RegionRange region,
SmallVectorImpl<mlir::Type> &ret) {
return inferSparseBufferType<ToCoordinatesOp>(ops, attr, prop, region, ret);
}
LogicalResult ToCoordinatesBufferOp::verify() {
auto stt = getSparseTensorType(getTensor());
if (stt.getAoSCOOStart() >= stt.getLvlRank())
return emitError("expected sparse tensor with a COO region");
return success();
}
LogicalResult ToCoordinatesBufferOp::inferReturnTypes(
MLIRContext *ctx, std::optional<Location> loc, ValueRange ops,
DictionaryAttr attr, OpaqueProperties prop, RegionRange region,
SmallVectorImpl<mlir::Type> &ret) {
return inferSparseBufferType<ToCoordinatesBufferOp>(ops, attr, prop, region,
ret);
}
LogicalResult ToValuesOp::verify() {
auto stt = getSparseTensorType(getTensor());
auto mtp = getMemRefType(getResult());
if (stt.getElementType() != mtp.getElementType())
return emitError("unexpected mismatch in element types");
return success();
}
LogicalResult ToValuesOp::inferReturnTypes(MLIRContext *ctx,
std::optional<Location> loc,
ValueRange ops, DictionaryAttr attr,
OpaqueProperties prop,
RegionRange region,
SmallVectorImpl<mlir::Type> &ret) {
return inferSparseBufferType<ToValuesOp>(ops, attr, prop, region, ret);
}
LogicalResult ToSliceOffsetOp::verify() {
auto rank = getRankedTensorType(getSlice()).getRank();
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
return emitError("requested dimension out of bound");
return success();
}
LogicalResult ToSliceStrideOp::verify() {
auto rank = getRankedTensorType(getSlice()).getRank();
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
return emitError("requested dimension out of bound");
return success();
}
LogicalResult GetStorageSpecifierOp::verify() {
return verifySparsifierGetterSetter(getSpecifierKind(), getLevel(),
getSpecifier(), getOperation());
}
template <typename SpecifierOp>
static SetStorageSpecifierOp getSpecifierSetDef(SpecifierOp op) {
return op.getSpecifier().template getDefiningOp<SetStorageSpecifierOp>();
}
OpFoldResult GetStorageSpecifierOp::fold(FoldAdaptor adaptor) {
const StorageSpecifierKind kind = getSpecifierKind();
const auto lvl = getLevel();
for (auto op = getSpecifierSetDef(*this); op; op = getSpecifierSetDef(op))
if (kind == op.getSpecifierKind() && lvl == op.getLevel())
return op.getValue();
return {};
}
LogicalResult SetStorageSpecifierOp::verify() {
return verifySparsifierGetterSetter(getSpecifierKind(), getLevel(),
getSpecifier(), getOperation());
}
template <class T>
static LogicalResult verifyNumBlockArgs(T *op, Region ®ion,
const char *regionName,
TypeRange inputTypes, Type outputType) {
unsigned numArgs = region.getNumArguments();
unsigned expectedNum = inputTypes.size();
if (numArgs != expectedNum)
return op->emitError() << regionName << " region must have exactly "
<< expectedNum << " arguments";
for (unsigned i = 0; i < numArgs; i++) {
Type typ = region.getArgument(i).getType();
if (typ != inputTypes[i])
return op->emitError() << regionName << " region argument " << (i + 1)
<< " type mismatch";
}
Operation *term = region.front().getTerminator();
YieldOp yield = dyn_cast<YieldOp>(term);
if (!yield)
return op->emitError() << regionName
<< " region must end with sparse_tensor.yield";
if (!yield.hasSingleResult() ||
yield.getSingleResult().getType() != outputType)
return op->emitError() << regionName << " region yield type mismatch";
return success();
}
LogicalResult BinaryOp::verify() {
NamedAttrList attrs = (*this)->getAttrs();
Type leftType = getX().getType();
Type rightType = getY().getType();
Type outputType = getOutput().getType();
Region &overlap = getOverlapRegion();
Region &left = getLeftRegion();
Region &right = getRightRegion();
// Check correct number of block arguments and return type for each
// non-empty region.
