1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
|
//===- OpenMPToLLVMIRTranslation.cpp - Translate OpenMP dialect to LLVM IR-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a translation between the MLIR OpenMP dialect and LLVM
// IR.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.h"
#include "mlir/Analysis/TopologicalSortUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Operation.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/Dialect/OpenMPCommon.h"
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <any>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <optional>
#include <utility>
using namespace mlir;
namespace {
static llvm::omp::ScheduleKind
convertToScheduleKind(std::optional<omp::ClauseScheduleKind> schedKind) {
if (!schedKind.has_value())
return llvm::omp::OMP_SCHEDULE_Default;
switch (schedKind.value()) {
case omp::ClauseScheduleKind::Static:
return llvm::omp::OMP_SCHEDULE_Static;
case omp::ClauseScheduleKind::Dynamic:
return llvm::omp::OMP_SCHEDULE_Dynamic;
case omp::ClauseScheduleKind::Guided:
return llvm::omp::OMP_SCHEDULE_Guided;
case omp::ClauseScheduleKind::Auto:
return llvm::omp::OMP_SCHEDULE_Auto;
case omp::ClauseScheduleKind::Runtime:
return llvm::omp::OMP_SCHEDULE_Runtime;
}
llvm_unreachable("unhandled schedule clause argument");
}
/// ModuleTranslation stack frame for OpenMP operations. This keeps track of the
/// insertion points for allocas.
class OpenMPAllocaStackFrame
: public LLVM::ModuleTranslation::StackFrameBase<OpenMPAllocaStackFrame> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPAllocaStackFrame)
explicit OpenMPAllocaStackFrame(llvm::OpenMPIRBuilder::InsertPointTy allocaIP)
: allocaInsertPoint(allocaIP) {}
llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
};
/// ModuleTranslation stack frame containing the partial mapping between MLIR
/// values and their LLVM IR equivalents.
class OpenMPVarMappingStackFrame
: public LLVM::ModuleTranslation::StackFrameBase<
OpenMPVarMappingStackFrame> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPVarMappingStackFrame)
explicit OpenMPVarMappingStackFrame(
const DenseMap<Value, llvm::Value *> &mapping)
: mapping(mapping) {}
DenseMap<Value, llvm::Value *> mapping;
};
} // namespace
/// Find the insertion point for allocas given the current insertion point for
/// normal operations in the builder.
static llvm::OpenMPIRBuilder::InsertPointTy
findAllocaInsertPoint(llvm::IRBuilderBase &builder,
const LLVM::ModuleTranslation &moduleTranslation) {
// If there is an alloca insertion point on stack, i.e. we are in a nested
// operation and a specific point was provided by some surrounding operation,
// use it.
llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
WalkResult walkResult = moduleTranslation.stackWalk<OpenMPAllocaStackFrame>(
[&](const OpenMPAllocaStackFrame &frame) {
allocaInsertPoint = frame.allocaInsertPoint;
return WalkResult::interrupt();
});
if (walkResult.wasInterrupted())
return allocaInsertPoint;
// Otherwise, insert to the entry block of the surrounding function.
// If the current IRBuilder InsertPoint is the function's entry, it cannot
// also be used for alloca insertion which would result in insertion order
// confusion. Create a new BasicBlock for the Builder and use the entry block
// for the allocs.
// TODO: Create a dedicated alloca BasicBlock at function creation such that
// we do not need to move the current InertPoint here.
if (builder.GetInsertBlock() ==
&builder.GetInsertBlock()->getParent()->getEntryBlock()) {
assert(builder.GetInsertPoint() == builder.GetInsertBlock()->end() &&
"Assuming end of basic block");
llvm::BasicBlock *entryBB = llvm::BasicBlock::Create(
builder.getContext(), "entry", builder.GetInsertBlock()->getParent(),
builder.GetInsertBlock()->getNextNode());
builder.CreateBr(entryBB);
builder.SetInsertPoint(entryBB);
}
llvm::BasicBlock &funcEntryBlock =
builder.GetInsertBlock()->getParent()->getEntryBlock();
return llvm::OpenMPIRBuilder::InsertPointTy(
&funcEntryBlock, funcEntryBlock.getFirstInsertionPt());
}
/// Converts the given region that appears within an OpenMP dialect operation to
/// LLVM IR, creating a branch from the `sourceBlock` to the entry block of the
/// region, and a branch from any block with an successor-less OpenMP terminator
/// to `continuationBlock`. Populates `continuationBlockPHIs` with the PHI nodes
/// of the continuation block if provided.
static llvm::BasicBlock *convertOmpOpRegions(
Region ®ion, StringRef blockName, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation, LogicalResult &bodyGenStatus,
SmallVectorImpl<llvm::PHINode *> *continuationBlockPHIs = nullptr) {
llvm::BasicBlock *continuationBlock =
splitBB(builder, true, "omp.region.cont");
llvm::BasicBlock *sourceBlock = builder.GetInsertBlock();
llvm::LLVMContext &llvmContext = builder.getContext();
for (Block &bb : region) {
llvm::BasicBlock *llvmBB = llvm::BasicBlock::Create(
llvmContext, blockName, builder.GetInsertBlock()->getParent(),
builder.GetInsertBlock()->getNextNode());
moduleTranslation.mapBlock(&bb, llvmBB);
}
llvm::Instruction *sourceTerminator = sourceBlock->getTerminator();
// Terminators (namely YieldOp) may be forwarding values to the region that
// need to be available in the continuation block. Collect the types of these
// operands in preparation of creating PHI nodes.
SmallVector<llvm::Type *> continuationBlockPHITypes;
bool operandsProcessed = false;
unsigned numYields = 0;
for (Block &bb : region.getBlocks()) {
if (omp::YieldOp yield = dyn_cast<omp::YieldOp>(bb.getTerminator())) {
if (!operandsProcessed) {
for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
continuationBlockPHITypes.push_back(
moduleTranslation.convertType(yield->getOperand(i).getType()));
}
operandsProcessed = true;
} else {
assert(continuationBlockPHITypes.size() == yield->getNumOperands() &&
"mismatching number of values yielded from the region");
for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
llvm::Type *operandType =
moduleTranslation.convertType(yield->getOperand(i).getType());
(void)operandType;
assert(continuationBlockPHITypes[i] == operandType &&
"values of mismatching types yielded from the region");
}
}
numYields++;
}
}
// Insert PHI nodes in the continuation block for any values forwarded by the
// terminators in this region.
if (!continuationBlockPHITypes.empty())
assert(
continuationBlockPHIs &&
"expected continuation block PHIs if converted regions yield values");
if (continuationBlockPHIs) {
llvm::IRBuilderBase::InsertPointGuard guard(builder);
continuationBlockPHIs->reserve(continuationBlockPHITypes.size());
builder.SetInsertPoint(continuationBlock, continuationBlock->begin());
for (llvm::Type *ty : continuationBlockPHITypes)
continuationBlockPHIs->push_back(builder.CreatePHI(ty, numYields));
}
// Convert blocks one by one in topological order to ensure
// defs are converted before uses.
SetVector<Block *> blocks = getBlocksSortedByDominance(region);
for (Block *bb : blocks) {
llvm::BasicBlock *llvmBB = moduleTranslation.lookupBlock(bb);
// Retarget the branch of the entry block to the entry block of the
// converted region (regions are single-entry).
if (bb->isEntryBlock()) {
assert(sourceTerminator->getNumSuccessors() == 1 &&
"provided entry block has multiple successors");
assert(sourceTerminator->getSuccessor(0) == continuationBlock &&
"ContinuationBlock is not the successor of the entry block");
sourceTerminator->setSuccessor(0, llvmBB);
}
llvm::IRBuilderBase::InsertPointGuard guard(builder);
if (failed(
moduleTranslation.convertBlock(*bb, bb->isEntryBlock(), builder))) {
bodyGenStatus = failure();
return continuationBlock;
}
// Special handling for `omp.yield` and `omp.terminator` (we may have more
// than one): they return the control to the parent OpenMP dialect operation
// so replace them with the branch to the continuation block. We handle this
// here to avoid relying inter-function communication through the
// ModuleTranslation class to set up the correct insertion point. This is
// also consistent with MLIR's idiom of handling special region terminators
// in the same code that handles the region-owning operation.
Operation *terminator = bb->getTerminator();
if (isa<omp::TerminatorOp, omp::YieldOp>(terminator)) {
builder.CreateBr(continuationBlock);
for (unsigned i = 0, e = terminator->getNumOperands(); i < e; ++i)
(*continuationBlockPHIs)[i]->addIncoming(
moduleTranslation.lookupValue(terminator->getOperand(i)), llvmBB);
}
}
// After all blocks have been traversed and values mapped, connect the PHI
// nodes to the results of preceding blocks.
LLVM::detail::connectPHINodes(region, moduleTranslation);
// Remove the blocks and values defined in this region from the mapping since
// they are not visible outside of this region. This allows the same region to
// be converted several times, that is cloned, without clashes, and slightly
// speeds up the lookups.
moduleTranslation.forgetMapping(region);
return continuationBlock;
}
/// Convert ProcBindKind from MLIR-generated enum to LLVM enum.
static llvm::omp::ProcBindKind getProcBindKind(omp::ClauseProcBindKind kind) {
switch (kind) {
case omp::ClauseProcBindKind::Close:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_close;
case omp::ClauseProcBindKind::Master:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_master;
case omp::ClauseProcBindKind::Primary:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_primary;
case omp::ClauseProcBindKind::Spread:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_spread;
}
llvm_unreachable("Unknown ClauseProcBindKind kind");
}
/// Converts an OpenMP 'masked' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpMasked(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto maskedOp = cast<omp::MaskedOp>(opInst);
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// MaskedOp has only one region associated with it.
auto ®ion = maskedOp.getRegion();
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.masked.region", builder, moduleTranslation,
bodyGenStatus);
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::Value *filterVal = nullptr;
if (auto filterVar = maskedOp.getFilteredThreadId()) {
filterVal = moduleTranslation.lookupValue(filterVar);
} else {
llvm::LLVMContext &llvmContext = builder.getContext();
filterVal =
llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvmContext), /*V=*/0);
}
assert(filterVal != nullptr);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createMasked(
ompLoc, bodyGenCB, finiCB, filterVal));
return success();
}
/// Converts an OpenMP 'master' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpMaster(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// MasterOp has only one region associated with it.
auto ®ion = cast<omp::MasterOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.master.region", builder, moduleTranslation,
bodyGenStatus);
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createMaster(
ompLoc, bodyGenCB, finiCB));
return success();
}
/// Converts an OpenMP 'critical' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpCritical(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto criticalOp = cast<omp::CriticalOp>(opInst);
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// CriticalOp has only one region associated with it.
auto ®ion = cast<omp::CriticalOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.critical.region", builder,
moduleTranslation, bodyGenStatus);
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::LLVMContext &llvmContext = moduleTranslation.getLLVMContext();
llvm::Constant *hint = nullptr;
// If it has a name, it probably has a hint too.
if (criticalOp.getNameAttr()) {
// The verifiers in OpenMP Dialect guarentee that all the pointers are
// non-null
auto symbolRef = cast<SymbolRefAttr>(criticalOp.getNameAttr());
auto criticalDeclareOp =
SymbolTable::lookupNearestSymbolFrom<omp::CriticalDeclareOp>(criticalOp,
symbolRef);
hint = llvm::ConstantInt::get(
llvm::Type::getInt32Ty(llvmContext),
static_cast<int>(criticalDeclareOp.getHintVal()));
}
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createCritical(
ompLoc, bodyGenCB, finiCB, criticalOp.getName().value_or(""), hint));
return success();
}
/// Populates `reductions` with reduction declarations used in the given loop.
