1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
#include "Utils/CodegenUtils.h"
#include "Utils/SparseTensorIterator.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Transforms/OneToNTypeConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
void convertLevelType(SparseTensorEncodingAttr enc, Level lvl,
SmallVectorImpl<Type> &fields) {
// Position and coordinate buffer in the sparse structure.
if (enc.getLvlType(lvl).isWithPosLT())
fields.push_back(enc.getPosMemRefType());
if (enc.getLvlType(lvl).isWithCrdLT())
fields.push_back(enc.getCrdMemRefType());
// One index for shape bound (result from lvlOp).
fields.push_back(IndexType::get(enc.getContext()));
}
static std::optional<LogicalResult>
convertIterSpaceType(IterSpaceType itSp, SmallVectorImpl<Type> &fields) {
auto idxTp = IndexType::get(itSp.getContext());
for (Level l = itSp.getLoLvl(); l < itSp.getHiLvl(); l++)
convertLevelType(itSp.getEncoding(), l, fields);
// Two indices for lower and upper bound (we only need one pair for the last
// iteration space).
fields.append({idxTp, idxTp});
return success();
}
static std::optional<LogicalResult>
convertIteratorType(IteratorType itTp, SmallVectorImpl<Type> &fields) {
// The actually Iterator Values (that are updated every iteration).
auto idxTp = IndexType::get(itTp.getContext());
// TODO: handle batch dimension.
assert(itTp.getEncoding().getBatchLvlRank() == 0);
if (!itTp.isUnique()) {
// Segment high for non-unique iterator.
fields.push_back(idxTp);
}
fields.push_back(idxTp);
return success();
}
namespace {
/// Sparse codegen rule for number of entries operator.
class ExtractIterSpaceConverter
: public OneToNOpConversionPattern<ExtractIterSpaceOp> {
public:
using OneToNOpConversionPattern::OneToNOpConversionPattern;
LogicalResult
matchAndRewrite(ExtractIterSpaceOp op, OpAdaptor adaptor,
OneToNPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const OneToNTypeMapping &resultMapping = adaptor.getResultMapping();
// Construct the iteration space.
SparseIterationSpace space(loc, rewriter, op.getTensor(), 0,
op.getLvlRange(), adaptor.getParentIter());
SmallVector<Value> result = space.toValues();
rewriter.replaceOp(op, result, resultMapping);
return success();
}
};
class SparseIterateOpConverter : public OneToNOpConversionPattern<IterateOp> {
public:
using OneToNOpConversionPattern::OneToNOpConversionPattern;
LogicalResult
matchAndRewrite(IterateOp op, OpAdaptor adaptor,
OneToNPatternRewriter &rewriter) const override {
if (!op.getCrdUsedLvls().empty())
return rewriter.notifyMatchFailure(
op, "non-empty coordinates list not implemented.");
Location loc = op.getLoc();
auto iterSpace = SparseIterationSpace::fromValues(
op.getIterSpace().getType(), adaptor.getIterSpace(), 0);
std::unique_ptr<SparseIterator> it =
iterSpace.extractIterator(rewriter, loc);
if (it->iteratableByFor()) {
auto [lo, hi] = it->genForCond(rewriter, loc);
Value step = constantIndex(rewriter, loc, 1);
SmallVector<Value> ivs;
for (ValueRange inits : adaptor.getInitArgs())
llvm::append_range(ivs, inits);
scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, ivs);
Block *loopBody = op.getBody();
OneToNTypeMapping bodyTypeMapping(loopBody->getArgumentTypes());
if (failed(typeConverter->convertSignatureArgs(
loopBody->getArgumentTypes(), bodyTypeMapping)))
return failure();
rewriter.applySignatureConversion(loopBody, bodyTypeMapping);
rewriter.eraseBlock(forOp.getBody());
Region &dstRegion = forOp.getRegion();
rewriter.inlineRegionBefore(op.getRegion(), dstRegion, dstRegion.end());
auto yieldOp =
llvm::cast<sparse_tensor::YieldOp>(forOp.getBody()->getTerminator());
rewriter.setInsertionPointToEnd(forOp.getBody());
// replace sparse_tensor.yield with scf.yield.
rewriter.create<scf::YieldOp>(loc, yieldOp.getResults());
rewriter.eraseOp(yieldOp);
const OneToNTypeMapping &resultMapping = adaptor.getResultMapping();
rewriter.replaceOp(op, forOp.getResults(), resultMapping);
} else {
SmallVector<Value> ivs;
llvm::append_range(ivs, it->getCursor());
for (ValueRange inits : adaptor.getInitArgs())
llvm::append_range(ivs, inits);
assert(llvm::all_of(ivs, [](Value v) { return v != nullptr; }));
TypeRange types = ValueRange(ivs).getTypes();
auto whileOp = rewriter.create<scf::WhileOp>(loc, types, ivs);
SmallVector<Location> l(types.size(), op.getIterator().getLoc());
// Generates loop conditions.
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, types, l);
rewriter.setInsertionPointToStart(before);
ValueRange bArgs = before->getArguments();
auto [whileCond, remArgs] = it->genWhileCond(rewriter, loc, bArgs);
assert(remArgs.size() == adaptor.getInitArgs().size());
rewriter.create<scf::ConditionOp>(loc, whileCond, before->getArguments());
// Generates loop body.
Block *loopBody = op.getBody();
OneToNTypeMapping bodyTypeMapping(loopBody->getArgumentTypes());
if (failed(typeConverter->convertSignatureArgs(
loopBody->getArgumentTypes(), bodyTypeMapping)))
return failure();
rewriter.applySignatureConversion(loopBody, bodyTypeMapping);
Region &dstRegion = whileOp.getAfter();
// TODO: handle uses of coordinate!
rewriter.inlineRegionBefore(op.getRegion(), dstRegion, dstRegion.end());
ValueRange aArgs = whileOp.getAfterArguments();
auto yieldOp = llvm::cast<sparse_tensor::YieldOp>(
whileOp.getAfterBody()->getTerminator());
rewriter.setInsertionPointToEnd(whileOp.getAfterBody());
aArgs = it->linkNewScope(aArgs);
ValueRange nx = it->forward(rewriter, loc);
SmallVector<Value> yields;
llvm::append_range(yields, nx);
llvm::append_range(yields, yieldOp.getResults());
// replace sparse_tensor.yield with scf.yield.
rewriter.eraseOp(yieldOp);
rewriter.create<scf::YieldOp>(loc, yields);
const OneToNTypeMapping &resultMapping = adaptor.getResultMapping();
rewriter.replaceOp(
op, whileOp.getResults().drop_front(it->getCursor().size()),
resultMapping);
}
return success();
}
};
} // namespace
mlir::SparseIterationTypeConverter::SparseIterationTypeConverter() {
addConversion([](Type type) { return type; });
addConversion(convertIteratorType);
addConversion(convertIterSpaceType);
addSourceMaterialization([](OpBuilder &builder, IterSpaceType spTp,
ValueRange inputs,
Location loc) -> std::optional<Value> {
return builder
.create<UnrealizedConversionCastOp>(loc, TypeRange(spTp), inputs)
.getResult(0);
});
}
void mlir::populateLowerSparseIterationToSCFPatterns(
TypeConverter &converter, RewritePatternSet &patterns) {
IterateOp::getCanonicalizationPatterns(patterns, patterns.getContext());
patterns.add<ExtractIterSpaceConverter, SparseIterateOpConverter>(
converter, patterns.getContext());
}
|