1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
|
//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor primitives into calls into a runtime
// support library. Sparse tensor types are converted into opaque pointers
// to the underlying sparse storage schemes. The use of opaque pointers
// together with runtime support library keeps the conversion relatively
// simple, but at the expense of IR opacity, which obscures opportunities
// for subsequent optimization of the IR. An alternative is provided by
// the SparseTensorCodegen pass.
//
//===----------------------------------------------------------------------===//
#include "Utils/CodegenUtils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Maps each sparse tensor type to an opaque pointer.
static std::optional<Type> convertSparseTensorTypes(Type type) {
if (getSparseTensorEncoding(type) != nullptr)
return LLVM::LLVMPointerType::get(type.getContext());
return std::nullopt;
}
/// Generates call to lookup a level-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genLvlSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t lvl) {
StringRef name = "sparseLvlSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, lvl)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Generates call to lookup a dimension-size. N.B., this only generates
/// the raw function call, and therefore (intentionally) does not perform
/// any dim<->lvl conversion or other logic.
static Value genDimSizeCall(OpBuilder &builder, Location loc, Value tensor,
uint64_t dim) {
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params{tensor, constantIndex(builder, loc, dim)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Looks up a level-size by returning a statically-computed constant
/// (when possible), or by calling `genLvlSizeCall` (when dynamic).
static Value createOrFoldLvlCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Level lvl) {
// Only sparse tensors have "levels" to query.
assert(stt.hasEncoding());
// TODO: The following implementation only handles permutations;
// we'll need to generalize this to handle arbitrary AffineExpr.
//
// There's no need to assert `isPermutation` here: because
// `getDimPosition` checks that the expr isa `AffineDimExpr`,
// which is all we care about (for supporting permutations).
const Dimension dim =
stt.isIdentity() ? lvl : stt.getDimToLvl().getDimPosition(lvl);
const Size sz = stt.getDynamicDimSize(dim);
if (!ShapedType::isDynamic(sz))
return constantIndex(builder, loc, sz);
// If we cannot statically compute the size from the shape, then we
// must dynamically query it. (In principle we could also dynamically
// compute it, but since we already did so to construct the `tensor`
// in the first place, we might as well query rather than recompute.)
return genLvlSizeCall(builder, loc, tensor, lvl);
}
/// Looks up a dimension-size by returning a constant from the shape
/// (for static sizes), or by calling `genDimSizeCall` (for dynamic sizes
/// of sparse tensors) or `linalg::createOrFoldDimOp` (for dynamic sizes
/// of dense tensors).
static Value createOrFoldDimCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value tensor,
Dimension dim) {
const Size sz = stt.getDynamicDimSize(dim);
if (!ShapedType::isDynamic(sz))
return constantIndex(builder, loc, sz);
if (stt.hasEncoding())
return genDimSizeCall(builder, loc, tensor, dim);
return linalg::createOrFoldDimOp(builder, loc, tensor, dim);
}
/// Populates the array with the dimension-sizes of the given tensor.
static void fillDimSizes(OpBuilder &builder, Location loc, SparseTensorType stt,
Value tensor, SmallVectorImpl<Value> &out) {
const Dimension dimRank = stt.getDimRank();
out.clear();
out.reserve(dimRank);
for (Dimension d = 0; d < dimRank; d++)
out.push_back(createOrFoldDimCall(builder, loc, stt, tensor, d));
}
/// Returns an array with the dimension-sizes of the given tensor.
/// If the *tensor* parameters is null, the tensor type is assumed to have a
/// static shape.
static SmallVector<Value> getDimSizes(OpBuilder &builder, Location loc,
SparseTensorType stt,
Value tensor = Value()) {
SmallVector<Value> out;
fillDimSizes(builder, loc, stt, tensor, out);
return out;
}
/// Generates an uninitialized buffer of the given size and type,
/// but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
/// this buffer must be explicitly deallocated by client.
