File: SparseIterationToScf.cpp

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (198 lines) | stat: -rw-r--r-- 7,488 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

#include "Utils/CodegenUtils.h"
#include "Utils/SparseTensorIterator.h"

#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Transforms/OneToNTypeConversion.h"

using namespace mlir;
using namespace mlir::sparse_tensor;

void convertLevelType(SparseTensorEncodingAttr enc, Level lvl,
                      SmallVectorImpl<Type> &fields) {
  // Position and coordinate buffer in the sparse structure.
  if (enc.getLvlType(lvl).isWithPosLT())
    fields.push_back(enc.getPosMemRefType());
  if (enc.getLvlType(lvl).isWithCrdLT())
    fields.push_back(enc.getCrdMemRefType());
  // One index for shape bound (result from lvlOp).
  fields.push_back(IndexType::get(enc.getContext()));
}

static std::optional<LogicalResult>
convertIterSpaceType(IterSpaceType itSp, SmallVectorImpl<Type> &fields) {

  auto idxTp = IndexType::get(itSp.getContext());
  for (Level l = itSp.getLoLvl(); l < itSp.getHiLvl(); l++)
    convertLevelType(itSp.getEncoding(), l, fields);

  // Two indices for lower and upper bound (we only need one pair for the last
  // iteration space).
  fields.append({idxTp, idxTp});
  return success();
}

static std::optional<LogicalResult>
convertIteratorType(IteratorType itTp, SmallVectorImpl<Type> &fields) {
  // The actually Iterator Values (that are updated every iteration).
  auto idxTp = IndexType::get(itTp.getContext());
  // TODO: handle batch dimension.
  assert(itTp.getEncoding().getBatchLvlRank() == 0);
  if (!itTp.isUnique()) {
    // Segment high for non-unique iterator.
    fields.push_back(idxTp);
  }
  fields.push_back(idxTp);
  return success();
}

namespace {

/// Sparse codegen rule for number of entries operator.
class ExtractIterSpaceConverter
    : public OneToNOpConversionPattern<ExtractIterSpaceOp> {
public:
  using OneToNOpConversionPattern::OneToNOpConversionPattern;
  LogicalResult
  matchAndRewrite(ExtractIterSpaceOp op, OpAdaptor adaptor,
                  OneToNPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    const OneToNTypeMapping &resultMapping = adaptor.getResultMapping();

    // Construct the iteration space.
    SparseIterationSpace space(loc, rewriter, op.getTensor(), 0,
                               op.getLvlRange(), adaptor.getParentIter());

    SmallVector<Value> result = space.toValues();
    rewriter.replaceOp(op, result, resultMapping);
    return success();
  }
};

class SparseIterateOpConverter : public OneToNOpConversionPattern<IterateOp> {
public:
  using OneToNOpConversionPattern::OneToNOpConversionPattern;
  LogicalResult
  matchAndRewrite(IterateOp op, OpAdaptor adaptor,
                  OneToNPatternRewriter &rewriter) const override {
    if (!op.getCrdUsedLvls().empty())
      return rewriter.notifyMatchFailure(
          op, "non-empty coordinates list not implemented.");

    Location loc = op.getLoc();

    auto iterSpace = SparseIterationSpace::fromValues(
        op.getIterSpace().getType(), adaptor.getIterSpace(), 0);

    std::unique_ptr<SparseIterator> it =
        iterSpace.extractIterator(rewriter, loc);

    if (it->iteratableByFor()) {
      auto [lo, hi] = it->genForCond(rewriter, loc);
      Value step = constantIndex(rewriter, loc, 1);
      SmallVector<Value> ivs;
      for (ValueRange inits : adaptor.getInitArgs())
        llvm::append_range(ivs, inits);
      scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, ivs);

