File: TosaInferShapes.cpp

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (304 lines) | stat: -rw-r--r-- 10,560 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
//===- TosaInferShapes.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Propogate shapes forward along TOSA operations to resolve dynamic shape
// operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Tosa/Transforms/Passes.h"

#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Utils/ShapeUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"

namespace mlir {
namespace tosa {
#define GEN_PASS_DEF_TOSAINFERSHAPES
#include "mlir/Dialect/Tosa/Transforms/Passes.h.inc"
} // namespace tosa
} // namespace mlir

using namespace mlir;
using namespace mlir::tosa;

namespace {

// Check whether this use case is replaceable. We define an op as
// being replaceable if it is used by a TosaOp, or an op with a
// type-inference related interface.
// When a non-replaceable use is encountered, the value is wrapped in a
// cast back to the original type after inference.
bool canBeRefined(Operation *user) {
  if (!user->getDialect())
    return false;
  return user->getDialect()->getTypeID() == TypeID::get<TosaDialect>() ||
         isa<InferTypeOpInterface, InferShapedTypeOpInterface>(user);
}

// During type propagation, the types of values in the operator graph are
// updated. For the tosa.while_loop operation, types are speculatively updated
// within the body region to determine the output type of the while_loop. This
// process is performed until a fixed point is reached, then the types are
// rolled back.
//
// This class encapsulates the state information needed to perform the roll back
// process or to commit to the final changes.
class TypeModificationState {
public:
  TypeModificationState() = default;

  ~TypeModificationState() {
    // Ensure the recorded modifications are either committed or rolled back.
    assert(oldTypes.empty() && "unhandled type modifications");
  }

  // Update the state of the value and record the old type.
  void setType(Value value, Type type) {
    if (value.getType() != type) {
      oldTypes.emplace_back(value, value.getType());
      value.setType(type);
    }
  }

  // Roll back changes made to the types in the IR by setting all the affected
  // values to their old types.
  void rollBack() {
    for (auto [value, type] : oldTypes)
      value.setType(type);

    oldTypes.clear();
  }

  // Commit the changes to the types in the IR.
  // This requires inserting tensor.cast operations to mediate the newly
  // inferred result types with users that do not support type inference.
  void commit() {
    // For each use whose type changed, cast the value with the new type back to
    // the old type.
    for (auto [value, oldType] : oldTypes) {
      tensor::CastOp castedValue;
      for (auto &use : value.getUses()) {
        if (canBeRefined(use.getOwner()))
          continue;

        // Cache the cast to avoid generating duplicates
        if (!castedValue) {
          ImplicitLocOpBuilder builder{value.getLoc(), use.getOwner()};
          castedValue = builder.create<tensor::CastOp>(oldType, value);
        }

        use.set(castedValue);
      }
    }

    oldTypes.clear();
  }

private:
  // A record of each value whose type was updated along with that value's
  // previous type.
  llvm::SmallVector<std::pair<Value, Type>> oldTypes;
};

void propagateShapesInRegion(Region &region, TypeModificationState &state);

void propagateShapesToTosaIf(Operation &op, TypeModificationState &state) {
  IfOp ifOp = dyn_cast<IfOp>(op);
  if (!ifOp)
    return;

  for (auto &region : op.getRegions()) {
    Block &frontBlock = region.front();
    if (frontBlock.getNumArguments() + 1 != ifOp.getNumOperands())
      return;

    for (unsigned int i = 1, s = op.getNumOperands(); i < s; i++) {
      auto inferredTy = cast<ShapedType>(op.getOperand(i).getType());
      auto blockArg = frontBlock.getArgument(i - 1);
      auto oldType = cast<ShapedType>(blockArg.getType());

      if (inferredTy.hasRank()) {
        Type newType = oldType.clone(inferredTy.getShape());
        state.setType(blockArg, newType);
      }
    }

    for (int i = 0, e = frontBlock.getNumArguments(); i < e; i++) {
      ValueKnowledge operandKnowledge = ValueKnowledge::getKnowledgeFromType(
          ifOp.getOperand(i + 1).getType());
      ValueKnowledge blockKnowledge = ValueKnowledge::getKnowledgeFromType(
          frontBlock.getArgument(i).getType());
      ValueKnowledge joinedKnowledge =
          ValueKnowledge::join(operandKnowledge, blockKnowledge);
      if (!joinedKnowledge)
        continue;
      state.setType(frontBlock.getArgument(i), joinedKnowledge.getType());
    }

    propagateShapesInRegion(region, state);
  }
}

void propagateShapesToTosaWhile(Operation &op, TypeModificationState &state) {
  WhileOp whileOp = dyn_cast<WhileOp>(op);
  if (!whileOp)
    return;

  // Determine what the expected argument types are to the cond/body blocks.
  // The expected arguments should be compatible with ever iteration of the
  // loop body / condition for tosa.while.
  SmallVector<Type> argTypes = llvm::to_vector(op.getOperandTypes());

  bool hasNewTypes = true;
  while (hasNewTypes) {
    TypeModificationState localState;