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamic}, tp);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
}
/// Generates a temporary buffer for the level-types of the given encoding.
static Value genLvlTypesBuffer(OpBuilder &builder, Location loc,
SparseTensorType stt) {
SmallVector<Value> lvlTypes;
lvlTypes.reserve(stt.getLvlRank());
for (const auto lt : stt.getEncoding().getLvlTypes())
lvlTypes.push_back(constantLevelTypeEncoding(builder, loc, lt));
return allocaBuffer(builder, loc, lvlTypes);
}
/// Extracts the bare (aligned) pointers that point to the tensor.
static Value extractBarePtrFromTensor(OpBuilder &builder, Location loc,
Value tensor) {
auto buf = genToMemref(builder, loc, tensor);
return builder.create<memref::ExtractAlignedPointerAsIndexOp>(loc, buf);
}
/// Generates a temporary buffer for the level-types of the given encoding.
static Value genLvlPtrsBuffers(OpBuilder &builder, Location loc,
ValueRange lvlTensors, Value valTensor) {
SmallVector<Value> lvlBarePtrs;
lvlBarePtrs.reserve(lvlTensors.size() + 1);
// Passing in lvl buffer pointers.
for (const auto lvl : lvlTensors)
lvlBarePtrs.push_back(extractBarePtrFromTensor(builder, loc, lvl));
// Passing in value buffer pointers.
lvlBarePtrs.push_back(extractBarePtrFromTensor(builder, loc, valTensor));
Value idxPtr = builder.create<memref::ExtractAlignedPointerAsIndexOp>(
loc, allocaBuffer(builder, loc, lvlBarePtrs));
Value idxCast =
builder.create<arith::IndexCastOp>(loc, builder.getI64Type(), idxPtr);
return builder.create<LLVM::IntToPtrOp>(loc, getOpaquePointerType(builder),
idxCast);
}
/// This class abstracts over the API of `_mlir_ciface_newSparseTensor`:
/// the "swiss army knife" method of the sparse runtime support library
/// for materializing sparse tensors into the computation. This abstraction
/// reduces the need for modifications when the API changes.
class NewCallParams final {
public:
/// Allocates the `ValueRange` for the `func::CallOp` parameters.
NewCallParams(OpBuilder &builder, Location loc)
: builder(builder), loc(loc), pTp(getOpaquePointerType(builder)) {}
/// Initializes all static parameters (i.e., those which indicate
/// type-level information such as the encoding and sizes), generating
/// MLIR buffers as needed, and returning `this` for method chaining.
NewCallParams &genBuffers(SparseTensorType stt,
ArrayRef<Value> dimSizesValues,
Value dimSizesBuffer = Value()) {
assert(dimSizesValues.size() == static_cast<size_t>(stt.getDimRank()));
// Sparsity annotations.
params[kParamLvlTypes] = genLvlTypesBuffer(builder, loc, stt);
// Construct dimSizes, lvlSizes, dim2lvl, and lvl2dim buffers.
params[kParamDimSizes] = dimSizesBuffer
? dimSizesBuffer
: allocaBuffer(builder, loc, dimSizesValues);
SmallVector<Value> lvlSizesValues; // unused
params[kParamLvlSizes] = genMapBuffers(
builder, loc, stt, dimSizesValues, params[kParamDimSizes],
lvlSizesValues, params[kParamDim2Lvl], params[kParamLvl2Dim]);
// Secondary and primary types encoding.
const auto enc = stt.getEncoding();
params[kParamPosTp] = constantPosTypeEncoding(builder, loc, enc);
params[kParamCrdTp] = constantCrdTypeEncoding(builder, loc, enc);
params[kParamValTp] =
constantPrimaryTypeEncoding(builder, loc, stt.getElementType());
// Return `this` for method chaining.
return *this;
}
/// Checks whether all the static parameters have been initialized.
bool isInitialized() const {
for (unsigned i = 0; i < kNumStaticParams; ++i)
if (!params[i])
return false;
return true;
}
/// Generates a function call, with the current static parameters
/// and the given dynamic arguments.