template <typename T>
static void
collectReductionDecls(T loop,
SmallVectorImpl<omp::DeclareReductionOp> &reductions) {
std::optional<ArrayAttr> attr = loop.getReductions();
if (!attr)
return;
reductions.reserve(reductions.size() + loop.getNumReductionVars());
for (auto symbolRef : attr->getAsRange<SymbolRefAttr>()) {
reductions.push_back(
SymbolTable::lookupNearestSymbolFrom<omp::DeclareReductionOp>(
loop, symbolRef));
}
}
/// Translates the blocks contained in the given region and appends them to at
/// the current insertion point of `builder`. The operations of the entry block
/// are appended to the current insertion block. If set, `continuationBlockArgs`
/// is populated with translated values that correspond to the values
/// omp.yield'ed from the region.
static LogicalResult inlineConvertOmpRegions(
Region ®ion, StringRef blockName, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<llvm::Value *> *continuationBlockArgs = nullptr) {
if (region.empty())
return success();
// Special case for single-block regions that don't create additional blocks:
// insert operations without creating additional blocks.
if (llvm::hasSingleElement(region)) {
llvm::Instruction *potentialTerminator =
builder.GetInsertBlock()->empty() ? nullptr
: &builder.GetInsertBlock()->back();
if (potentialTerminator && potentialTerminator->isTerminator())
potentialTerminator->removeFromParent();
moduleTranslation.mapBlock(®ion.front(), builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(
region.front(), /*ignoreArguments=*/true, builder)))
return failure();
// The continuation arguments are simply the translated terminator operands.
if (continuationBlockArgs)
llvm::append_range(
*continuationBlockArgs,
moduleTranslation.lookupValues(region.front().back().getOperands()));
// Drop the mapping that is no longer necessary so that the same region can
// be processed multiple times.
moduleTranslation.forgetMapping(region);
if (potentialTerminator && potentialTerminator->isTerminator()) {
llvm::BasicBlock *block = builder.GetInsertBlock();
if (block->empty()) {
// this can happen for really simple reduction init regions e.g.
// %0 = llvm.mlir.constant(0 : i32) : i32
// omp.yield(%0 : i32)
// because the llvm.mlir.constant (MLIR op) isn't converted into any
// llvm op
potentialTerminator->insertInto(block, block->begin());
} else {
potentialTerminator->insertAfter(&block->back());
}
}
return success();
}
LogicalResult bodyGenStatus = success();
SmallVector<llvm::PHINode *> phis;
llvm::BasicBlock *continuationBlock = convertOmpOpRegions(
region, blockName, builder, moduleTranslation, bodyGenStatus, &phis);
if (failed(bodyGenStatus))
return failure();
if (continuationBlockArgs)
llvm::append_range(*continuationBlockArgs, phis);
builder.SetInsertPoint(continuationBlock,
continuationBlock->getFirstInsertionPt());
return success();
}
namespace {
/// Owning equivalents of OpenMPIRBuilder::(Atomic)ReductionGen that are used to
/// store lambdas with capture.
using OwningReductionGen = std::function<llvm::OpenMPIRBuilder::InsertPointTy(
llvm::OpenMPIRBuilder::InsertPointTy, llvm::Value *, llvm::Value *,
llvm::Value *&)>;
using OwningAtomicReductionGen =
std::function<llvm::OpenMPIRBuilder::InsertPointTy(
llvm::OpenMPIRBuilder::InsertPointTy, llvm::Type *, llvm::Value *,
llvm::Value *)>;
} // namespace
/// Create an OpenMPIRBuilder-compatible reduction generator for the given
/// reduction declaration. The generator uses `builder` but ignores its
/// insertion point.
static OwningReductionGen
makeReductionGen(omp::DeclareReductionOp decl, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
// The lambda is mutable because we need access to non-const methods of decl
// (which aren't actually mutating it), and we must capture decl by-value to
// avoid the dangling reference after the parent function returns.
OwningReductionGen gen =
[&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint,
llvm::Value *lhs, llvm::Value *rhs,
llvm::Value *&result) mutable {
Region &reductionRegion = decl.getReductionRegion();
moduleTranslation.mapValue(reductionRegion.front().getArgument(0), lhs);
moduleTranslation.mapValue(reductionRegion.front().getArgument(1), rhs);
builder.restoreIP(insertPoint);
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(reductionRegion,
"omp.reduction.nonatomic.body",
builder, moduleTranslation, &phis)))
return llvm::OpenMPIRBuilder::InsertPointTy();
assert(phis.size() == 1);
result = phis[0];
return builder.saveIP();
};
return gen;
}
/// Create an OpenMPIRBuilder-compatible atomic reduction generator for the
/// given reduction declaration. The generator uses `builder` but ignores its
/// insertion point. Returns null if there is no atomic region available in the
/// reduction declaration.
static OwningAtomicReductionGen
makeAtomicReductionGen(omp::DeclareReductionOp decl,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (decl.getAtomicReductionRegion().empty())
return OwningAtomicReductionGen();
// The lambda is mutable because we need access to non-const methods of decl
// (which aren't actually mutating it), and we must capture decl by-value to
// avoid the dangling reference after the parent function returns.
OwningAtomicReductionGen atomicGen =
[&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint, llvm::Type *,
llvm::Value *lhs, llvm::Value *rhs) mutable {
Region &atomicRegion = decl.getAtomicReductionRegion();
moduleTranslation.mapValue(atomicRegion.front().getArgument(0), lhs);
moduleTranslation.mapValue(atomicRegion.front().getArgument(1), rhs);
builder.restoreIP(insertPoint);
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(atomicRegion,
"omp.reduction.atomic.body", builder,
moduleTranslation, &phis)))
return llvm::OpenMPIRBuilder::InsertPointTy();
assert(phis.empty());
return builder.saveIP();
};
return atomicGen;
}
/// Converts an OpenMP 'ordered' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpOrdered(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto orderedOp = cast<omp::OrderedOp>(opInst);
omp::ClauseDepend dependType = *orderedOp.getDependTypeVal();
bool isDependSource = dependType == omp::ClauseDepend::dependsource;
unsigned numLoops = *orderedOp.getNumLoopsVal();
SmallVector<llvm::Value *> vecValues =
moduleTranslation.lookupValues(orderedOp.getDependVecVars());
size_t indexVecValues = 0;
while (indexVecValues < vecValues.size()) {
SmallVector<llvm::Value *> storeValues;
storeValues.reserve(numLoops);
for (unsigned i = 0; i < numLoops; i++) {
storeValues.push_back(vecValues[indexVecValues]);
indexVecValues++;
}
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createOrderedDepend(
ompLoc, allocaIP, numLoops, storeValues, ".cnt.addr", isDependSource));
}
return success();
}
/// Converts an OpenMP 'ordered_region' operation into LLVM IR using
/// OpenMPIRBuilder.
static LogicalResult
convertOmpOrderedRegion(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto orderedRegionOp = cast<omp::OrderedRegionOp>(opInst);
// TODO: The code generation for ordered simd directive is not supported yet.
if (orderedRegionOp.getSimd())
return failure();
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// OrderedOp has only one region associated with it.
auto ®ion = cast<omp::OrderedRegionOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.ordered.region", builder,
moduleTranslation, bodyGenStatus);
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(
moduleTranslation.getOpenMPBuilder()->createOrderedThreadsSimd(
ompLoc, bodyGenCB, finiCB, !orderedRegionOp.getSimd()));
return bodyGenStatus;
}
/// Allocate space for privatized reduction variables.
template <typename T>
static void allocByValReductionVars(
T loop, ArrayRef<BlockArgument> reductionArgs, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
SmallVectorImpl<llvm::Value *> &privateReductionVariables,
DenseMap<Value, llvm::Value *> &reductionVariableMap,
llvm::ArrayRef<bool> isByRefs) {
llvm::IRBuilderBase::InsertPointGuard guard(builder);
builder.SetInsertPoint(allocaIP.getBlock()->getTerminator());
for (std::size_t i = 0; i < loop.getNumReductionVars(); ++i) {
if (isByRefs[i])
continue;
llvm::Value *var = builder.CreateAlloca(
moduleTranslation.convertType(reductionDecls[i].getType()));
moduleTranslation.mapValue(reductionArgs[i], var);
privateReductionVariables[i] = var;
reductionVariableMap.try_emplace(loop.getReductionVars()[i], var);
}
}
/// Map input argument to all reduction initialization regions
template <typename T>
static void
mapInitializationArg(T loop, LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
unsigned i) {
// map input argument to the initialization region
mlir::omp::DeclareReductionOp &reduction = reductionDecls[i];
Region &initializerRegion = reduction.getInitializerRegion();
Block &entry = initializerRegion.front();
assert(entry.getNumArguments() == 1 &&
"the initialization region has one argument");
mlir::Value mlirSource = loop.getReductionVars()[i];
llvm::Value *llvmSource = moduleTranslation.lookupValue(mlirSource);
assert(llvmSource && "lookup reduction var");
moduleTranslation.mapValue(entry.getArgument(0), llvmSource);
}
/// Collect reduction info
template <typename T>
static void collectReductionInfo(
T loop, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
SmallVectorImpl<OwningReductionGen> &owningReductionGens,
SmallVectorImpl<OwningAtomicReductionGen> &owningAtomicReductionGens,
const ArrayRef<llvm::Value *> privateReductionVariables,
SmallVectorImpl<llvm::OpenMPIRBuilder::ReductionInfo> &reductionInfos) {
unsigned numReductions = loop.getNumReductionVars();
for (unsigned i = 0; i < numReductions; ++i) {
owningReductionGens.push_back(
makeReductionGen(reductionDecls[i], builder, moduleTranslation));
owningAtomicReductionGens.push_back(
makeAtomicReductionGen(reductionDecls[i], builder, moduleTranslation));
}
// Collect the reduction information.
reductionInfos.reserve(numReductions);
for (unsigned i = 0; i < numReductions; ++i) {
llvm::OpenMPIRBuilder::ReductionGenAtomicCBTy atomicGen = nullptr;
if (owningAtomicReductionGens[i])
atomicGen = owningAtomicReductionGens[i];
llvm::Value *variable =
moduleTranslation.lookupValue(loop.getReductionVars()[i]);
reductionInfos.push_back(
{moduleTranslation.convertType(reductionDecls[i].getType()), variable,
privateReductionVariables[i],
/*EvaluationKind=*/llvm::OpenMPIRBuilder::EvalKind::Scalar,
owningReductionGens[i],
/*ReductionGenClang=*/nullptr, atomicGen});
}
}
/// handling of DeclareReductionOp's cleanup region
static LogicalResult
inlineOmpRegionCleanup(llvm::SmallVectorImpl<Region *> &cleanupRegions,
llvm::ArrayRef<llvm::Value *> privateVariables,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder, StringRef regionName,
bool shouldLoadCleanupRegionArg = true) {
for (auto [i, cleanupRegion] : llvm::enumerate(cleanupRegions)) {
if (cleanupRegion->empty())
continue;
// map the argument to the cleanup region
Block &entry = cleanupRegion->front();
llvm::Instruction *potentialTerminator =
builder.GetInsertBlock()->empty() ? nullptr
: &builder.GetInsertBlock()->back();
if (potentialTerminator && potentialTerminator->isTerminator())
builder.SetInsertPoint(potentialTerminator);
llvm::Value *prviateVarValue =
shouldLoadCleanupRegionArg
? builder.CreateLoad(
moduleTranslation.convertType(entry.getArgument(0).getType()),
privateVariables[i])
: privateVariables[i];
moduleTranslation.mapValue(entry.getArgument(0), prviateVarValue);
if (failed(inlineConvertOmpRegions(*cleanupRegion, regionName, builder,
moduleTranslation)))
return failure();
// clear block argument mapping in case it needs to be re-created with a
// different source for another use of the same reduction decl
moduleTranslation.forgetMapping(*cleanupRegion);
}
return success();
}
// TODO: not used by ParallelOp
template <class OP>
static LogicalResult createReductionsAndCleanup(
OP op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
ArrayRef<llvm::Value *> privateReductionVariables, ArrayRef<bool> isByRef) {
// Process the reductions if required.
if (op.getNumReductionVars() == 0)
return success();
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// Create the reduction generators. We need to own them here because
// ReductionInfo only accepts references to the generators.