      Block *loopBody = op.getBody();
      OneToNTypeMapping bodyTypeMapping(loopBody->getArgumentTypes());
      if (failed(typeConverter->convertSignatureArgs(
              loopBody->getArgumentTypes(), bodyTypeMapping)))
        return failure();
      rewriter.applySignatureConversion(loopBody, bodyTypeMapping);

      rewriter.eraseBlock(forOp.getBody());
      Region &dstRegion = forOp.getRegion();
      rewriter.inlineRegionBefore(op.getRegion(), dstRegion, dstRegion.end());

      auto yieldOp =
          llvm::cast<sparse_tensor::YieldOp>(forOp.getBody()->getTerminator());

      rewriter.setInsertionPointToEnd(forOp.getBody());
      // replace sparse_tensor.yield with scf.yield.
      rewriter.create<scf::YieldOp>(loc, yieldOp.getResults());
      rewriter.eraseOp(yieldOp);

      const OneToNTypeMapping &resultMapping = adaptor.getResultMapping();
      rewriter.replaceOp(op, forOp.getResults(), resultMapping);
    } else {
      SmallVector<Value> ivs;
      llvm::append_range(ivs, it->getCursor());
      for (ValueRange inits : adaptor.getInitArgs())
        llvm::append_range(ivs, inits);

      assert(llvm::all_of(ivs, [](Value v) { return v != nullptr; }));

      TypeRange types = ValueRange(ivs).getTypes();
      auto whileOp = rewriter.create<scf::WhileOp>(loc, types, ivs);
      SmallVector<Location> l(types.size(), op.getIterator().getLoc());

      // Generates loop conditions.
      Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, types, l);
      rewriter.setInsertionPointToStart(before);
      ValueRange bArgs = before->getArguments();
      auto [whileCond, remArgs] = it->genWhileCond(rewriter, loc, bArgs);
      assert(remArgs.size() == adaptor.getInitArgs().size());
      rewriter.create<scf::ConditionOp>(loc, whileCond, before->getArguments());

      // Generates loop body.
      Block *loopBody = op.getBody();
      OneToNTypeMapping bodyTypeMapping(loopBody->getArgumentTypes());
      if (failed(typeConverter->convertSignatureArgs(
              loopBody->getArgumentTypes(), bodyTypeMapping)))
        return failure();
      rewriter.applySignatureConversion(loopBody, bodyTypeMapping);

      Region &dstRegion = whileOp.getAfter();
      // TODO: handle uses of coordinate!
      rewriter.inlineRegionBefore(op.getRegion(), dstRegion, dstRegion.end());
      ValueRange aArgs = whileOp.getAfterArguments();
      auto yieldOp = llvm::cast<sparse_tensor::YieldOp>(
          whileOp.getAfterBody()->getTerminator());

      rewriter.setInsertionPointToEnd(whileOp.getAfterBody());

      aArgs = it->linkNewScope(aArgs);
      ValueRange nx = it->forward(rewriter, loc);
      SmallVector<Value> yields;
      llvm::append_range(yields, nx);
      llvm::append_range(yields, yieldOp.getResults());

      // replace sparse_tensor.yield with scf.yield.
      rewriter.eraseOp(yieldOp);
      rewriter.create<scf::YieldOp>(loc, yields);
      const OneToNTypeMapping &resultMapping = adaptor.getResultMapping();
      rewriter.replaceOp(
          op, whileOp.getResults().drop_front(it->getCursor().size()),
          resultMapping);
    }
    return success();
  }
};

} // namespace

mlir::SparseIterationTypeConverter::SparseIterationTypeConverter() {
  addConversion([](Type type) { return type; });
  addConversion(convertIteratorType);
  addConversion(convertIterSpaceType);

  addSourceMaterialization([](OpBuilder &builder, IterSpaceType spTp,
                              ValueRange inputs,
                              Location loc) -> std::optional<Value> {
    return builder
        .create<UnrealizedConversionCastOp>(loc, TypeRange(spTp), inputs)
        .getResult(0);
  });
}

void mlir::populateLowerSparseIterationToSCFPatterns(
    TypeConverter &converter, RewritePatternSet &patterns) {

  IterateOp::getCanonicalizationPatterns(patterns, patterns.getContext());
  patterns.add<ExtractIterSpaceConverter, SparseIterateOpConverter>(
      converter, patterns.getContext());
}