Value genNewCall(Action action, Value ptr = Value()) {
assert(isInitialized() && "Must initialize before genNewCall");
StringRef name = "newSparseTensor";
params[kParamAction] = constantAction(builder, loc, action);
params[kParamPtr] = ptr ? ptr : builder.create<LLVM::ZeroOp>(loc, pTp);
return createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On)
.getResult(0);
}
private:
static constexpr unsigned kNumStaticParams = 8;
static constexpr unsigned kNumDynamicParams = 2;
static constexpr unsigned kNumParams = kNumStaticParams + kNumDynamicParams;
static constexpr unsigned kParamDimSizes = 0;
static constexpr unsigned kParamLvlSizes = 1;
static constexpr unsigned kParamLvlTypes = 2;
static constexpr unsigned kParamDim2Lvl = 3;
static constexpr unsigned kParamLvl2Dim = 4;
static constexpr unsigned kParamPosTp = 5;
static constexpr unsigned kParamCrdTp = 6;
static constexpr unsigned kParamValTp = 7;
static constexpr unsigned kParamAction = 8;
static constexpr unsigned kParamPtr = 9;
OpBuilder &builder;
Location loc;
Type pTp;
Value params[kNumParams];
};
/// Generates a call to obtain the values array.
static Value genValuesCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value ptr) {
auto eltTp = stt.getElementType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, eltTp);
SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltTp)};
return createFuncCall(builder, loc, name, resTp, {ptr}, EmitCInterface::On)
.getResult(0);
}
/// Generates a call to obtain the positions array.
static Value genPositionsCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value ptr, Level l) {
Type posTp = stt.getPosType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, posTp);
Value lvl = constantIndex(builder, loc, l);
SmallString<17> name{"sparsePositions", overheadTypeFunctionSuffix(posTp)};
return createFuncCall(builder, loc, name, resTp, {ptr, lvl},
EmitCInterface::On)
.getResult(0);
}
/// Generates a call to obtain the coordinates array.
static Value genCoordinatesCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value ptr, Level l) {
Type crdTp = stt.getCrdType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, crdTp);
Value lvl = constantIndex(builder, loc, l);
SmallString<19> name{"sparseCoordinates", overheadTypeFunctionSuffix(crdTp)};
return createFuncCall(builder, loc, name, resTp, {ptr, lvl},
EmitCInterface::On)
.getResult(0);
}
/// Generates a call to obtain the coordinates array (AoS view).
static Value genCoordinatesBufferCall(OpBuilder &builder, Location loc,
SparseTensorType stt, Value ptr,
Level l) {
Type crdTp = stt.getCrdType();
auto resTp = MemRefType::get({ShapedType::kDynamic}, crdTp);
Value lvl = constantIndex(builder, loc, l);
SmallString<25> name{"sparseCoordinatesBuffer",
overheadTypeFunctionSuffix(crdTp)};
return createFuncCall(builder, loc, name, resTp, {ptr, lvl},
EmitCInterface::On)
.getResult(0);
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for accessing level-sizes.
class SparseTensorLvlOpConverter : public OpConversionPattern<LvlOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LvlOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto stt = getSparseTensorType(op.getSource());
// Only rewrite sparse DimOp.
if (!stt.hasEncoding())
return failure();
// Only rewrite DimOp with constant index.
std::optional<int64_t> lvl = op.getConstantLvlIndex();
if (!lvl)
return failure();
// By now, if the level size is constant, the operation should have already
// been folded by LvlOp's folder, so we generate the call unconditionally.