SmallVector<OwningReductionGen> owningReductionGens;
SmallVector<OwningAtomicReductionGen> owningAtomicReductionGens;
SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> reductionInfos;
collectReductionInfo(op, builder, moduleTranslation, reductionDecls,
owningReductionGens, owningAtomicReductionGens,
privateReductionVariables, reductionInfos);
// The call to createReductions below expects the block to have a
// terminator. Create an unreachable instruction to serve as terminator
// and remove it later.
llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable();
builder.SetInsertPoint(tempTerminator);
llvm::OpenMPIRBuilder::InsertPointTy contInsertPoint =
ompBuilder->createReductions(builder.saveIP(), allocaIP, reductionInfos,
isByRef, op.getNowait());
if (!contInsertPoint.getBlock())
return op->emitOpError() << "failed to convert reductions";
auto nextInsertionPoint =
ompBuilder->createBarrier(contInsertPoint, llvm::omp::OMPD_for);
tempTerminator->eraseFromParent();
builder.restoreIP(nextInsertionPoint);
// after the construct, deallocate private reduction variables
SmallVector<Region *> reductionRegions;
llvm::transform(reductionDecls, std::back_inserter(reductionRegions),
[](omp::DeclareReductionOp reductionDecl) {
return &reductionDecl.getCleanupRegion();
});
return inlineOmpRegionCleanup(reductionRegions, privateReductionVariables,
moduleTranslation, builder,
"omp.reduction.cleanup");
return success();
}
static ArrayRef<bool> getIsByRef(std::optional<ArrayRef<bool>> attr) {
if (!attr)
return {};
return *attr;
}
// TODO: not used by omp.parallel
template <typename OP>
static LogicalResult allocAndInitializeReductionVars(
OP op, ArrayRef<BlockArgument> reductionArgs, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
SmallVectorImpl<llvm::Value *> &privateReductionVariables,
DenseMap<Value, llvm::Value *> &reductionVariableMap,
llvm::ArrayRef<bool> isByRef) {
if (op.getNumReductionVars() == 0)
return success();
allocByValReductionVars(op, reductionArgs, builder, moduleTranslation,
allocaIP, reductionDecls, privateReductionVariables,
reductionVariableMap, isByRef);
// Before the loop, store the initial values of reductions into reduction
// variables. Although this could be done after allocas, we don't want to mess
// up with the alloca insertion point.
for (unsigned i = 0; i < op.getNumReductionVars(); ++i) {
SmallVector<llvm::Value *> phis;
// map block argument to initializer region
mapInitializationArg(op, moduleTranslation, reductionDecls, i);
if (failed(inlineConvertOmpRegions(reductionDecls[i].getInitializerRegion(),
"omp.reduction.neutral", builder,
moduleTranslation, &phis)))
return failure();
assert(phis.size() == 1 && "expected one value to be yielded from the "
"reduction neutral element declaration region");
if (isByRef[i]) {
// Allocate reduction variable (which is a pointer to the real reduction
// variable allocated in the inlined region)
llvm::Value *var = builder.CreateAlloca(
moduleTranslation.convertType(reductionDecls[i].getType()));
// Store the result of the inlined region to the allocated reduction var
// ptr
builder.CreateStore(phis[0], var);
privateReductionVariables[i] = var;
moduleTranslation.mapValue(reductionArgs[i], phis[0]);
reductionVariableMap.try_emplace(op.getReductionVars()[i], phis[0]);
} else {
// for by-ref case the store is inside of the reduction region
builder.CreateStore(phis[0], privateReductionVariables[i]);
// the rest was handled in allocByValReductionVars
}
// forget the mapping for the initializer region because we might need a
// different mapping if this reduction declaration is re-used for a
// different variable
moduleTranslation.forgetMapping(reductionDecls[i].getInitializerRegion());
}
return success();
}
static LogicalResult
convertOmpSections(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
using StorableBodyGenCallbackTy =
llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy;
auto sectionsOp = cast<omp::SectionsOp>(opInst);
// TODO: Support the following clauses: private, firstprivate, lastprivate,
// allocate
if (!sectionsOp.getAllocateVars().empty() ||
!sectionsOp.getAllocatorsVars().empty())
return emitError(sectionsOp.getLoc())
<< "allocate clause is not supported for sections construct";
llvm::ArrayRef<bool> isByRef = getIsByRef(sectionsOp.getReductionVarsByref());
assert(isByRef.size() == sectionsOp.getNumReductionVars());
SmallVector<omp::DeclareReductionOp> reductionDecls;
collectReductionDecls(sectionsOp, reductionDecls);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
SmallVector<llvm::Value *> privateReductionVariables(
sectionsOp.getNumReductionVars());
DenseMap<Value, llvm::Value *> reductionVariableMap;
MutableArrayRef<BlockArgument> reductionArgs =
sectionsOp.getRegion().getArguments();
if (failed(allocAndInitializeReductionVars(
sectionsOp, reductionArgs, builder, moduleTranslation, allocaIP,
reductionDecls, privateReductionVariables, reductionVariableMap,
isByRef)))
return failure();
// Store the mapping between reduction variables and their private copies on
// ModuleTranslation stack. It can be then recovered when translating
// omp.reduce operations in a separate call.
LLVM::ModuleTranslation::SaveStack<OpenMPVarMappingStackFrame> mappingGuard(
moduleTranslation, reductionVariableMap);
LogicalResult bodyGenStatus = success();
SmallVector<StorableBodyGenCallbackTy> sectionCBs;
for (Operation &op : *sectionsOp.getRegion().begin()) {
auto sectionOp = dyn_cast<omp::SectionOp>(op);
if (!sectionOp) // omp.terminator
continue;
Region ®ion = sectionOp.getRegion();
auto sectionCB = [§ionsOp, ®ion, &builder, &moduleTranslation,
&bodyGenStatus](InsertPointTy allocaIP,
InsertPointTy codeGenIP) {
builder.restoreIP(codeGenIP);
// map the omp.section reduction block argument to the omp.sections block
// arguments
// TODO: this assumes that the only block arguments are reduction
// variables
assert(region.getNumArguments() ==
sectionsOp.getRegion().getNumArguments());
for (auto [sectionsArg, sectionArg] : llvm::zip_equal(
sectionsOp.getRegion().getArguments(), region.getArguments())) {
llvm::Value *llvmVal = moduleTranslation.lookupValue(sectionsArg);
assert(llvmVal);
moduleTranslation.mapValue(sectionArg, llvmVal);
}
convertOmpOpRegions(region, "omp.section.region", builder,
moduleTranslation, bodyGenStatus);
};
sectionCBs.push_back(sectionCB);
}
// No sections within omp.sections operation - skip generation. This situation
// is only possible if there is only a terminator operation inside the
// sections operation
if (sectionCBs.empty())
return success();
assert(isa<omp::SectionOp>(*sectionsOp.getRegion().op_begin()));
// TODO: Perform appropriate actions according to the data-sharing
// attribute (shared, private, firstprivate, ...) of variables.
// Currently defaults to shared.
auto privCB = [&](InsertPointTy, InsertPointTy codeGenIP, llvm::Value &,
llvm::Value &vPtr,
llvm::Value *&replacementValue) -> InsertPointTy {
replacementValue = &vPtr;
return codeGenIP;
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSections(
ompLoc, allocaIP, sectionCBs, privCB, finiCB, false,
sectionsOp.getNowait()));
if (failed(bodyGenStatus))
return bodyGenStatus;
// Process the reductions if required.
return createReductionsAndCleanup(sectionsOp, builder, moduleTranslation,
allocaIP, reductionDecls,
privateReductionVariables, isByRef);
}
/// Converts an OpenMP single construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpSingle(omp::SingleOp &singleOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
LogicalResult bodyGenStatus = success();
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
builder.restoreIP(codegenIP);
convertOmpOpRegions(singleOp.getRegion(), "omp.single.region", builder,
moduleTranslation, bodyGenStatus);
};
auto finiCB = [&](InsertPointTy codeGenIP) {};
// Handle copyprivate
Operation::operand_range cpVars = singleOp.getCopyprivateVars();
std::optional<ArrayAttr> cpFuncs = singleOp.getCopyprivateFuncs();
llvm::SmallVector<llvm::Value *> llvmCPVars;
llvm::SmallVector<llvm::Function *> llvmCPFuncs;
for (size_t i = 0, e = cpVars.size(); i < e; ++i) {
llvmCPVars.push_back(moduleTranslation.lookupValue(cpVars[i]));
auto llvmFuncOp = SymbolTable::lookupNearestSymbolFrom<LLVM::LLVMFuncOp>(
singleOp, cast<SymbolRefAttr>((*cpFuncs)[i]));
llvmCPFuncs.push_back(
moduleTranslation.lookupFunction(llvmFuncOp.getName()));
}
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSingle(
ompLoc, bodyCB, finiCB, singleOp.getNowait(), llvmCPVars, llvmCPFuncs));
return bodyGenStatus;
}
// Convert an OpenMP Teams construct to LLVM IR using OpenMPIRBuilder
static LogicalResult
convertOmpTeams(omp::TeamsOp op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
LogicalResult bodyGenStatus = success();
if (!op.getAllocatorsVars().empty() || op.getReductions())
return op.emitError("unhandled clauses for translation to LLVM IR");
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
builder.restoreIP(codegenIP);
convertOmpOpRegions(op.getRegion(), "omp.teams.region", builder,
moduleTranslation, bodyGenStatus);
};
llvm::Value *numTeamsLower = nullptr;
if (Value numTeamsLowerVar = op.getNumTeamsLower())
numTeamsLower = moduleTranslation.lookupValue(numTeamsLowerVar);
llvm::Value *numTeamsUpper = nullptr;
if (Value numTeamsUpperVar = op.getNumTeamsUpper())
numTeamsUpper = moduleTranslation.lookupValue(numTeamsUpperVar);
llvm::Value *threadLimit = nullptr;
if (Value threadLimitVar = op.getThreadLimit())
threadLimit = moduleTranslation.lookupValue(threadLimitVar);
llvm::Value *ifExpr = nullptr;
if (Value ifExprVar = op.getIfExpr())
ifExpr = moduleTranslation.lookupValue(ifExprVar);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTeams(
ompLoc, bodyCB, numTeamsLower, numTeamsUpper, threadLimit, ifExpr));
return bodyGenStatus;
}
static void
buildDependData(std::optional<ArrayAttr> depends, OperandRange dependVars,
LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<llvm::OpenMPIRBuilder::DependData> &dds) {
if (dependVars.empty())
return;
for (auto dep : llvm::zip(dependVars, depends->getValue())) {
llvm::omp::RTLDependenceKindTy type;
switch (
cast<mlir::omp::ClauseTaskDependAttr>(std::get<1>(dep)).getValue()) {
case mlir::omp::ClauseTaskDepend::taskdependin:
type = llvm::omp::RTLDependenceKindTy::DepIn;
break;
// The OpenMP runtime requires that the codegen for 'depend' clause for
// 'out' dependency kind must be the same as codegen for 'depend' clause
// with 'inout' dependency.
case mlir::omp::ClauseTaskDepend::taskdependout:
case mlir::omp::ClauseTaskDepend::taskdependinout:
type = llvm::omp::RTLDependenceKindTy::DepInOut;
break;
};
llvm::Value *depVal = moduleTranslation.lookupValue(std::get<0>(dep));
llvm::OpenMPIRBuilder::DependData dd(type, depVal->getType(), depVal);
dds.emplace_back(dd);
}
}
/// Converts an OpenMP task construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpTaskOp(omp::TaskOp taskOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
LogicalResult bodyGenStatus = success();
if (taskOp.getUntiedAttr() || taskOp.getMergeableAttr() ||
taskOp.getInReductions() || taskOp.getPriority() ||
!taskOp.getAllocateVars().empty()) {
return taskOp.emitError("unhandled clauses for translation to LLVM IR");
}
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
// Save the alloca insertion point on ModuleTranslation stack for use in
// nested regions.