if (!overlap.empty()) {
if (failed(verifyNumBlockArgs(this, overlap, "overlap",
TypeRange{leftType, rightType}, outputType)))
return failure();
}
if (!left.empty()) {
if (failed(verifyNumBlockArgs(this, left, "left", TypeRange{leftType},
outputType)))
return failure();
} else if (getLeftIdentity()) {
if (leftType != outputType)
return emitError("left=identity requires first argument to have the same "
"type as the output");
}
if (!right.empty()) {
if (failed(verifyNumBlockArgs(this, right, "right", TypeRange{rightType},
outputType)))
return failure();
} else if (getRightIdentity()) {
if (rightType != outputType)
return emitError("right=identity requires second argument to have the "
"same type as the output");
}
return success();
}
LogicalResult UnaryOp::verify() {
Type inputType = getX().getType();
Type outputType = getOutput().getType();
// Check correct number of block arguments and return type for each
// non-empty region.
Region &present = getPresentRegion();
if (!present.empty()) {
if (failed(verifyNumBlockArgs(this, present, "present",
TypeRange{inputType}, outputType)))
return failure();
}
Region &absent = getAbsentRegion();
if (!absent.empty()) {
if (failed(verifyNumBlockArgs(this, absent, "absent", TypeRange{},
outputType)))
return failure();
// Absent branch can only yield invariant values.
Block *absentBlock = &absent.front();
Block *parent = getOperation()->getBlock();
Value absentVal =
cast<YieldOp>(absentBlock->getTerminator()).getSingleResult();
if (auto arg = dyn_cast<BlockArgument>(absentVal)) {
if (arg.getOwner() == parent)
return emitError("absent region cannot yield linalg argument");
} else if (Operation *def = absentVal.getDefiningOp()) {
if (!isa<arith::ConstantOp>(def) &&
(def->getBlock() == absentBlock || def->getBlock() == parent))
return emitError("absent region cannot yield locally computed value");
}
}
return success();
}
bool ConcatenateOp::needsExtraSort() {
SparseTensorType dstStt = getSparseTensorType(*this);
if (dstStt.isAllDense() || !dstStt.isAllOrdered())
return false;
bool allSameOrdered = llvm::all_of(getInputs(), [dstStt](Value op) {
return getSparseTensorType(op).hasSameDimToLvl(dstStt);
});
// TODO: When conDim != 0, as long as conDim corresponding to the first level
// in all input/output buffers, and all input/output buffers have the same
// dimToLvl, the tmp COO buffer is still unnecessary (e.g, concatenate
// CSC matrices along column).
bool directLowerable =
allSameOrdered && getDimension() == 0 && dstStt.isIdentity();
return !directLowerable;
}
LogicalResult ConcatenateOp::verify() {
const auto dstTp = getSparseTensorType(*this);
const Dimension concatDim = getDimension();
const Dimension dimRank = dstTp.getDimRank();
if (getInputs().size() <= 1)
return emitError("Need at least two tensors to concatenate.");
if (concatDim >= dimRank)
return emitError(llvm::formatv(
"Concat-dimension is out of bounds for dimension-rank ({0} >= {1})",
concatDim, dimRank));
for (const auto &it : llvm::enumerate(getInputs())) {
const auto i = it.index();
const auto srcTp = getSparseTensorType(it.value());
if (srcTp.hasDynamicDimShape())
return emitError(llvm::formatv("Input tensor ${0} has dynamic shape", i));
const Dimension srcDimRank = srcTp.getDimRank();
if (srcDimRank != dimRank)
return emitError(
llvm::formatv("Input tensor ${0} has a different rank (rank={1}) "
"from the output tensor (rank={2}).",
i, srcDimRank, dimRank));
}
for (Dimension d = 0; d < dimRank; d++) {
const Size dstSh = dstTp.getDimShape()[d];
if (d == concatDim) {
if (!ShapedType::isDynamic(dstSh)) {
// If we reach here, then all inputs have static shapes. So we
// can use `getDimShape()[d]` instead of `*getDynamicDimSize(d)`
// to avoid redundant assertions in the loop.