Value src = adaptor.getOperands()[0];
rewriter.replaceOp(op, genLvlSizeCall(rewriter, op.getLoc(), src, *lvl));
return success();
}
};
/// Sparse conversion rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
class SparseReMapConverter : public OpConversionPattern<ReinterpretMapOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReinterpretMapOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Simply fold the operation.
rewriter.replaceOp(op, adaptor.getSource());
return success();
}
};
/// Sparse conversion rule for the new operator.
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
// Construct the `reader` opening method calls.
SmallVector<Value> dimSizesValues;
Value dimSizesBuffer;
Value reader = genReader(rewriter, loc, stt, adaptor.getOperands()[0],
dimSizesValues, dimSizesBuffer);
// Use the `reader` to parse the file.
Value tensor = NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizesValues, dimSizesBuffer)
.genNewCall(Action::kFromReader, reader);
// Free the memory for `reader`.
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
EmitCInterface::Off);
rewriter.replaceOp(op, tensor);
return success();
}
};
/// Sparse conversion rule for the alloc operator.
/// TODO(springerm): remove when bufferization.alloc_tensor is gone
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
if (op.getCopy())
return rewriter.notifyMatchFailure(op, "alloc copy not implemented");
// Gather all dimension sizes as SSA values.
Location loc = op.getLoc();
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizesValues;
dimSizesValues.reserve(dimRank);
unsigned operandCtr = 0;
for (Dimension d = 0; d < dimRank; d++) {
dimSizesValues.push_back(
stt.isDynamicDim(d)
? adaptor.getOperands()[operandCtr++]
: constantIndex(rewriter, loc, op.getStaticSize(d)));
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizesValues)
.genNewCall(Action::kEmpty));
return success();
}
};
/// Sparse conversion rule for the empty tensor.
class SparseTensorEmptyConverter : public OpConversionPattern<tensor::EmptyOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::EmptyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op);
if (!stt.hasEncoding())
return failure();
// Gather all dimension sizes as SSA values.
const Dimension dimRank = stt.getDimRank();
SmallVector<Value> dimSizesValues;
dimSizesValues.reserve(dimRank);
auto shape = op.getType().getShape();
unsigned operandCtr = 0;
for (Dimension d = 0; d < dimRank; d++) {
dimSizesValues.push_back(stt.isDynamicDim(d)
? adaptor.getOperands()[operandCtr++]
: constantIndex(rewriter, loc, shape[d]));
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
rewriter.replaceOp(op, NewCallParams(rewriter, loc)
.genBuffers(stt, dimSizesValues)
.genNewCall(Action::kEmpty));
return success();
}
};
/// Sparse conversion rule for the convert operator.
class SparseTensorReorderCOOConverter
: public OpConversionPattern<ReorderCOOOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReorderCOOOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getInputCoo());
const auto dstTp = getSparseTensorType(op);
const Value src = adaptor.getInputCoo();
NewCallParams params(rewriter, loc);
SmallVector<Value> dimSizesValues = getDimSizes(rewriter, loc, srcTp, src);
rewriter.replaceOp(op, params.genBuffers(dstTp, dimSizesValues)
.genNewCall(Action::kSortCOOInPlace, src));
return success();
}
};
/// Sparse conversion rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorType(op.getTensor()).hasEncoding())
return failure();
StringRef name = "delSparseTensor";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse conversion rule for position accesses.
class SparseTensorToPositionsConverter
: public OpConversionPattern<ToPositionsOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPositionsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto stt = getSparseTensorType(op.getTensor());
auto poss = genPositionsCall(rewriter, op.getLoc(), stt,
adaptor.getTensor(), op.getLevel());
rewriter.replaceOp(op, poss);
return success();
}
};
/// Sparse conversion rule for coordinate accesses.
class SparseTensorToCoordinatesConverter
: public OpConversionPattern<ToCoordinatesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op.getLoc();
auto stt = getSparseTensorType(op.getTensor());
auto crds = genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(),
op.getLevel());
// Cast the MemRef type to the type expected by the users, though these
// two types should be compatible at runtime.