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
builder.restoreIP(codegenIP);
convertOmpOpRegions(taskOp.getRegion(), "omp.task.region", builder,
moduleTranslation, bodyGenStatus);
};
SmallVector<llvm::OpenMPIRBuilder::DependData> dds;
buildDependData(taskOp.getDepends(), taskOp.getDependVars(),
moduleTranslation, dds);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTask(
ompLoc, allocaIP, bodyCB, !taskOp.getUntied(),
moduleTranslation.lookupValue(taskOp.getFinalExpr()),
moduleTranslation.lookupValue(taskOp.getIfExpr()), dds));
return bodyGenStatus;
}
/// Converts an OpenMP taskgroup construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpTaskgroupOp(omp::TaskgroupOp tgOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
LogicalResult bodyGenStatus = success();
if (!tgOp.getTaskReductionVars().empty() || !tgOp.getAllocateVars().empty()) {
return tgOp.emitError("unhandled clauses for translation to LLVM IR");
}
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
builder.restoreIP(codegenIP);
convertOmpOpRegions(tgOp.getRegion(), "omp.taskgroup.region", builder,
moduleTranslation, bodyGenStatus);
};
InsertPointTy allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTaskgroup(
ompLoc, allocaIP, bodyCB));
return bodyGenStatus;
}
/// Converts an OpenMP workshare loop into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpWsloop(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto wsloopOp = cast<omp::WsloopOp>(opInst);
// FIXME: Here any other nested wrappers (e.g. omp.simd) are skipped, so
// codegen for composite constructs like 'DO/FOR SIMD' will be the same as for
// 'DO/FOR'.
auto loopOp = cast<omp::LoopNestOp>(wsloopOp.getWrappedLoop());
llvm::ArrayRef<bool> isByRef = getIsByRef(wsloopOp.getReductionVarsByref());
assert(isByRef.size() == wsloopOp.getNumReductionVars());
// Static is the default.
auto schedule =
wsloopOp.getScheduleVal().value_or(omp::ClauseScheduleKind::Static);
// Find the loop configuration.
llvm::Value *step = moduleTranslation.lookupValue(loopOp.getStep()[0]);
llvm::Type *ivType = step->getType();
llvm::Value *chunk = nullptr;
if (wsloopOp.getScheduleChunkVar()) {
llvm::Value *chunkVar =
moduleTranslation.lookupValue(wsloopOp.getScheduleChunkVar());
chunk = builder.CreateSExtOrTrunc(chunkVar, ivType);
}
SmallVector<omp::DeclareReductionOp> reductionDecls;
collectReductionDecls(wsloopOp, reductionDecls);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
SmallVector<llvm::Value *> privateReductionVariables(
wsloopOp.getNumReductionVars());
DenseMap<Value, llvm::Value *> reductionVariableMap;
MutableArrayRef<BlockArgument> reductionArgs =
wsloopOp.getRegion().getArguments();
if (failed(allocAndInitializeReductionVars(
wsloopOp, reductionArgs, builder, moduleTranslation, allocaIP,
reductionDecls, privateReductionVariables, reductionVariableMap,
isByRef)))
return failure();
// Store the mapping between reduction variables and their private copies on
// ModuleTranslation stack. It can be then recovered when translating
// omp.reduce operations in a separate call.
LLVM::ModuleTranslation::SaveStack<OpenMPVarMappingStackFrame> mappingGuard(
moduleTranslation, reductionVariableMap);
// Set up the source location value for OpenMP runtime.
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
// Generator of the canonical loop body.
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
LogicalResult bodyGenStatus = success();
auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
// Make sure further conversions know about the induction variable.
moduleTranslation.mapValue(
loopOp.getRegion().front().getArgument(loopInfos.size()), iv);
// Capture the body insertion point for use in nested loops. BodyIP of the
// CanonicalLoopInfo always points to the beginning of the entry block of
// the body.
bodyInsertPoints.push_back(ip);
if (loopInfos.size() != loopOp.getNumLoops() - 1)
return;
// Convert the body of the loop.
builder.restoreIP(ip);
convertOmpOpRegions(loopOp.getRegion(), "omp.wsloop.region", builder,
moduleTranslation, bodyGenStatus);
};
// Delegate actual loop construction to the OpenMP IRBuilder.
// TODO: this currently assumes omp.loop_nest is semantically similar to SCF
// loop, i.e. it has a positive step, uses signed integer semantics.
// Reconsider this code when the nested loop operation clearly supports more
// cases.
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
for (unsigned i = 0, e = loopOp.getNumLoops(); i < e; ++i) {
llvm::Value *lowerBound =
moduleTranslation.lookupValue(loopOp.getLowerBound()[i]);
llvm::Value *upperBound =
moduleTranslation.lookupValue(loopOp.getUpperBound()[i]);
llvm::Value *step = moduleTranslation.lookupValue(loopOp.getStep()[i]);
// Make sure loop trip count are emitted in the preheader of the outermost
// loop at the latest so that they are all available for the new collapsed
// loop will be created below.
llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
if (i != 0) {
loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back());
computeIP = loopInfos.front()->getPreheaderIP();
}
loopInfos.push_back(ompBuilder->createCanonicalLoop(
loc, bodyGen, lowerBound, upperBound, step,
/*IsSigned=*/true, loopOp.getInclusive(), computeIP));
if (failed(bodyGenStatus))
return failure();
}
// Collapse loops. Store the insertion point because LoopInfos may get
// invalidated.
llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP();
llvm::CanonicalLoopInfo *loopInfo =
ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
// TODO: Handle doacross loops when the ordered clause has a parameter.
bool isOrdered = wsloopOp.getOrderedVal().has_value();
std::optional<omp::ScheduleModifier> scheduleModifier =
wsloopOp.getScheduleModifier();
bool isSimd = wsloopOp.getSimdModifier();
ompBuilder->applyWorkshareLoop(
ompLoc.DL, loopInfo, allocaIP, !wsloopOp.getNowait(),
convertToScheduleKind(schedule), chunk, isSimd,
scheduleModifier == omp::ScheduleModifier::monotonic,
scheduleModifier == omp::ScheduleModifier::nonmonotonic, isOrdered);
// Continue building IR after the loop. Note that the LoopInfo returned by
// `collapseLoops` points inside the outermost loop and is intended for
// potential further loop transformations. Use the insertion point stored
// before collapsing loops instead.
builder.restoreIP(afterIP);
// Process the reductions if required.
return createReductionsAndCleanup(wsloopOp, builder, moduleTranslation,
allocaIP, reductionDecls,
privateReductionVariables, isByRef);
}
/// A RAII class that on construction replaces the region arguments of the
/// parallel op (which correspond to private variables) with the actual private
/// variables they correspond to. This prepares the parallel op so that it
/// matches what is expected by the OMPIRBuilder.
///
/// On destruction, it restores the original state of the operation so that on
/// the MLIR side, the op is not affected by conversion to LLVM IR.
class OmpParallelOpConversionManager {
public:
OmpParallelOpConversionManager(omp::ParallelOp opInst)
: region(opInst.getRegion()), privateVars(opInst.getPrivateVars()),
privateArgBeginIdx(opInst.getNumReductionVars()),
privateArgEndIdx(privateArgBeginIdx + privateVars.size()) {
auto privateVarsIt = privateVars.begin();
for (size_t argIdx = privateArgBeginIdx; argIdx < privateArgEndIdx;
++argIdx, ++privateVarsIt)
mlir::replaceAllUsesInRegionWith(region.getArgument(argIdx),
*privateVarsIt, region);
}
~OmpParallelOpConversionManager() {
auto privateVarsIt = privateVars.begin();
for (size_t argIdx = privateArgBeginIdx; argIdx < privateArgEndIdx;
++argIdx, ++privateVarsIt)
mlir::replaceAllUsesInRegionWith(*privateVarsIt,
region.getArgument(argIdx), region);
}
private:
Region ®ion;
OperandRange privateVars;
unsigned privateArgBeginIdx;
unsigned privateArgEndIdx;
};
/// Converts the OpenMP parallel operation to LLVM IR.
static LogicalResult
convertOmpParallel(omp::ParallelOp opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
OmpParallelOpConversionManager raii(opInst);
ArrayRef<bool> isByRef = getIsByRef(opInst.getReductionVarsByref());
assert(isByRef.size() == opInst.getNumReductionVars());
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// Collect reduction declarations
SmallVector<omp::DeclareReductionOp> reductionDecls;
collectReductionDecls(opInst, reductionDecls);
SmallVector<llvm::Value *> privateReductionVariables(
opInst.getNumReductionVars());
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// Allocate reduction vars
DenseMap<Value, llvm::Value *> reductionVariableMap;
MutableArrayRef<BlockArgument> reductionArgs =
opInst.getRegion().getArguments().slice(
opInst.getNumAllocateVars() + opInst.getNumAllocatorsVars(),
opInst.getNumReductionVars());
allocByValReductionVars(opInst, reductionArgs, builder, moduleTranslation,
allocaIP, reductionDecls, privateReductionVariables,
reductionVariableMap, isByRef);
// Initialize reduction vars
builder.restoreIP(allocaIP);
llvm::BasicBlock *initBlock = splitBB(builder, true, "omp.reduction.init");
allocaIP =
InsertPointTy(allocaIP.getBlock(),
allocaIP.getBlock()->getTerminator()->getIterator());
SmallVector<llvm::Value *> byRefVars(opInst.getNumReductionVars());
for (unsigned i = 0; i < opInst.getNumReductionVars(); ++i) {
if (isByRef[i]) {
// Allocate reduction variable (which is a pointer to the real reduciton
// variable allocated in the inlined region)
byRefVars[i] = builder.CreateAlloca(
moduleTranslation.convertType(reductionDecls[i].getType()));
}
}
builder.SetInsertPoint(initBlock->getFirstNonPHIOrDbgOrAlloca());
for (unsigned i = 0; i < opInst.getNumReductionVars(); ++i) {
SmallVector<llvm::Value *> phis;
// map the block argument
mapInitializationArg(opInst, moduleTranslation, reductionDecls, i);
if (failed(inlineConvertOmpRegions(
reductionDecls[i].getInitializerRegion(), "omp.reduction.neutral",
builder, moduleTranslation, &phis)))
bodyGenStatus = failure();
assert(phis.size() == 1 &&
"expected one value to be yielded from the "
"reduction neutral element declaration region");
// mapInitializationArg finishes its block with a terminator. We need to
// insert before that terminator.
builder.SetInsertPoint(builder.GetInsertBlock()->getTerminator());
if (isByRef[i]) {
// Store the result of the inlined region to the allocated reduction var
// ptr
builder.CreateStore(phis[0], byRefVars[i]);
privateReductionVariables[i] = byRefVars[i];
moduleTranslation.mapValue(reductionArgs[i], phis[0]);
reductionVariableMap.try_emplace(opInst.getReductionVars()[i], phis[0]);
} else {
// for by-ref case the store is inside of the reduction init region
builder.CreateStore(phis[0], privateReductionVariables[i]);
// the rest is done in allocByValReductionVars
}
// clear block argument mapping in case it needs to be re-created with a
// different source for another use of the same reduction decl
moduleTranslation.forgetMapping(reductionDecls[i].getInitializerRegion());
}
// Store the mapping between reduction variables and their private copies on
// ModuleTranslation stack. It can be then recovered when translating
// omp.reduce operations in a separate call.