Size sumSz = 0;
for (const auto src : getInputs())
sumSz += getSparseTensorType(src).getDimShape()[d];
// If all dimension are statically known, the sum of all the input
// dimensions should be equal to the output dimension.
if (sumSz != dstSh)
return emitError(
"The concatenation dimension of the output tensor should be the "
"sum of all the concatenation dimensions of the input tensors.");
}
} else {
Size prev = dstSh;
for (const auto src : getInputs()) {
const auto sh = getSparseTensorType(src).getDimShape()[d];
if (!ShapedType::isDynamic(prev) && sh != prev)
return emitError("All dimensions (expect for the concatenating one) "
"should be equal.");
prev = sh;
}
}
}
return success();
}
void PushBackOp::build(OpBuilder &builder, OperationState &result,
Value curSize, Value inBuffer, Value value) {
build(builder, result, curSize, inBuffer, value, Value());
}
LogicalResult PushBackOp::verify() {
if (Value n = getN()) {
std::optional<int64_t> nValue = getConstantIntValue(n);
if (nValue && nValue.value() < 1)
return emitOpError("n must be not less than 1");
}
return success();
}
LogicalResult CompressOp::verify() {
const auto stt = getSparseTensorType(getTensor());
if (stt.getLvlRank() != 1 + static_cast<Level>(getLvlCoords().size()))
return emitOpError("incorrect number of coordinates");
return success();
}
void ForeachOp::build(
OpBuilder &builder, OperationState &result, Value tensor,
ValueRange initArgs, AffineMapAttr order,
function_ref<void(OpBuilder &, Location, ValueRange, Value, ValueRange)>
bodyBuilder) {
build(builder, result, initArgs.getTypes(), tensor, initArgs, order);
// Builds foreach body.
if (!bodyBuilder)
return;
const auto stt = getSparseTensorType(tensor);
const Dimension dimRank = stt.getDimRank();
// Starts with `dimRank`-many coordinates.
SmallVector<Type> blockArgTypes(dimRank, builder.getIndexType());
// Followed by one value.
blockArgTypes.push_back(stt.getElementType());
// Followed by the reduction variables.
blockArgTypes.append(initArgs.getTypes().begin(), initArgs.getTypes().end());
SmallVector<Location> blockArgLocs(blockArgTypes.size(), tensor.getLoc());
OpBuilder::InsertionGuard guard(builder);
auto ®ion = *result.regions.front();
Block *bodyBlock =
builder.createBlock(®ion, region.end(), blockArgTypes, blockArgLocs);
bodyBuilder(builder, result.location,
bodyBlock->getArguments().slice(0, dimRank),
bodyBlock->getArguments()[dimRank],
bodyBlock->getArguments().drop_front(dimRank + 1));
}
LogicalResult ForeachOp::verify() {
const auto t = getSparseTensorType(getTensor());
const Dimension dimRank = t.getDimRank();
const auto args = getBody()->getArguments();
if (getOrder().has_value() && getOrder()->getNumDims() != t.getLvlRank())
return emitError("Level traverse order does not match tensor's level rank");
if (dimRank + 1 + getInitArgs().size() != args.size())
return emitError("Unmatched number of arguments in the block");
if (getNumResults() != getInitArgs().size())
return emitError("Mismatch in number of init arguments and results");
if (getResultTypes() != getInitArgs().getTypes())
return emitError("Mismatch in types of init arguments and results");
// Cannot mark this const, because the getters aren't.