if (op.getType() != crds.getType())
crds = rewriter.create<memref::CastOp>(loc, op.getType(), crds);
rewriter.replaceOp(op, crds);
return success();
}
};
/// Sparse conversion rule for coordinate accesses (AoS style).
class SparseToCoordinatesBufferConverter
: public OpConversionPattern<ToCoordinatesBufferOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesBufferOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op.getLoc();
auto stt = getSparseTensorType(op.getTensor());
auto crds = genCoordinatesBufferCall(
rewriter, loc, stt, adaptor.getTensor(), stt.getAoSCOOStart());
// Cast the MemRef type to the type expected by the users, though these
// two types should be compatible at runtime.
if (op.getType() != crds.getType())
crds = rewriter.create<memref::CastOp>(loc, op.getType(), crds);
rewriter.replaceOp(op, crds);
return success();
}
};
/// Sparse conversion rule for value accesses.
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto stt = getSparseTensorType(op.getTensor());
auto vals = genValuesCall(rewriter, op.getLoc(), stt, adaptor.getTensor());
rewriter.replaceOp(op, vals);
return success();
}
};
/// Sparse conversion rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Query values array size for the actually stored values size.
auto stt = getSparseTensorType(op.getTensor());
auto vals = genValuesCall(rewriter, op.getLoc(), stt, adaptor.getTensor());
auto zero = constantIndex(rewriter, op.getLoc(), 0);
rewriter.replaceOpWithNewOp<memref::DimOp>(op, vals, zero);
return success();
}
};
/// Sparse conversion rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getHasInserts()) {
// Finalize any pending insertions.
StringRef name = "endLexInsert";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
}
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for the insertion operator.
class SparseTensorInsertConverter
: public OpConversionPattern<tensor::InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Note that the current regime only allows for strict lexicographic
// coordinate order. All values are passed by reference through stack
// allocated memrefs.
Location loc = op->getLoc();
const auto stt = getSparseTensorType(op.getDest());
// Dense tensor insertion.
if (!stt.hasEncoding())
return failure();
assert(stt.isIdentity() && "Run reinterpret-map before conversion.");
const auto elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
Value lvlCoords, vref;
{
OpBuilder::InsertionGuard guard(rewriter);
Operation *loop = op;
// Finds the outermost loop.
while (auto l = loop->getParentOfType<LoopLikeOpInterface>())
loop = l;
if (llvm::isa<LoopLikeOpInterface>(loop)) {
// Hoists alloca outside the loop to avoid stack overflow.
rewriter.setInsertionPoint(loop);
}
lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
vref = genAllocaScalar(rewriter, loc, elemTp);
}
storeAll(rewriter, loc, lvlCoords, adaptor.getIndices());
rewriter.create<memref::StoreOp>(loc, adaptor.getScalar(), vref);
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{adaptor.getDest(), lvlCoords, vref}, EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getDest());
return success();
}
};
/// Sparse conversion rule for the expand operator.
class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
const auto srcTp = getSparseTensorType(op.getTensor());
Type eltType = srcTp.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Get the cardinality of valid coordinates for the innermost level.
Value sz = createOrFoldLvlCall(rewriter, loc, srcTp, adaptor.getTensor(),
srcTp.getLvlRank() - 1);
// Allocate temporary buffers for values, filled-switch, and coordinates.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(rewriter, loc, sz, eltType);
Value filled = genAlloc(rewriter, loc, sz, boolType);
Value lastLvlCoordinates = genAlloc(rewriter, loc, sz, idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial coordinate.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, lastLvlCoordinates, zero});
return success();
}
};
/// Sparse conversion rule for the compress operator.
class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
// Note that this method call resets the values/filled-switch back to
// all-zero/false by only iterating over the set elements, so the
// complexity remains proportional to the sparsity of the expanded
// access pattern.