LLVM::ModuleTranslation::SaveStack<OpenMPVarMappingStackFrame> mappingGuard(
moduleTranslation, reductionVariableMap);
// Save the alloca insertion point on ModuleTranslation stack for use in
// nested regions.
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
// ParallelOp has only one region associated with it.
builder.restoreIP(codeGenIP);
auto regionBlock =
convertOmpOpRegions(opInst.getRegion(), "omp.par.region", builder,
moduleTranslation, bodyGenStatus);
// Process the reductions if required.
if (opInst.getNumReductionVars() > 0) {
// Collect reduction info
SmallVector<OwningReductionGen> owningReductionGens;
SmallVector<OwningAtomicReductionGen> owningAtomicReductionGens;
SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> reductionInfos;
collectReductionInfo(opInst, builder, moduleTranslation, reductionDecls,
owningReductionGens, owningAtomicReductionGens,
privateReductionVariables, reductionInfos);
// Move to region cont block
builder.SetInsertPoint(regionBlock->getTerminator());
// Generate reductions from info
llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable();
builder.SetInsertPoint(tempTerminator);
llvm::OpenMPIRBuilder::InsertPointTy contInsertPoint =
ompBuilder->createReductions(builder.saveIP(), allocaIP,
reductionInfos, isByRef, false);
if (!contInsertPoint.getBlock()) {
bodyGenStatus = opInst->emitOpError() << "failed to convert reductions";
return;
}
tempTerminator->eraseFromParent();
builder.restoreIP(contInsertPoint);
}
};
SmallVector<omp::PrivateClauseOp> privatizerClones;
SmallVector<llvm::Value *> privateVariables;
// TODO: Perform appropriate actions according to the data-sharing
// attribute (shared, private, firstprivate, ...) of variables.
// Currently shared and private are supported.
auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
llvm::Value &, llvm::Value &vPtr,
llvm::Value *&replacementValue) -> InsertPointTy {
replacementValue = &vPtr;
// If this is a private value, this lambda will return the corresponding
// mlir value and its `PrivateClauseOp`. Otherwise, empty values are
// returned.
auto [privVar, privatizerClone] =
[&]() -> std::pair<mlir::Value, omp::PrivateClauseOp> {
if (!opInst.getPrivateVars().empty()) {
auto privVars = opInst.getPrivateVars();
auto privatizers = opInst.getPrivatizers();
for (auto [privVar, privatizerAttr] :
llvm::zip_equal(privVars, *privatizers)) {
// Find the MLIR private variable corresponding to the LLVM value
// being privatized.
llvm::Value *llvmPrivVar = moduleTranslation.lookupValue(privVar);
if (llvmPrivVar != &vPtr)
continue;
SymbolRefAttr privSym = llvm::cast<SymbolRefAttr>(privatizerAttr);
omp::PrivateClauseOp privatizer =
SymbolTable::lookupNearestSymbolFrom<omp::PrivateClauseOp>(
opInst, privSym);
// Clone the privatizer in case it is used by more than one parallel
// region. The privatizer is processed in-place (see below) before it
// gets inlined in the parallel region and therefore processing the
// original op is dangerous.
MLIRContext &context = moduleTranslation.getContext();
mlir::IRRewriter opCloner(&context);
opCloner.setInsertionPoint(privatizer);
auto clone = llvm::cast<mlir::omp::PrivateClauseOp>(
opCloner.clone(*privatizer));
// Unique the clone name to avoid clashes in the symbol table.
unsigned counter = 0;
SmallString<256> cloneName = SymbolTable::generateSymbolName<256>(
privatizer.getSymName(),
[&](llvm::StringRef candidate) {
return SymbolTable::lookupNearestSymbolFrom(
opInst, StringAttr::get(&context, candidate)) !=
nullptr;
},
counter);
clone.setSymName(cloneName);
return {privVar, clone};
}
}
return {mlir::Value(), omp::PrivateClauseOp()};
}();
if (privVar) {
Region &allocRegion = privatizerClone.getAllocRegion();
// If this is a `firstprivate` clause, prepare the `omp.private` op by:
if (privatizerClone.getDataSharingType() ==
omp::DataSharingClauseType::FirstPrivate) {
auto oldAllocBackBlock = std::prev(allocRegion.end());
omp::YieldOp oldAllocYieldOp =
llvm::cast<omp::YieldOp>(oldAllocBackBlock->getTerminator());
Region ©Region = privatizerClone.getCopyRegion();
mlir::IRRewriter copyCloneBuilder(&moduleTranslation.getContext());
// 1. Cloning the `copy` region to the end of the `alloc` region.
copyCloneBuilder.cloneRegionBefore(copyRegion, allocRegion,
allocRegion.end());
auto newCopyRegionFrontBlock = std::next(oldAllocBackBlock);
// 2. Merging the last `alloc` block with the first block in the `copy`
// region clone.
// 3. Re-mapping the first argument of the `copy` region to be the
// argument of the `alloc` region and the second argument of the `copy`
// region to be the yielded value of the `alloc` region (this is the
// private clone of the privatized value).
copyCloneBuilder.mergeBlocks(
&*newCopyRegionFrontBlock, &*oldAllocBackBlock,
{allocRegion.getArgument(0), oldAllocYieldOp.getOperand(0)});
// 4. The old terminator of the `alloc` region is not needed anymore, so
// delete it.
oldAllocYieldOp.erase();
}
// Replace the privatizer block argument with mlir value being privatized.
// This way, the body of the privatizer will be changed from using the
// region/block argument to the value being privatized.
auto allocRegionArg = allocRegion.getArgument(0);
replaceAllUsesInRegionWith(allocRegionArg, privVar, allocRegion);
auto oldIP = builder.saveIP();
builder.restoreIP(allocaIP);
SmallVector<llvm::Value *, 1> yieldedValues;
if (failed(inlineConvertOmpRegions(allocRegion, "omp.privatizer", builder,
moduleTranslation, &yieldedValues))) {
opInst.emitError("failed to inline `alloc` region of an `omp.private` "
"op in the parallel region");
bodyGenStatus = failure();
privatizerClone.erase();
} else {
assert(yieldedValues.size() == 1);
replacementValue = yieldedValues.front();
// Keep the LLVM replacement value and the op clone in case we need to
// emit cleanup (i.e. deallocation) logic.
privateVariables.push_back(replacementValue);
privatizerClones.push_back(privatizerClone);
}
builder.restoreIP(oldIP);
}
return codeGenIP;
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {
InsertPointTy oldIP = builder.saveIP();
builder.restoreIP(codeGenIP);
// if the reduction has a cleanup region, inline it here to finalize the
// reduction variables
SmallVector<Region *> reductionCleanupRegions;
llvm::transform(reductionDecls, std::back_inserter(reductionCleanupRegions),
[](omp::DeclareReductionOp reductionDecl) {
return &reductionDecl.getCleanupRegion();
});
if (failed(inlineOmpRegionCleanup(
reductionCleanupRegions, privateReductionVariables,
moduleTranslation, builder, "omp.reduction.cleanup")))
bodyGenStatus = failure();
SmallVector<Region *> privateCleanupRegions;
llvm::transform(privatizerClones, std::back_inserter(privateCleanupRegions),
[](omp::PrivateClauseOp privatizer) {
return &privatizer.getDeallocRegion();
});
if (failed(inlineOmpRegionCleanup(
privateCleanupRegions, privateVariables, moduleTranslation, builder,
"omp.private.dealloc", /*shouldLoadCleanupRegionArg=*/false)))
bodyGenStatus = failure();
builder.restoreIP(oldIP);
};
llvm::Value *ifCond = nullptr;
if (auto ifExprVar = opInst.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifExprVar);
llvm::Value *numThreads = nullptr;
if (auto numThreadsVar = opInst.getNumThreadsVar())
numThreads = moduleTranslation.lookupValue(numThreadsVar);
auto pbKind = llvm::omp::OMP_PROC_BIND_default;
if (auto bind = opInst.getProcBindVal())
pbKind = getProcBindKind(*bind);
// TODO: Is the Parallel construct cancellable?
bool isCancellable = false;
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(
ompBuilder->createParallel(ompLoc, allocaIP, bodyGenCB, privCB, finiCB,
ifCond, numThreads, pbKind, isCancellable));
for (mlir::omp::PrivateClauseOp privatizerClone : privatizerClones)
privatizerClone.erase();
return bodyGenStatus;
}
/// Convert Order attribute to llvm::omp::OrderKind.
static llvm::omp::OrderKind
convertOrderKind(std::optional<omp::ClauseOrderKind> o) {
if (!o)
return llvm::omp::OrderKind::OMP_ORDER_unknown;
switch (*o) {
case omp::ClauseOrderKind::Concurrent:
return llvm::omp::OrderKind::OMP_ORDER_concurrent;
}
llvm_unreachable("Unknown ClauseOrderKind kind");
}
/// Converts an OpenMP simd loop into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpSimd(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto simdOp = cast<omp::SimdOp>(opInst);
auto loopOp = cast<omp::LoopNestOp>(simdOp.getWrappedLoop());
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
// Generator of the canonical loop body.
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
LogicalResult bodyGenStatus = success();
auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
// Make sure further conversions know about the induction variable.
moduleTranslation.mapValue(
loopOp.getRegion().front().getArgument(loopInfos.size()), iv);
// Capture the body insertion point for use in nested loops. BodyIP of the
// CanonicalLoopInfo always points to the beginning of the entry block of
// the body.
bodyInsertPoints.push_back(ip);
if (loopInfos.size() != loopOp.getNumLoops() - 1)
return;
// Convert the body of the loop.
builder.restoreIP(ip);
convertOmpOpRegions(loopOp.getRegion(), "omp.simd.region", builder,
moduleTranslation, bodyGenStatus);
};
// Delegate actual loop construction to the OpenMP IRBuilder.
// TODO: this currently assumes omp.loop_nest is semantically similar to SCF
// loop, i.e. it has a positive step, uses signed integer semantics.
// Reconsider this code when the nested loop operation clearly supports more
// cases.