auto yield = cast<YieldOp>(getBody()->getTerminator());
if (yield.getNumOperands() != getNumResults() ||
yield.getOperands().getTypes() != getResultTypes())
return emitError("Mismatch in types of yield values and results");
const auto iTp = IndexType::get(getContext());
for (Dimension d = 0; d < dimRank; d++)
if (args[d].getType() != iTp)
emitError(
llvm::formatv("Expecting Index type for argument at index {0}", d));
const auto elemTp = t.getElementType();
const auto valueTp = args[dimRank].getType();
if (elemTp != valueTp)
emitError(llvm::formatv("Unmatched element type between input tensor and "
"block argument, expected:{0}, got: {1}",
elemTp, valueTp));
return success();
}
OpFoldResult ReorderCOOOp::fold(FoldAdaptor adaptor) {
if (getSparseTensorEncoding(getInputCoo().getType()) ==
getSparseTensorEncoding(getResultCoo().getType()))
return getInputCoo();
return {};
}
LogicalResult ReorderCOOOp::verify() {
SparseTensorType srcStt = getSparseTensorType(getInputCoo());
SparseTensorType dstStt = getSparseTensorType(getResultCoo());
if (!srcStt.isCOOType() || !dstStt.isCOOType())
emitError("Expected COO sparse tensors only");
if (!srcStt.hasSameDimToLvl(dstStt))
emitError("Unmatched dim2lvl map between input and result COO");
if (srcStt.getPosType() != dstStt.getPosType() ||
srcStt.getCrdType() != dstStt.getCrdType() ||
srcStt.getElementType() != dstStt.getElementType())
emitError("Unmatched storage format between input and result COO");
return success();
}
LogicalResult ReduceOp::verify() {
Type inputType = getX().getType();
Region &formula = getRegion();
return verifyNumBlockArgs(this, formula, "reduce",
TypeRange{inputType, inputType}, inputType);
}
LogicalResult SelectOp::verify() {
Builder b(getContext());
Type inputType = getX().getType();
Type boolType = b.getI1Type();
Region &formula = getRegion();
return verifyNumBlockArgs(this, formula, "select", TypeRange{inputType},
boolType);
}
LogicalResult SortOp::verify() {
AffineMap xPerm = getPermMap();
uint64_t nx = xPerm.getNumDims();
if (nx < 1)
emitError(llvm::formatv("Expected rank(perm_map) > 1, got {0}", nx));
if (!xPerm.isPermutation())
emitError(llvm::formatv("Expected a permutation map, got {0}", xPerm));
// We can't check the size of the buffers when n or buffer dimensions aren't
// compile-time constants.
std::optional<int64_t> cn = getConstantIntValue(getN());
if (!cn)
return success();
// Verify dimensions.
const auto checkDim = [&](Value v, Size minSize, const char *message) {
const Size sh = getMemRefType(v).getShape()[0];
if (!ShapedType::isDynamic(sh) && sh < minSize)
emitError(llvm::formatv("{0} got {1} < {2}", message, sh, minSize));
};
uint64_t n = cn.value();
uint64_t ny = 0;
if (auto nyAttr = getNyAttr())
ny = nyAttr.getInt();
checkDim(getXy(), n * (nx + ny),
"Expected dimension(xy) >= n * (rank(perm_map) + ny)");
for (Value opnd : getYs())
checkDim(opnd, n, "Expected dimension(y) >= n");
return success();
}
//===----------------------------------------------------------------------===//
// Sparse Tensor Iteration Operations.