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
Value tensor = adaptor.getTensor();
const auto stt = getSparseTensorType(op.getTensor());
const Type elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
auto lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
{tensor, lvlCoords, values, filled, added, count},
EmitCInterface::On);
rewriter.replaceOp(op, adaptor.getTensor());
// Deallocate the buffers on exit of the loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
return success();
}
};
/// Sparse conversion rule for the sparse_tensor.assemble operator.
class SparseTensorAssembleConverter : public OpConversionPattern<AssembleOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AssembleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const Location loc = op->getLoc();
const auto dstTp = getSparseTensorType(op.getResult());
assert(dstTp.hasStaticDimShape());
SmallVector<Value> dimSizesValues = getDimSizes(rewriter, loc, dstTp);
// Use a library method to transfer the external buffers from
// clients to the internal SparseTensorStorage. Since we cannot
// assume clients transfer ownership of the buffers, this method
// will copy all data over into a new SparseTensorStorage.
Value dst =
NewCallParams(rewriter, loc)
.genBuffers(dstTp.withoutDimToLvl(), dimSizesValues)
.genNewCall(Action::kPack,
genLvlPtrsBuffers(rewriter, loc, adaptor.getLevels(),
adaptor.getValues()));
rewriter.replaceOp(op, dst);
return success();
}
};
/// Sparse conversion rule for the sparse_tensor.disassemble operator.
/// Note that the current implementation simply exposes the buffers to
/// the external client. This assumes the client only reads the buffers
/// (usually copying it to the external data structures, such as numpy
/// arrays). The semantics of the disassemble operation technically
/// require that the copying is done here already using the out-levels
/// and out-values clause.
class SparseTensorDisassembleConverter
: public OpConversionPattern<DisassembleOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(DisassembleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto stt = getSparseTensorType(op.getTensor());
SmallVector<Value> retVal;
SmallVector<Value> retLen;
// Get the positions and coordinates buffers.
const Level lvlRank = stt.getLvlRank();
Level trailCOOLen = 0;
for (Level l = 0; l < lvlRank; l++) {
if (!stt.isUniqueLvl(l) &&
(stt.isCompressedLvl(l) || stt.isLooseCompressedLvl(l))) {
// A `(loose)compressed_nu` level marks the start of trailing COO
// start level. Since the target coordinate buffer used for trailing
// COO is passed in as AoS scheme and SparseTensorStorage uses a SoA
// scheme, we cannot simply use the internal buffers.
trailCOOLen = lvlRank - l;
break;
}
if (stt.isWithPos(l)) {
auto poss =
genPositionsCall(rewriter, loc, stt, adaptor.getTensor(), l);
auto posLen = linalg::createOrFoldDimOp(rewriter, loc, poss, 0);
auto posLenTp = op.getLvlLens().getTypes()[retLen.size()];
retVal.push_back(poss);
retLen.push_back(genScalarToTensor(rewriter, loc, posLen, posLenTp));
}
if (stt.isWithCrd(l)) {
auto crds =
genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(), l);
auto crdLen = linalg::createOrFoldDimOp(rewriter, loc, crds, 0);
auto crdLenTp = op.getLvlLens().getTypes()[retLen.size()];
retVal.push_back(crds);
retLen.push_back(genScalarToTensor(rewriter, loc, crdLen, crdLenTp));
}
}
// Handle AoS vs. SoA mismatch for COO.
if (trailCOOLen != 0) {
uint64_t cooStartLvl = lvlRank - trailCOOLen;
assert(!stt.isUniqueLvl(cooStartLvl) &&
(stt.isCompressedLvl(cooStartLvl) ||
stt.isLooseCompressedLvl(cooStartLvl)));
// Positions.