    // Set types on the block args.
    Region &bodyRegion = op.getRegion(1);
    Block &block = bodyRegion.front();
    for (int i = 0, s = argTypes.size(); i < s; i++) {
      localState.setType(block.getArgument(i), argTypes[i]);
    }

    // Propagate to the end.
    propagateShapesInRegion(bodyRegion, localState);

    // Find all the tosa yield types and verify there is a single one.
    llvm::SmallVector<YieldOp> yieldOps;
    for (auto &block : bodyRegion)
      if (auto yieldOp = dyn_cast<YieldOp>(block.getTerminator()))
        yieldOps.push_back(yieldOp);

    assert(yieldOps.size() == 1 && "missing or non-unique yield op");
    // Using the new tosa.yield operand types, infer the new subtypes.
    llvm::SmallVector<ValueKnowledge> yieldTypeInfo;
    for (auto ty : argTypes) {
      yieldTypeInfo.push_back(ValueKnowledge::getKnowledgeFromType(ty));
    }

    for (auto yieldOp : yieldOps) {
      for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
        auto newKnowledge =
            ValueKnowledge::getKnowledgeFromType(it.value().getType());
        yieldTypeInfo[it.index()] =
            ValueKnowledge::meet(yieldTypeInfo[it.index()], newKnowledge);
      }
    }

    // This should never happen.
    if (yieldTypeInfo.size() != argTypes.size()) {
      op.emitWarning("has a tosa.yield with the incorrect number of operands");
      return;
    }

    // Determine the new block args and see if any changed.
    hasNewTypes = false;
    for (int i = 0, s = yieldTypeInfo.size(); i < s; i++) {
      Type newType = yieldTypeInfo[i].getType();
      hasNewTypes |= (newType != argTypes[i]);
      argTypes[i] = newType;
    }

    // Roll back all changes made during the speculative part of the algorithm.
    localState.rollBack();
  }

  // We now set the block arguments according to the most recent shape
  // inference results. This gives us the block arg types for the next
  // iteration.
  for (auto &region : op.getRegions()) {
    for (unsigned int i = 0, s = argTypes.size(); i < s; i++) {
      state.setType(region.front().getArgument(i), argTypes[i]);
    }

    propagateShapesInRegion(region, state);
  }
}

void propagateShapesInRegion(Region &region, TypeModificationState &state) {
  Dialect *tosaDialect = region.getContext()->getLoadedDialect<TosaDialect>();

  for (auto &block : region) {
    for (Operation &op : block) {
      if (op.getDialect() != tosaDialect)
        continue;

      propagateShapesToTosaIf(op, state);
      propagateShapesToTosaWhile(op, state);

      InferShapedTypeOpInterface shapeInterface =
          dyn_cast<InferShapedTypeOpInterface>(op);
      if (!shapeInterface)
        continue;

      SmallVector<ShapedTypeComponents> returnedShapes;

      if (shapeInterface
              .inferReturnTypeComponents(
                  op.getContext(), op.getLoc(), op.getOperands(),
                  op.getDiscardableAttrDictionary(), op.getPropertiesStorage(),
                  op.getRegions(), returnedShapes)
              .succeeded()) {
        for (auto it : llvm::zip(op.getResults(), returnedShapes)) {
          Value result = std::get<0>(it);
          ShapedTypeComponents predictedShape = std::get<1>(it);

          // Determine the knowledge based on the output type.
          // TODO: should also query WIP type probably
          Type resultTy = result.getType();
          auto currentKnowledge =
              ValueKnowledge::getKnowledgeFromType(resultTy);

          // Compute the knowledge based on the inferred type.
          auto inferredKnowledge = ValueKnowledge::getPessimisticValueState();
          inferredKnowledge.dtype = cast<ShapedType>(resultTy).getElementType();
          inferredKnowledge.hasRank = predictedShape.hasRank();
          if (predictedShape.hasRank()) {
            for (auto dim : predictedShape.getDims()) {
              inferredKnowledge.sizes.push_back(dim);
            }
          }

          // Compute the new type based on the joined version.
          auto newKnowledge =
              ValueKnowledge::join(currentKnowledge, inferredKnowledge);
          if (!newKnowledge)
            continue;

          // Set new type
          state.setType(result, newKnowledge.getType());
        }
      }
    }
  }
}

/// Pass that performs shape propagation across TOSA operations. This includes
/// migrating to within the regions of if/while operations.
struct TosaInferShapes
    : public tosa::impl::TosaInferShapesBase<TosaInferShapes> {
public:
  void runOnOperation() override {
    func::FuncOp func = getOperation();
    TypeModificationState state;
    propagateShapesInRegion(func.getBody(), state);
    state.commit();
  }
};
} // namespace

std::unique_ptr<Pass> mlir::tosa::createTosaInferShapesPass() {
  return std::make_unique<TosaInferShapes>();
}