//===----------------------------------------------------------------------===//
IterSpaceType IteratorType::getIterSpaceType() const {
return IterSpaceType::get(getContext(), getEncoding(), getLoLvl(),
getHiLvl());
}
IteratorType IterSpaceType::getIteratorType() const {
return IteratorType::get(getContext(), getEncoding(), getLoLvl(), getHiLvl());
}
/// Parses a level range in the form "$lo `to` $hi"
/// or simply "$lo" if $hi - $lo = 1
static ParseResult parseLevelRange(AsmParser &parser, Level &lvlLo,
Level &lvlHi) {
if (parser.parseInteger(lvlLo))
return failure();
if (succeeded(parser.parseOptionalKeyword("to"))) {
if (parser.parseInteger(lvlHi))
return failure();
} else {
lvlHi = lvlLo + 1;
}
if (lvlHi <= lvlLo)
parser.emitError(parser.getNameLoc(),
"expect larger level upper bound than lower bound");
return success();
}
/// Parses a level range in the form "$lo `to` $hi"
/// or simply "$lo" if $hi - $lo = 1
static ParseResult parseLevelRange(OpAsmParser &parser, IntegerAttr &lvlLoAttr,
IntegerAttr &lvlHiAttr) {
Level lvlLo, lvlHi;
if (parseLevelRange(parser, lvlLo, lvlHi))
return failure();
lvlLoAttr = IntegerAttr::get(parser.getBuilder().getIndexType(), lvlLo);
lvlHiAttr = IntegerAttr::get(parser.getBuilder().getIndexType(), lvlHi);
return success();
}
/// Prints a level range in the form "$lo `to` $hi"
/// or simply "$lo" if $hi - $lo = 1
static void printLevelRange(AsmPrinter &p, Level lo, Level hi) {
if (lo + 1 == hi)
p << lo;
else
p << lo << " to " << hi;
}
/// Prints a level range in the form "$lo `to` $hi"
/// or simply "$lo" if $hi - $lo = 1
static void printLevelRange(OpAsmPrinter &p, Operation *, IntegerAttr lvlLo,
IntegerAttr lvlHi) {
unsigned lo = lvlLo.getValue().getZExtValue();
unsigned hi = lvlHi.getValue().getZExtValue();
printLevelRange(p, lo, hi);
}
static ParseResult
parseSparseSpaceLoop(OpAsmParser &parser, OperationState &state,
SmallVectorImpl<OpAsmParser::Argument> &iterators,
SmallVectorImpl<OpAsmParser::Argument> &iterArgs) {
SmallVector<OpAsmParser::UnresolvedOperand> spaces;
SmallVector<OpAsmParser::UnresolvedOperand> initArgs;
// Parse "%iters, ... in %spaces, ..."
if (parser.parseArgumentList(iterators) || parser.parseKeyword("in") ||
parser.parseOperandList(spaces))
return failure();
if (iterators.size() != spaces.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of sparse iterators and sparse spaces");
// Parse "at(%crd0, _, ...)"
LevelSet crdUsedLvlSet;
bool hasUsedCrds = succeeded(parser.parseOptionalKeyword("at"));
unsigned lvlCrdCnt = 0;
if (hasUsedCrds) {
ParseResult crdList = parser.parseCommaSeparatedList(
OpAsmParser::Delimiter::Paren, [&]() -> ParseResult {
if (parser.parseOptionalKeyword("_")) {
if (parser.parseArgument(iterArgs.emplace_back()))
return failure();
// Always use IndexType for the coordinate.
crdUsedLvlSet.set(lvlCrdCnt);
iterArgs.back().type = parser.getBuilder().getIndexType();
}
lvlCrdCnt += 1;
return success();
});
if (failed(crdList)) {
return parser.emitError(
parser.getNameLoc(),
"expecting SSA value or \"_\" for level coordinates");
}
}
// Set the CrdUsedLvl bitset.
state.addAttribute("crdUsedLvls",
parser.getBuilder().getI64IntegerAttr(crdUsedLvlSet));
// Parse "iter_args(%arg = %init, ...)"