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
for (unsigned i = 0, e = loopOp.getNumLoops(); i < e; ++i) {
llvm::Value *lowerBound =
moduleTranslation.lookupValue(loopOp.getLowerBound()[i]);
llvm::Value *upperBound =
moduleTranslation.lookupValue(loopOp.getUpperBound()[i]);
llvm::Value *step = moduleTranslation.lookupValue(loopOp.getStep()[i]);
// Make sure loop trip count are emitted in the preheader of the outermost
// loop at the latest so that they are all available for the new collapsed
// loop will be created below.
llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
if (i != 0) {
loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back(),
ompLoc.DL);
computeIP = loopInfos.front()->getPreheaderIP();
}
loopInfos.push_back(ompBuilder->createCanonicalLoop(
loc, bodyGen, lowerBound, upperBound, step,
/*IsSigned=*/true, /*Inclusive=*/true, computeIP));
if (failed(bodyGenStatus))
return failure();
}
// Collapse loops.
llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP();
llvm::CanonicalLoopInfo *loopInfo =
ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
llvm::ConstantInt *simdlen = nullptr;
if (std::optional<uint64_t> simdlenVar = simdOp.getSimdlen())
simdlen = builder.getInt64(simdlenVar.value());
llvm::ConstantInt *safelen = nullptr;
if (std::optional<uint64_t> safelenVar = simdOp.getSafelen())
safelen = builder.getInt64(safelenVar.value());
llvm::MapVector<llvm::Value *, llvm::Value *> alignedVars;
llvm::omp::OrderKind order = convertOrderKind(simdOp.getOrderVal());
ompBuilder->applySimd(loopInfo, alignedVars,
simdOp.getIfExpr()
? moduleTranslation.lookupValue(simdOp.getIfExpr())
: nullptr,
order, simdlen, safelen);
builder.restoreIP(afterIP);
return success();
}
/// Convert an Atomic Ordering attribute to llvm::AtomicOrdering.
static llvm::AtomicOrdering
convertAtomicOrdering(std::optional<omp::ClauseMemoryOrderKind> ao) {
if (!ao)
return llvm::AtomicOrdering::Monotonic; // Default Memory Ordering
switch (*ao) {
case omp::ClauseMemoryOrderKind::Seq_cst:
return llvm::AtomicOrdering::SequentiallyConsistent;
case omp::ClauseMemoryOrderKind::Acq_rel:
return llvm::AtomicOrdering::AcquireRelease;
case omp::ClauseMemoryOrderKind::Acquire:
return llvm::AtomicOrdering::Acquire;
case omp::ClauseMemoryOrderKind::Release:
return llvm::AtomicOrdering::Release;
case omp::ClauseMemoryOrderKind::Relaxed:
return llvm::AtomicOrdering::Monotonic;
}
llvm_unreachable("Unknown ClauseMemoryOrderKind kind");
}
/// Convert omp.atomic.read operation to LLVM IR.
static LogicalResult
convertOmpAtomicRead(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto readOp = cast<omp::AtomicReadOp>(opInst);
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::AtomicOrdering AO = convertAtomicOrdering(readOp.getMemoryOrderVal());
llvm::Value *x = moduleTranslation.lookupValue(readOp.getX());
llvm::Value *v = moduleTranslation.lookupValue(readOp.getV());
llvm::Type *elementType =
moduleTranslation.convertType(readOp.getElementType());
llvm::OpenMPIRBuilder::AtomicOpValue V = {v, elementType, false, false};
llvm::OpenMPIRBuilder::AtomicOpValue X = {x, elementType, false, false};
builder.restoreIP(ompBuilder->createAtomicRead(ompLoc, X, V, AO));
return success();
}
/// Converts an omp.atomic.write operation to LLVM IR.
static LogicalResult
convertOmpAtomicWrite(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto writeOp = cast<omp::AtomicWriteOp>(opInst);
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::AtomicOrdering ao = convertAtomicOrdering(writeOp.getMemoryOrderVal());
llvm::Value *expr = moduleTranslation.lookupValue(writeOp.getExpr());
llvm::Value *dest = moduleTranslation.lookupValue(writeOp.getX());
llvm::Type *ty = moduleTranslation.convertType(writeOp.getExpr().getType());
llvm::OpenMPIRBuilder::AtomicOpValue x = {dest, ty, /*isSigned=*/false,
/*isVolatile=*/false};
builder.restoreIP(ompBuilder->createAtomicWrite(ompLoc, x, expr, ao));
return success();
}
/// Converts an LLVM dialect binary operation to the corresponding enum value
/// for `atomicrmw` supported binary operation.
llvm::AtomicRMWInst::BinOp convertBinOpToAtomic(Operation &op) {
return llvm::TypeSwitch<Operation *, llvm::AtomicRMWInst::BinOp>(&op)
.Case([&](LLVM::AddOp) { return llvm::AtomicRMWInst::BinOp::Add; })
.Case([&](LLVM::SubOp) { return llvm::AtomicRMWInst::BinOp::Sub; })
.Case([&](LLVM::AndOp) { return llvm::AtomicRMWInst::BinOp::And; })
.Case([&](LLVM::OrOp) { return llvm::AtomicRMWInst::BinOp::Or; })
.Case([&](LLVM::XOrOp) { return llvm::AtomicRMWInst::BinOp::Xor; })
.Case([&](LLVM::UMaxOp) { return llvm::AtomicRMWInst::BinOp::UMax; })
.Case([&](LLVM::UMinOp) { return llvm::AtomicRMWInst::BinOp::UMin; })
.Case([&](LLVM::FAddOp) { return llvm::AtomicRMWInst::BinOp::FAdd; })
.Case([&](LLVM::FSubOp) { return llvm::AtomicRMWInst::BinOp::FSub; })
.Default(llvm::AtomicRMWInst::BinOp::BAD_BINOP);
}
/// Converts an OpenMP atomic update operation using OpenMPIRBuilder.
static LogicalResult
convertOmpAtomicUpdate(omp::AtomicUpdateOp &opInst,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// Convert values and types.
auto &innerOpList = opInst.getRegion().front().getOperations();
bool isXBinopExpr{false};
llvm::AtomicRMWInst::BinOp binop;
mlir::Value mlirExpr;
llvm::Value *llvmExpr = nullptr;
llvm::Value *llvmX = nullptr;
llvm::Type *llvmXElementType = nullptr;
if (innerOpList.size() == 2) {
// The two operations here are the update and the terminator.
// Since we can identify the update operation, there is a possibility
// that we can generate the atomicrmw instruction.
mlir::Operation &innerOp = *opInst.getRegion().front().begin();
if (!llvm::is_contained(innerOp.getOperands(),
opInst.getRegion().getArgument(0))) {
return opInst.emitError("no atomic update operation with region argument"
" as operand found inside atomic.update region");
}
binop = convertBinOpToAtomic(innerOp);
isXBinopExpr = innerOp.getOperand(0) == opInst.getRegion().getArgument(0);
mlirExpr = (isXBinopExpr ? innerOp.getOperand(1) : innerOp.getOperand(0));
llvmExpr = moduleTranslation.lookupValue(mlirExpr);
} else {
// Since the update region includes more than one operation
// we will resort to generating a cmpxchg loop.
binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
}
llvmX = moduleTranslation.lookupValue(opInst.getX());
llvmXElementType = moduleTranslation.convertType(
opInst.getRegion().getArgument(0).getType());
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::AtomicOrdering atomicOrdering =
convertAtomicOrdering(opInst.getMemoryOrderVal());
// Generate update code.
LogicalResult updateGenStatus = success();
auto updateFn = [&opInst, &moduleTranslation, &updateGenStatus](
llvm::Value *atomicx,
llvm::IRBuilder<> &builder) -> llvm::Value * {
Block &bb = *opInst.getRegion().begin();
moduleTranslation.mapValue(*opInst.getRegion().args_begin(), atomicx);
moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(bb, true, builder))) {
updateGenStatus = (opInst.emitError()
<< "unable to convert update operation to llvm IR");
return nullptr;
}
omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
assert(yieldop && yieldop.getResults().size() == 1 &&
"terminator must be omp.yield op and it must have exactly one "
"argument");
return moduleTranslation.lookupValue(yieldop.getResults()[0]);
};
// Handle ambiguous alloca, if any.
auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(ompBuilder->createAtomicUpdate(
ompLoc, allocaIP, llvmAtomicX, llvmExpr, atomicOrdering, binop, updateFn,
isXBinopExpr));
return updateGenStatus;
}
static LogicalResult
convertOmpAtomicCapture(omp::AtomicCaptureOp atomicCaptureOp,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
mlir::Value mlirExpr;
bool isXBinopExpr = false, isPostfixUpdate = false;
llvm::AtomicRMWInst::BinOp binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
omp::AtomicUpdateOp atomicUpdateOp = atomicCaptureOp.getAtomicUpdateOp();
omp::AtomicWriteOp atomicWriteOp = atomicCaptureOp.getAtomicWriteOp();
assert((atomicUpdateOp || atomicWriteOp) &&
"internal op must be an atomic.update or atomic.write op");
if (atomicWriteOp) {
isPostfixUpdate = true;
mlirExpr = atomicWriteOp.getExpr();
} else {
isPostfixUpdate = atomicCaptureOp.getSecondOp() ==
atomicCaptureOp.getAtomicUpdateOp().getOperation();
auto &innerOpList = atomicUpdateOp.getRegion().front().getOperations();
bool isRegionArgUsed{false};
// Find the binary update operation that uses the region argument
// and get the expression to update
for (Operation &innerOp : innerOpList) {
if (innerOp.getNumOperands() == 2) {
binop = convertBinOpToAtomic(innerOp);
if (!llvm::is_contained(innerOp.getOperands(),
atomicUpdateOp.getRegion().getArgument(0)))
continue;
isRegionArgUsed = true;
isXBinopExpr =
innerOp.getNumOperands() > 0 &&
innerOp.getOperand(0) == atomicUpdateOp.getRegion().getArgument(0);
mlirExpr =
(isXBinopExpr ? innerOp.getOperand(1) : innerOp.getOperand(0));
break;
}
}
if (!isRegionArgUsed)
return atomicUpdateOp.emitError(
"no atomic update operation with region argument"
" as operand found inside atomic.update region");
}
llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr);
llvm::Value *llvmX =
moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().getX());
llvm::Value *llvmV =
moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().getV());
llvm::Type *llvmXElementType = moduleTranslation.convertType(
atomicCaptureOp.getAtomicReadOp().getElementType());
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicV = {llvmV, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::AtomicOrdering atomicOrdering =
convertAtomicOrdering(atomicCaptureOp.getMemoryOrderVal());
LogicalResult updateGenStatus = success();
auto updateFn = [&](llvm::Value *atomicx,
llvm::IRBuilder<> &builder) -> llvm::Value * {
if (atomicWriteOp)
return moduleTranslation.lookupValue(atomicWriteOp.getExpr());
Block &bb = *atomicUpdateOp.getRegion().begin();
moduleTranslation.mapValue(*atomicUpdateOp.getRegion().args_begin(),
atomicx);
moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(bb, true, builder))) {
updateGenStatus = (atomicUpdateOp.emitError()
<< "unable to convert update operation to llvm IR");
return nullptr;
}
omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
assert(yieldop && yieldop.getResults().size() == 1 &&
"terminator must be omp.yield op and it must have exactly one "
"argument");
return moduleTranslation.lookupValue(yieldop.getResults()[0]);
};
// Handle ambiguous alloca, if any.
auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(ompBuilder->createAtomicCapture(
ompLoc, allocaIP, llvmAtomicX, llvmAtomicV, llvmExpr, atomicOrdering,
binop, updateFn, atomicUpdateOp, isPostfixUpdate, isXBinopExpr));
return updateGenStatus;
}
/// Converts an OpenMP Threadprivate operation into LLVM IR using
/// OpenMPIRBuilder.
