1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
//===- Utils.cpp - Utilities to support the Tensor dialect ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for the Tensor dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
using namespace mlir;
using namespace mlir::tensor;
PadOp mlir::tensor::createPadHighOp(RankedTensorType type, Value source,
Value pad, bool nofold, Location loc,
OpBuilder &b) {
SmallVector<OpFoldResult> low(type.getRank(), b.getIndexAttr(0));
SmallVector<OpFoldResult> high(type.getRank(), b.getIndexAttr(0));
for (const auto &en : enumerate(type.getShape())) {
// Pad only the static dimensions of the result tensor type.
if (ShapedType::isDynamic(en.value()))
continue;
// Compute the padding width.
AffineExpr d0;
bindDims(b.getContext(), d0);
OpFoldResult sz = tensor::getMixedSize(b, loc, source, en.index());
high[en.index()] =
affine::makeComposedFoldedAffineApply(b, loc, en.value() - d0, {sz});
}
return b.create<PadOp>(loc, type, source, low, high, pad, nofold);
}
SmallVector<Value> mlir::tensor::createDynamicDimValues(OpBuilder &b,
Location loc,
Value rankedTensor) {
auto tensorTy = cast<RankedTensorType>(rankedTensor.getType());
SmallVector<Value> dynamicDims;
for (const auto &en : llvm::enumerate(tensorTy.getShape())) {
if (en.value() == ShapedType::kDynamic)
dynamicDims.push_back(
b.create<tensor::DimOp>(loc, rankedTensor, en.index()));
}
return dynamicDims;
}
FailureOr<RankedTensorType>
mlir::tensor::computeTransposedType(RankedTensorType rankedTensorType,
ArrayRef<int64_t> transposeVector) {
if (transposeVector.empty())
return rankedTensorType;
if (!isPermutationVector(transposeVector) ||
transposeVector.size() != static_cast<size_t>(rankedTensorType.getRank()))
return failure();
SmallVector<int64_t> transposedShape(rankedTensorType.getShape().begin(),
rankedTensorType.getShape().end());
applyPermutationToVector(transposedShape, transposeVector);
using RTTBuilder = RankedTensorType::Builder;
RankedTensorType transposedTensorType =
RTTBuilder(rankedTensorType).setShape(transposedShape);
return transposedTensorType;
}
/// The permutation can be obtained from two permutations:
/// a) Compute the permutation vector to move the last `numPackedDims` into
/// the `innerPosDims` of a shape of rank `rank`.
/// b) Compute the permutation vector to move outer dims if the
/// `outerPerm` parameter is not empty.
/// Apply (b) permutation on (a) permutation to get the final permutation.
static SmallVector<int64_t>
computePackUnPackPerm(int64_t rank, ArrayRef<int64_t> &innerDimsPos,
ArrayRef<int64_t> &outerPerm,
PackingMetadata &packingMetadata) {
int64_t numPackedDims = innerDimsPos.size();
auto lastDims =
llvm::to_vector(llvm::seq<int64_t>(rank - numPackedDims, rank));
packingMetadata = computePackingMetadata(rank, innerDimsPos);
SmallVector<int64_t> innerPositionsPerm =
computePermutationVector(rank, lastDims, packingMetadata.insertPositions);
SmallVector<int64_t> outerPos = packingMetadata.outerPositions;
if (!outerPerm.empty())
applyPermutationToVector(outerPos, outerPerm);
SmallVector<int64_t> outerPositionPerm =
computePermutationVector(rank, packingMetadata.outerPositions, outerPos);
SmallVector<int64_t> packInverseDestPermutation = innerPositionsPerm;
applyPermutationToVector(packInverseDestPermutation, outerPositionPerm);
return packInverseDestPermutation;
}
SmallVector<int64_t> mlir::tensor::getPackInverseDestPerm(PackOp packOp) {
PackingMetadata pMetadata;
int64_t packedRank = packOp.getDestType().getRank();
ArrayRef<int64_t> innerDimPos = packOp.getInnerDimsPos();
ArrayRef<int64_t> outerPerm = packOp.getOuterDimsPerm();
SmallVector<int64_t> packInvDestPerm =
computePackUnPackPerm(packedRank, innerDimPos, outerPerm, pMetadata);
return packInvDestPerm;
}
SmallVector<int64_t> mlir::tensor::getUnPackInverseSrcPerm(UnPackOp unpackOp) {
PackingMetadata metadata;
return mlir::tensor::getUnPackInverseSrcPerm(unpackOp, metadata);
}
SmallVector<int64_t>
mlir::tensor::getUnPackInverseSrcPerm(UnPackOp unpackOp,
PackingMetadata &metadata) {
int64_t unpackRank = unpackOp.getSourceType().getRank();
ArrayRef<int64_t> innerDimPos = unpackOp.getInnerDimsPos();
ArrayRef<int64_t> outerPerm = unpackOp.getOuterDimsPerm();
SmallVector<int64_t> unpackInvSrcPerm =
computePackUnPackPerm(unpackRank, innerDimPos, outerPerm, metadata);
return unpackInvSrcPerm;
}
bool mlir::tensor::isCastLikeInsertSliceOp(InsertSliceOp op) {
llvm::SmallBitVector droppedDims = op.getDroppedDims();
int64_t srcDim = 0;
RankedTensorType resultType = op.getDestType();
// Source dims and destination dims (apart from dropped dims) must have the
// same size.
for (int64_t resultDim = 0; resultDim < resultType.getRank(); ++resultDim) {
if (droppedDims.test(resultDim)) {
// InsertSlice may expand unit dimensions that result from inserting a
// size-1 slice into a non-size-1 result dimension.
if (resultType.getDimSize(resultDim) != 1)
return false;
continue;
}
FailureOr<bool> equalDimSize = ValueBoundsConstraintSet::areEqual(
{op.getSource(), srcDim}, {op.getResult(), resultDim});
if (failed(equalDimSize) || !*equalDimSize)
return false;
++srcDim;
}
return true;
}
bool mlir::tensor::isCastLikeExtractSliceOp(ExtractSliceOp op) {
llvm::SmallBitVector droppedDims = op.getDroppedDims();
int64_t resultDim = 0;
// Source dims and result dims (apart from dropped dims) must have the same
// size.
RankedTensorType sourceType = op.getSourceType();
for (int64_t dim = 0, e = sourceType.getRank(); dim < e; ++dim) {
if (droppedDims.test(dim)) {
// ExtractSlice may drop unit dimensions that result from taking a size-1
// slice from a non-size-1 source dimension.
if (sourceType.getDimSize(dim) != 1)
return false;
continue;
}
FailureOr<bool> equalDimSize = ValueBoundsConstraintSet::areEqual(
{op.getSource(), dim}, {op.getResult(), resultDim});
if (failed(equalDimSize) || !*equalDimSize)
return false;
++resultDim;
}
return true;
}
|