bool hasIterArgs = succeeded(parser.parseOptionalKeyword("iter_args"));
if (hasIterArgs)
if (parser.parseAssignmentList(iterArgs, initArgs))
return failure();
SmallVector<Type> iterSpaceTps;
// parse ": sparse_tensor.iter_space -> ret"
if (parser.parseColon() || parser.parseTypeList(iterSpaceTps))
return failure();
if (iterSpaceTps.size() != spaces.size())
return parser.emitError(parser.getNameLoc(),
"mismatch in number of iteration space operands "
"and iteration space types");
for (auto [it, tp] : llvm::zip_equal(iterators, iterSpaceTps)) {
IterSpaceType spaceTp = llvm::dyn_cast<IterSpaceType>(tp);
if (!spaceTp)
return parser.emitError(parser.getNameLoc(),
"expected sparse_tensor.iter_space type for "
"iteration space operands");
if (hasUsedCrds && spaceTp.getSpaceDim() != lvlCrdCnt)
return parser.emitError(parser.getNameLoc(),
"mismatch in number of iteration space dimension "
"and specified coordinates");
it.type = spaceTp.getIteratorType();
}
if (hasIterArgs)
if (parser.parseArrowTypeList(state.types))
return failure();
// Resolves input operands.
if (parser.resolveOperands(spaces, iterSpaceTps, parser.getNameLoc(),
state.operands))
return failure();
if (hasIterArgs) {
unsigned numCrds = crdUsedLvlSet.count();
// Strip off leading args that used for coordinates.
MutableArrayRef args = MutableArrayRef(iterArgs).drop_front(numCrds);
if (args.size() != initArgs.size() || args.size() != state.types.size()) {
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of iteration arguments and return values");
}
for (auto [it, init, tp] : llvm::zip_equal(args, initArgs, state.types)) {
it.type = tp;
if (parser.resolveOperand(init, tp, state.operands))
return failure();
}
}
return success();
}
LogicalResult ExtractIterSpaceOp::inferReturnTypes(
MLIRContext *ctx, std::optional<Location> loc, ValueRange ops,
DictionaryAttr attr, OpaqueProperties prop, RegionRange region,
SmallVectorImpl<mlir::Type> &ret) {
ExtractIterSpaceOp::Adaptor adaptor(ops, attr, prop, region);
SparseTensorType stt = getSparseTensorType(adaptor.getTensor());
ret.push_back(IterSpaceType::get(ctx, stt.getEncoding(), adaptor.getLoLvl(),
adaptor.getHiLvl()));
return success();
}
LogicalResult ExtractIterSpaceOp::verify() {
if (getLoLvl() >= getHiLvl())
return emitOpError("expected smaller level low than level high");
TypedValue<IteratorType> pIter = getParentIter();
if ((pIter && getLoLvl() == 0) || (!pIter && getLoLvl() != 0)) {
return emitOpError(
"parent iterator should be specified iff level lower bound equals 0");
}
if (pIter) {
IterSpaceType spaceTp = getExtractedSpace().getType();
if (pIter.getType().getEncoding() != spaceTp.getEncoding())
return emitOpError(
"mismatch in parent iterator encoding and iteration space encoding.");
if (spaceTp.getLoLvl() != pIter.getType().getHiLvl())
return emitOpError("parent iterator should be used to extract an "
"iteration space from a consecutive level.");
}
return success();
}
struct RemoveUnusedLvlCrds : public OpRewritePattern<IterateOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(IterateOp iterateOp,
PatternRewriter &rewriter) const override {
LevelSet newUsedLvls(0);
llvm::BitVector toRemove(iterateOp.getBody()->getNumArguments());
for (unsigned i = 0, e = iterateOp.getSpaceDim(); i < e; i++) {
if (auto crd = iterateOp.getLvlCrd(i)) {
if (crd->getUsers().empty())
toRemove.set(crd->getArgNumber());
else
newUsedLvls.set(i);
}
}
// All coordinates are used.
if (toRemove.none())
return failure();
rewriter.startOpModification(iterateOp);
iterateOp.setCrdUsedLvls(newUsedLvls);
iterateOp.getBody()->eraseArguments(toRemove);
rewriter.finalizeOpModification(iterateOp);
return success();
}
};
void IterateOp::getCanonicalizationPatterns(mlir::RewritePatternSet &results,
mlir::MLIRContext *context) {
results.add<RemoveUnusedLvlCrds>(context);
}
void IterateOp::build(OpBuilder &builder, OperationState &odsState,
Value iterSpace, ValueRange initArgs) {
unsigned rank = llvm::cast<IterSpaceType>(iterSpace.getType()).getSpaceDim();
// All ones.