static LogicalResult
convertOmpThreadprivate(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
auto threadprivateOp = cast<omp::ThreadprivateOp>(opInst);
Value symAddr = threadprivateOp.getSymAddr();
auto *symOp = symAddr.getDefiningOp();
if (!isa<LLVM::AddressOfOp>(symOp))
return opInst.emitError("Addressing symbol not found");
LLVM::AddressOfOp addressOfOp = dyn_cast<LLVM::AddressOfOp>(symOp);
LLVM::GlobalOp global =
addressOfOp.getGlobal(moduleTranslation.symbolTable());
llvm::GlobalValue *globalValue = moduleTranslation.lookupGlobal(global);
llvm::Type *type = globalValue->getValueType();
llvm::TypeSize typeSize =
builder.GetInsertBlock()->getModule()->getDataLayout().getTypeStoreSize(
type);
llvm::ConstantInt *size = builder.getInt64(typeSize.getFixedValue());
llvm::StringRef suffix = llvm::StringRef(".cache", 6);
std::string cacheName = (Twine(global.getSymName()).concat(suffix)).str();
llvm::Value *callInst =
moduleTranslation.getOpenMPBuilder()->createCachedThreadPrivate(
ompLoc, globalValue, size, cacheName);
moduleTranslation.mapValue(opInst.getResult(0), callInst);
return success();
}
static llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseKind
convertToDeviceClauseKind(mlir::omp::DeclareTargetDeviceType deviceClause) {
switch (deviceClause) {
case mlir::omp::DeclareTargetDeviceType::host:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseHost;
break;
case mlir::omp::DeclareTargetDeviceType::nohost:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseNoHost;
break;
case mlir::omp::DeclareTargetDeviceType::any:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseAny;
break;
}
llvm_unreachable("unhandled device clause");
}
static llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind
convertToCaptureClauseKind(
mlir::omp::DeclareTargetCaptureClause captureClasue) {
switch (captureClasue) {
case mlir::omp::DeclareTargetCaptureClause::to:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
case mlir::omp::DeclareTargetCaptureClause::link:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink;
case mlir::omp::DeclareTargetCaptureClause::enter:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter;
}
llvm_unreachable("unhandled capture clause");
}
static llvm::SmallString<64>
getDeclareTargetRefPtrSuffix(LLVM::GlobalOp globalOp,
llvm::OpenMPIRBuilder &ompBuilder) {
llvm::SmallString<64> suffix;
llvm::raw_svector_ostream os(suffix);
if (globalOp.getVisibility() == mlir::SymbolTable::Visibility::Private) {
auto loc = globalOp->getLoc()->findInstanceOf<FileLineColLoc>();
auto fileInfoCallBack = [&loc]() {
return std::pair<std::string, uint64_t>(
llvm::StringRef(loc.getFilename()), loc.getLine());
};
os << llvm::format(
"_%x", ompBuilder.getTargetEntryUniqueInfo(fileInfoCallBack).FileID);
}
os << "_decl_tgt_ref_ptr";
return suffix;
}
static bool isDeclareTargetLink(mlir::Value value) {
if (auto addressOfOp =
llvm::dyn_cast_if_present<LLVM::AddressOfOp>(value.getDefiningOp())) {
auto modOp = addressOfOp->getParentOfType<mlir::ModuleOp>();
Operation *gOp = modOp.lookupSymbol(addressOfOp.getGlobalName());
if (auto declareTargetGlobal =
llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(gOp))
if (declareTargetGlobal.getDeclareTargetCaptureClause() ==
mlir::omp::DeclareTargetCaptureClause::link)
return true;
}
return false;
}
// Returns the reference pointer generated by the lowering of the declare target
// operation in cases where the link clause is used or the to clause is used in
// USM mode.
static llvm::Value *
getRefPtrIfDeclareTarget(mlir::Value value,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// An easier way to do this may just be to keep track of any pointer
// references and their mapping to their respective operation
if (auto addressOfOp =
llvm::dyn_cast_if_present<LLVM::AddressOfOp>(value.getDefiningOp())) {
if (auto gOp = llvm::dyn_cast_or_null<LLVM::GlobalOp>(
addressOfOp->getParentOfType<mlir::ModuleOp>().lookupSymbol(
addressOfOp.getGlobalName()))) {
if (auto declareTargetGlobal =
llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(
gOp.getOperation())) {
// In this case, we must utilise the reference pointer generated by the
// declare target operation, similar to Clang
if ((declareTargetGlobal.getDeclareTargetCaptureClause() ==
mlir::omp::DeclareTargetCaptureClause::link) ||
(declareTargetGlobal.getDeclareTargetCaptureClause() ==
mlir::omp::DeclareTargetCaptureClause::to &&
ompBuilder->Config.hasRequiresUnifiedSharedMemory())) {
llvm::SmallString<64> suffix =
getDeclareTargetRefPtrSuffix(gOp, *ompBuilder);
if (gOp.getSymName().contains(suffix))
return moduleTranslation.getLLVMModule()->getNamedValue(
gOp.getSymName());
return moduleTranslation.getLLVMModule()->getNamedValue(
(gOp.getSymName().str() + suffix.str()).str());
}
}
}
}
return nullptr;
}
// A small helper structure to contain data gathered
// for map lowering and coalese it into one area and
// avoiding extra computations such as searches in the
// llvm module for lowered mapped variables or checking
// if something is declare target (and retrieving the
// value) more than neccessary.
struct MapInfoData : llvm::OpenMPIRBuilder::MapInfosTy {
llvm::SmallVector<bool, 4> IsDeclareTarget;
llvm::SmallVector<bool, 4> IsAMember;
llvm::SmallVector<mlir::Operation *, 4> MapClause;
llvm::SmallVector<llvm::Value *, 4> OriginalValue;
// Stripped off array/pointer to get the underlying
// element type
llvm::SmallVector<llvm::Type *, 4> BaseType;
/// Append arrays in \a CurInfo.
void append(MapInfoData &CurInfo) {
IsDeclareTarget.append(CurInfo.IsDeclareTarget.begin(),
CurInfo.IsDeclareTarget.end());
MapClause.append(CurInfo.MapClause.begin(), CurInfo.MapClause.end());
OriginalValue.append(CurInfo.OriginalValue.begin(),
CurInfo.OriginalValue.end());
BaseType.append(CurInfo.BaseType.begin(), CurInfo.BaseType.end());
llvm::OpenMPIRBuilder::MapInfosTy::append(CurInfo);
}
};
uint64_t getArrayElementSizeInBits(LLVM::LLVMArrayType arrTy, DataLayout &dl) {
if (auto nestedArrTy = llvm::dyn_cast_if_present<LLVM::LLVMArrayType>(
arrTy.getElementType()))
return getArrayElementSizeInBits(nestedArrTy, dl);
return dl.getTypeSizeInBits(arrTy.getElementType());
}
// This function calculates the size to be offloaded for a specified type, given
// its associated map clause (which can contain bounds information which affects
// the total size), this size is calculated based on the underlying element type
// e.g. given a 1-D array of ints, we will calculate the size from the integer
// type * number of elements in the array. This size can be used in other
// calculations but is ultimately used as an argument to the OpenMP runtimes
// kernel argument structure which is generated through the combinedInfo data
// structures.
// This function is somewhat equivalent to Clang's getExprTypeSize inside of
// CGOpenMPRuntime.cpp.
llvm::Value *getSizeInBytes(DataLayout &dl, const mlir::Type &type,
Operation *clauseOp, llvm::Value *basePointer,
llvm::Type *baseType, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (auto memberClause =
mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(clauseOp)) {
// This calculates the size to transfer based on bounds and the underlying
// element type, provided bounds have been specified (Fortran
// pointers/allocatables/target and arrays that have sections specified fall
// into this as well).
if (!memberClause.getBounds().empty()) {
llvm::Value *elementCount = builder.getInt64(1);
for (auto bounds : memberClause.getBounds()) {
if (auto boundOp = mlir::dyn_cast_if_present<mlir::omp::MapBoundsOp>(
bounds.getDefiningOp())) {
// The below calculation for the size to be mapped calculated from the
// map.info's bounds is: (elemCount * [UB - LB] + 1), later we
// multiply by the underlying element types byte size to get the full
// size to be offloaded based on the bounds
elementCount = builder.CreateMul(
elementCount,
builder.CreateAdd(
builder.CreateSub(
moduleTranslation.lookupValue(boundOp.getUpperBound()),
moduleTranslation.lookupValue(boundOp.getLowerBound())),
builder.getInt64(1)));
}
}
// utilising getTypeSizeInBits instead of getTypeSize as getTypeSize gives
// the size in inconsistent byte or bit format.
uint64_t underlyingTypeSzInBits = dl.getTypeSizeInBits(type);
if (auto arrTy = llvm::dyn_cast_if_present<LLVM::LLVMArrayType>(type))
underlyingTypeSzInBits = getArrayElementSizeInBits(arrTy, dl);
// The size in bytes x number of elements, the sizeInBytes stored is
// the underyling types size, e.g. if ptr<i32>, it'll be the i32's
// size, so we do some on the fly runtime math to get the size in
// bytes from the extent (ub - lb) * sizeInBytes. NOTE: This may need
// some adjustment for members with more complex types.
return builder.CreateMul(elementCount,
builder.getInt64(underlyingTypeSzInBits / 8));
}
}
return builder.getInt64(dl.getTypeSizeInBits(type) / 8);
}
void collectMapDataFromMapOperands(MapInfoData &mapData,
llvm::SmallVectorImpl<Value> &mapOperands,
LLVM::ModuleTranslation &moduleTranslation,
DataLayout &dl,
llvm::IRBuilderBase &builder) {
for (mlir::Value mapValue : mapOperands) {
if (auto mapOp = mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(
mapValue.getDefiningOp())) {
mlir::Value offloadPtr =
mapOp.getVarPtrPtr() ? mapOp.getVarPtrPtr() : mapOp.getVarPtr();
mapData.OriginalValue.push_back(
moduleTranslation.lookupValue(offloadPtr));
mapData.Pointers.push_back(mapData.OriginalValue.back());
if (llvm::Value *refPtr =
getRefPtrIfDeclareTarget(offloadPtr,
moduleTranslation)) { // declare target
mapData.IsDeclareTarget.push_back(true);
mapData.BasePointers.push_back(refPtr);
} else { // regular mapped variable
mapData.IsDeclareTarget.push_back(false);
mapData.BasePointers.push_back(mapData.OriginalValue.back());
}
mapData.BaseType.push_back(
moduleTranslation.convertType(mapOp.getVarType()));
mapData.Sizes.push_back(
getSizeInBytes(dl, mapOp.getVarType(), mapOp, mapData.Pointers.back(),
mapData.BaseType.back(), builder, moduleTranslation));
mapData.MapClause.push_back(mapOp.getOperation());
mapData.Types.push_back(
llvm::omp::OpenMPOffloadMappingFlags(mapOp.getMapType().value()));
mapData.Names.push_back(LLVM::createMappingInformation(
mapOp.getLoc(), *moduleTranslation.getOpenMPBuilder()));
mapData.DevicePointers.push_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
// Check if this is a member mapping and correctly assign that it is, if
// it is a member of a larger object.
// TODO: Need better handling of members, and distinguishing of members
// that are implicitly allocated on device vs explicitly passed in as
// arguments.