auto poss = genPositionsCall(rewriter, loc, stt, adaptor.getTensor(),
cooStartLvl);
auto posLen = linalg::createOrFoldDimOp(rewriter, loc, poss, 0);
auto posLenTp = op.getLvlLens().getTypes()[retLen.size()];
retVal.push_back(poss);
retLen.push_back(genScalarToTensor(rewriter, loc, posLen, posLenTp));
// Coordinates, copied over with:
// for (i = 0; i < crdLen; i++)
// buf[i][0] = crd0[i]; buf[i][1] = crd1[i];
auto buf = genToMemref(rewriter, loc, op.getOutLevels()[retLen.size()]);
auto crds0 = genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(),
cooStartLvl);
auto crds1 = genCoordinatesCall(rewriter, loc, stt, adaptor.getTensor(),
cooStartLvl + 1);
auto crdLen = linalg::createOrFoldDimOp(rewriter, loc, crds0, 0);
auto two = constantIndex(rewriter, loc, 2);
auto bufLen = rewriter.create<arith::MulIOp>(loc, crdLen, two);
Type indexType = rewriter.getIndexType();
auto zero = constantZero(rewriter, loc, indexType);
auto one = constantOne(rewriter, loc, indexType);
scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, zero, crdLen, one);
auto idx = forOp.getInductionVar();
rewriter.setInsertionPointToStart(forOp.getBody());
auto c0 = rewriter.create<memref::LoadOp>(loc, crds0, idx);
auto c1 = rewriter.create<memref::LoadOp>(loc, crds1, idx);
SmallVector<Value> args;
args.push_back(idx);
args.push_back(zero);
rewriter.create<memref::StoreOp>(loc, c0, buf, args);
args[1] = one;
rewriter.create<memref::StoreOp>(loc, c1, buf, args);
rewriter.setInsertionPointAfter(forOp);
auto bufLenTp = op.getLvlLens().getTypes()[retLen.size()];
retVal.push_back(buf);
retLen.push_back(genScalarToTensor(rewriter, loc, bufLen, bufLenTp));
}
// Get the values buffer last.
auto vals = genValuesCall(rewriter, loc, stt, adaptor.getTensor());
auto valLenTp = op.getValLen().getType();
auto valLen = linalg::createOrFoldDimOp(rewriter, loc, vals, 0);
retVal.push_back(vals);
retLen.push_back(genScalarToTensor(rewriter, loc, valLen, valLenTp));
// Converts MemRefs back to Tensors.
assert(retVal.size() + retLen.size() == op.getNumResults());
for (unsigned i = 0, sz = retVal.size(); i < sz; i++) {
auto tensor = rewriter.create<bufferization::ToTensorOp>(loc, retVal[i]);
retVal[i] =
rewriter.create<tensor::CastOp>(loc, op.getResultTypes()[i], tensor);
}
// Appends the actual memory length used in each buffer returned.
retVal.append(retLen.begin(), retLen.end());
rewriter.replaceOp(op, retVal);
return success();
}
};
struct SparseHasRuntimeLibraryConverter
: public OpConversionPattern<HasRuntimeLibraryOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(HasRuntimeLibraryOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto i1Type = rewriter.getI1Type();
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
op, i1Type, rewriter.getIntegerAttr(i1Type, 1));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into opaque pointer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToPtrConverter::SparseTensorTypeToPtrConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorTypes);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns
.add<SparseReturnConverter, SparseTensorLvlOpConverter,
SparseCastConverter, SparseReMapConverter, SparseTensorNewConverter,
SparseTensorAllocConverter, SparseTensorEmptyConverter,
SparseTensorDeallocConverter, SparseTensorReorderCOOConverter,
SparseTensorToPositionsConverter, SparseTensorToCoordinatesConverter,
SparseToCoordinatesBufferConverter, SparseTensorToValuesConverter,
SparseNumberOfEntriesConverter, SparseTensorLoadConverter,
SparseTensorInsertConverter, SparseTensorExpandConverter,
SparseTensorCompressConverter, SparseTensorAssembleConverter,
SparseTensorDisassembleConverter, SparseHasRuntimeLibraryConverter>(
typeConverter, patterns.getContext());
}
|