LevelSet set((1 << rank) - 1);
return build(builder, odsState, iterSpace, initArgs, set);
}
void IterateOp::build(OpBuilder &builder, OperationState &odsState,
Value iterSpace, ValueRange initArgs,
LevelSet crdUsedLvls) {
OpBuilder::InsertionGuard guard(builder);
odsState.addOperands(iterSpace);
odsState.addOperands(initArgs);
odsState.getOrAddProperties<Properties>().crdUsedLvls =
builder.getIntegerAttr(builder.getIntegerType(64), crdUsedLvls);
Region *bodyRegion = odsState.addRegion();
odsState.addTypes(initArgs.getTypes());
Block *bodyBlock = builder.createBlock(bodyRegion);
// First argument, sparse iterator
bodyBlock->addArgument(
llvm::cast<IterSpaceType>(iterSpace.getType()).getIteratorType(),
odsState.location);
// Followed by a list of used coordinates.
for (unsigned i = 0, e = crdUsedLvls.count(); i < e; i++)
bodyBlock->addArgument(builder.getIndexType(), odsState.location);
// Followed by a list of user-provided loop arguments.
for (Value v : initArgs)
bodyBlock->addArgument(v.getType(), v.getLoc());
}
ParseResult IterateOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::Argument iterator;
OpAsmParser::UnresolvedOperand iterSpace;
SmallVector<OpAsmParser::Argument> iters, iterArgs;
if (parseSparseSpaceLoop(parser, result, iters, iterArgs))
return failure();
if (iters.size() != 1)
return parser.emitError(parser.getNameLoc(),
"expected only one iterator/iteration space");
iters.append(iterArgs);
Region *body = result.addRegion();
if (parser.parseRegion(*body, iters))
return failure();
IterateOp::ensureTerminator(*body, parser.getBuilder(), result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
/// Prints the initialization list in the form of
/// <prefix>(%inner = %outer, %inner2 = %outer2, <...>)
/// where 'inner' values are assumed to be region arguments and 'outer' values
/// are regular SSA values.
static void printInitializationList(OpAsmPrinter &p,
Block::BlockArgListType blocksArgs,
ValueRange initializers,
StringRef prefix = "") {
assert(blocksArgs.size() == initializers.size() &&
"expected same length of arguments and initializers");
if (initializers.empty())
return;
p << prefix << '(';
llvm::interleaveComma(llvm::zip(blocksArgs, initializers), p, [&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it);
});
p << ")";
}
static void printUsedCrdsList(OpAsmPrinter &p, unsigned spaceDim,
Block::BlockArgListType blocksArgs,
LevelSet crdUsedLvls) {
if (crdUsedLvls.empty())
return;
p << " at(";
for (unsigned i = 0; i < spaceDim; i++) {
if (crdUsedLvls[i]) {
p << blocksArgs.front();
blocksArgs = blocksArgs.drop_front();
} else {
p << "_";
}
if (i != spaceDim - 1)
p << ", ";
}
assert(blocksArgs.empty());
p << ")";
}
void IterateOp::print(OpAsmPrinter &p) {
p << " " << getIterator() << " in " << getIterSpace();
printUsedCrdsList(p, getSpaceDim(), getCrds(), getCrdUsedLvls());
printInitializationList(p, getRegionIterArgs(), getInitArgs(), " iter_args");
p << " : " << getIterSpace().getType() << " ";
if (!getInitArgs().empty())
p << "-> (" << getInitArgs().getTypes() << ") ";
p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/!getInitArgs().empty());
}
LogicalResult IterateOp::verify() {
if (getInitArgs().size() != getNumResults()) {
return emitOpError(
"mismatch in number of loop-carried values and defined values");
}
if (getCrdUsedLvls().max() > getSpaceDim())
return emitOpError("required out-of-bound coordinates");
return success();
}
LogicalResult IterateOp::verifyRegions() {
if (getIterator().getType() != getIterSpace().getType().getIteratorType())
return emitOpError("mismatch in iterator and iteration space type");
if (getNumRegionIterArgs() != getNumResults())
return emitOpError(
"mismatch in number of basic block args and defined values");
auto initArgs = getInitArgs();
auto iterArgs = getRegionIterArgs();
auto yieldVals = getYieldedValues();
auto opResults = getResults();
if (!llvm::all_equal({initArgs.size(), iterArgs.size(), yieldVals.size(),
opResults.size()})) {
return emitOpError() << "number mismatch between iter args and results.";
}
for (auto [i, init, iter, yield, ret] :
llvm::enumerate(initArgs, iterArgs, yieldVals, opResults)) {
if (init.getType() != ret.getType())
return emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (iter.getType() != ret.getType())
return emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
if (yield.getType() != ret.getType())
return emitOpError() << "types mismatch between " << i
<< "th yield value and defined value";
}
return success();
}
/// OpInterfaces' methods implemented by IterateOp.
SmallVector<Region *> IterateOp::getLoopRegions() { return {&getRegion()}; }
MutableArrayRef<OpOperand> IterateOp::getInitsMutable() {
return getInitArgsMutable();
}
Block::BlockArgListType IterateOp::getRegionIterArgs() {
return getRegion().getArguments().take_back(getNumRegionIterArgs());
}
std::optional<MutableArrayRef<OpOperand>> IterateOp::getYieldedValuesMutable() {
return cast<sparse_tensor::YieldOp>(
getRegion().getBlocks().front().getTerminator())
.getResultsMutable();
}
std::optional<ResultRange> IterateOp::getLoopResults() { return getResults(); }
OperandRange IterateOp::getEntrySuccessorOperands(RegionBranchPoint point) {
return getInitArgs();
}
void IterateOp::getSuccessorRegions(RegionBranchPoint point,
SmallVectorImpl<RegionSuccessor> ®ions) {
// Both the operation itself and the region may be branching into the body or
// back into the operation itself.
regions.push_back(RegionSuccessor(&getRegion(), getRegionIterArgs()));
// It is possible for loop not to enter the body.
regions.push_back(RegionSuccessor(getResults()));
}
//===----------------------------------------------------------------------===//
// Sparse Tensor Dialect Setups.
//===----------------------------------------------------------------------===//
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *SparseTensorDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
if (auto op = arith::ConstantOp::materialize(builder, value, type, loc))
return op;
return nullptr;
}
namespace {
struct SparseTensorAsmDialectInterface : public OpAsmDialectInterface {
using OpAsmDialectInterface::OpAsmDialectInterface;
AliasResult getAlias(Attribute attr, raw_ostream &os) const override {
if (isa<SparseTensorEncodingAttr>(attr)) {
os << "sparse";
return AliasResult::OverridableAlias;
}
return AliasResult::NoAlias;
}
};
} // namespace
void SparseTensorDialect::initialize() {
addInterface<SparseTensorAsmDialectInterface>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
>();
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
>();
declarePromisedInterfaces<
bufferization::BufferizableOpInterface, ConcatenateOp, ConvertOp, LoadOp,
NewOp, NumberOfEntriesOp, AssembleOp, DisassembleOp,
ToCoordinatesBufferOp, ToCoordinatesOp, ToPositionsOp, ToValuesOp>();
}
#define GET_OP_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"
|