// TODO: May require some further additions to support nested record
// types, i.e. member maps that can have member maps.
mapData.IsAMember.push_back(false);
for (mlir::Value mapValue : mapOperands) {
if (auto map = mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(
mapValue.getDefiningOp())) {
for (auto member : map.getMembers()) {
if (member == mapOp) {
mapData.IsAMember.back() = true;
}
}
}
}
}
}
}
static int getMapDataMemberIdx(MapInfoData &mapData,
mlir::omp::MapInfoOp memberOp) {
auto *res = llvm::find(mapData.MapClause, memberOp);
assert(res != mapData.MapClause.end() &&
"MapInfoOp for member not found in MapData, cannot return index");
return std::distance(mapData.MapClause.begin(), res);
}
static mlir::omp::MapInfoOp
getFirstOrLastMappedMemberPtr(mlir::omp::MapInfoOp mapInfo, bool first) {
mlir::DenseIntElementsAttr indexAttr = mapInfo.getMembersIndexAttr();
// Only 1 member has been mapped, we can return it.
if (indexAttr.size() == 1)
if (auto mapOp = mlir::dyn_cast<mlir::omp::MapInfoOp>(
mapInfo.getMembers()[0].getDefiningOp()))
return mapOp;
llvm::ArrayRef<int64_t> shape = indexAttr.getShapedType().getShape();
llvm::SmallVector<size_t> indices(shape[0]);
std::iota(indices.begin(), indices.end(), 0);
llvm::sort(indices.begin(), indices.end(),
[&](const size_t a, const size_t b) {
auto indexValues = indexAttr.getValues<int32_t>();
for (int i = 0; i < shape[1]; ++i) {
int aIndex = indexValues[a * shape[1] + i];
int bIndex = indexValues[b * shape[1] + i];
if (aIndex == bIndex)
continue;
if (aIndex != -1 && bIndex == -1)
return false;
if (aIndex == -1 && bIndex != -1)
return true;
// A is earlier in the record type layout than B
if (aIndex < bIndex)
return first;
if (bIndex < aIndex)
return !first;
}
// Iterated the entire list and couldn't make a decision, all
// elements were likely the same. Return false, since the sort
// comparator should return false for equal elements.
return false;
});
return llvm::cast<mlir::omp::MapInfoOp>(
mapInfo.getMembers()[indices.front()].getDefiningOp());
}
/// This function calculates the array/pointer offset for map data provided
/// with bounds operations, e.g. when provided something like the following:
///
/// Fortran
/// map(tofrom: array(2:5, 3:2))
/// or
/// C++
/// map(tofrom: array[1:4][2:3])
/// We must calculate the initial pointer offset to pass across, this function
/// performs this using bounds.
///
/// NOTE: which while specified in row-major order it currently needs to be
/// flipped for Fortran's column order array allocation and access (as
/// opposed to C++'s row-major, hence the backwards processing where order is
/// important). This is likely important to keep in mind for the future when
/// we incorporate a C++ frontend, both frontends will need to agree on the
/// ordering of generated bounds operations (one may have to flip them) to
/// make the below lowering frontend agnostic. The offload size
/// calcualtion may also have to be adjusted for C++.
std::vector<llvm::Value *>
calculateBoundsOffset(LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder, bool isArrayTy,
mlir::OperandRange bounds) {
std::vector<llvm::Value *> idx;
// There's no bounds to calculate an offset from, we can safely
// ignore and return no indices.
if (bounds.empty())
return idx;
// If we have an array type, then we have its type so can treat it as a
// normal GEP instruction where the bounds operations are simply indexes
// into the array. We currently do reverse order of the bounds, which
// I believe leans more towards Fortran's column-major in memory.
if (isArrayTy) {
idx.push_back(builder.getInt64(0));
for (int i = bounds.size() - 1; i >= 0; --i) {
if (auto boundOp = mlir::dyn_cast_if_present<mlir::omp::MapBoundsOp>(
bounds[i].getDefiningOp())) {
idx.push_back(moduleTranslation.lookupValue(boundOp.getLowerBound()));
}
}
} else {
// If we do not have an array type, but we have bounds, then we're dealing
// with a pointer that's being treated like an array and we have the
// underlying type e.g. an i32, or f64 etc, e.g. a fortran descriptor base
// address (pointer pointing to the actual data) so we must caclulate the
// offset using a single index which the following two loops attempts to
// compute.
// Calculates the size offset we need to make per row e.g. first row or
// column only needs to be offset by one, but the next would have to be
// the previous row/column offset multiplied by the extent of current row.
//
// For example ([1][10][100]):
//
// - First row/column we move by 1 for each index increment
// - Second row/column we move by 1 (first row/column) * 10 (extent/size of
// current) for 10 for each index increment
// - Third row/column we would move by 10 (second row/column) *
// (extent/size of current) 100 for 1000 for each index increment
std::vector<llvm::Value *> dimensionIndexSizeOffset{builder.getInt64(1)};
for (size_t i = 1; i < bounds.size(); ++i) {
if (auto boundOp = mlir::dyn_cast_if_present<mlir::omp::MapBoundsOp>(
bounds[i].getDefiningOp())) {
dimensionIndexSizeOffset.push_back(builder.CreateMul(
moduleTranslation.lookupValue(boundOp.getExtent()),
dimensionIndexSizeOffset[i - 1]));
}
}
// Now that we have calculated how much we move by per index, we must
// multiply each lower bound offset in indexes by the size offset we
// have calculated in the previous and accumulate the results to get
// our final resulting offset.
for (int i = bounds.size() - 1; i >= 0; --i) {
if (auto boundOp = mlir::dyn_cast_if_present<mlir::omp::MapBoundsOp>(
bounds[i].getDefiningOp())) {
if (idx.empty())
idx.emplace_back(builder.CreateMul(
moduleTranslation.lookupValue(boundOp.getLowerBound()),
dimensionIndexSizeOffset[i]));
else
idx.back() = builder.CreateAdd(
idx.back(), builder.CreateMul(moduleTranslation.lookupValue(
boundOp.getLowerBound()),
dimensionIndexSizeOffset[i]));
}
}
}
return idx;
}
// This creates two insertions into the MapInfosTy data structure for the
// "parent" of a set of members, (usually a container e.g.
// class/structure/derived type) when subsequent members have also been
// explicitly mapped on the same map clause. Certain types, such as Fortran
// descriptors are mapped like this as well, however, the members are
// implicit as far as a user is concerned, but we must explicitly map them
// internally.
//
// This function also returns the memberOfFlag for this particular parent,
// which is utilised in subsequent member mappings (by modifying there map type
// with it) to indicate that a member is part of this parent and should be
// treated by the runtime as such. Important to achieve the correct mapping.
//
// This function borrows a lot from Clang's emitCombinedEntry function
// inside of CGOpenMPRuntime.cpp
static llvm::omp::OpenMPOffloadMappingFlags mapParentWithMembers(
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl,
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo, MapInfoData &mapData,
uint64_t mapDataIndex, bool isTargetParams) {
// Map the first segment of our structure
combinedInfo.Types.emplace_back(
isTargetParams
? llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM
: llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_NONE);
combinedInfo.DevicePointers.emplace_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
combinedInfo.Names.emplace_back(LLVM::createMappingInformation(
mapData.MapClause[mapDataIndex]->getLoc(), ompBuilder));
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIndex]);
// Calculate size of the parent object being mapped based on the
// addresses at runtime, highAddr - lowAddr = size. This of course
// doesn't factor in allocated data like pointers, hence the further
// processing of members specified by users, or in the case of
// Fortran pointers and allocatables, the mapping of the pointed to
// data by the descriptor (which itself, is a structure containing
// runtime information on the dynamically allocated data).
auto parentClause =
llvm::cast<mlir::omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
llvm::Value *lowAddr, *highAddr;
if (!parentClause.getPartialMap()) {
lowAddr = builder.CreatePointerCast(mapData.Pointers[mapDataIndex],
builder.getPtrTy());
highAddr = builder.CreatePointerCast(
builder.CreateConstGEP1_32(mapData.BaseType[mapDataIndex],
mapData.Pointers[mapDataIndex], 1),
builder.getPtrTy());
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIndex]);
} else {
auto mapOp =
mlir::dyn_cast<mlir::omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
int firstMemberIdx = getMapDataMemberIdx(
mapData, getFirstOrLastMappedMemberPtr(mapOp, true));
lowAddr = builder.CreatePointerCast(mapData.Pointers[firstMemberIdx],
builder.getPtrTy());
int lastMemberIdx = getMapDataMemberIdx(
mapData, getFirstOrLastMappedMemberPtr(mapOp, false));
highAddr = builder.CreatePointerCast(
builder.CreateGEP(mapData.BaseType[lastMemberIdx],
mapData.Pointers[lastMemberIdx], builder.getInt64(1)),
builder.getPtrTy());
combinedInfo.Pointers.emplace_back(mapData.Pointers[firstMemberIdx]);
}
llvm::Value *size = builder.CreateIntCast(
builder.CreatePtrDiff(builder.getInt8Ty(), highAddr, lowAddr),
builder.getInt64Ty(),
/*isSigned=*/false);
combinedInfo.Sizes.push_back(size);
// TODO: This will need to be expanded to include the whole host of logic for
// the map flags that Clang currently supports (e.g. it should take the map
// flag of the parent map flag, remove the OMP_MAP_TARGET_PARAM and do some
// further case specific flag modifications). For the moment, it handles what
// we support as expected.
llvm::omp::OpenMPOffloadMappingFlags mapFlag =
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO;
llvm::omp::OpenMPOffloadMappingFlags memberOfFlag =
ompBuilder.getMemberOfFlag(combinedInfo.BasePointers.size() - 1);
ompBuilder.setCorrectMemberOfFlag(mapFlag, memberOfFlag);
// This creates the initial MEMBER_OF mapping that consists of
// the parent/top level container (same as above effectively, except
// with a fixed initial compile time size and separate maptype which
// indicates the true mape type (tofrom etc.). This parent mapping is
// only relevant if the structure in its totality is being mapped,
// otherwise the above suffices.
if (!parentClause.getPartialMap()) {
combinedInfo.Types.emplace_back(mapFlag);
combinedInfo.DevicePointers.emplace_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
combinedInfo.Names.emplace_back(LLVM::createMappingInformation(
mapData.MapClause[mapDataIndex]->getLoc(), ompBuilder));
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIndex]);
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIndex]);
combinedInfo.Sizes.emplace_back(mapData.Sizes[mapDataIndex]);
}
return memberOfFlag;
}
// The intent is to verify if the mapped data being passed is a
// pointer -> pointee that requires special handling in certain cases,
// e.g. applying the OMP_MAP_PTR_AND_OBJ map type.
//
// There may be a better way to verify this, but unfortunately with
// opaque pointers we lose the ability to easily check if something is
// a pointer whilst maintaining access to the underlying type.
static bool checkIfPointerMap(mlir::omp::MapInfoOp mapOp) {
// If we have a varPtrPtr field assigned then the underlying type is a pointer
if (mapOp.getVarPtrPtr())
return true;
// If the map data is declare target with a link clause, then it's represented
// as a pointer when we lower it to LLVM-IR even if at the MLIR level it has
// no relation to pointers.
if (isDeclareTargetLink(mapOp.getVarPtr()))
return true;
return false;
}
// This function is intended to add explicit mappings of members
static void processMapMembersWithParent(
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl,
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo, MapInfoData &mapData,
uint64_t mapDataIndex, llvm::omp::OpenMPOffloadMappingFlags memberOfFlag) {
auto parentClause =
llvm::cast<mlir::omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
for (auto mappedMembers : parentClause.getMembers()) {
auto memberClause =
llvm::cast<mlir::omp::MapInfoOp>(mappedMembers.getDefiningOp());
int memberDataIdx = getMapDataMemberIdx(mapData, memberClause);
assert(memberDataIdx >= 0 && "could not find mapped member of structure");
// Same MemberOfFlag to indicate its link with parent and other members
// of.
auto mapFlag =
llvm::omp::OpenMPOffloadMappingFlags(memberClause.getMapType().value());
mapFlag &= ~llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF;
ompBuilder.setCorrectMemberOfFlag(mapFlag, memberOfFlag);
if (checkIfPointerMap(memberClause))
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
combinedInfo.Types.emplace_back(mapFlag);
combinedInfo.DevicePointers.emplace_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
combinedInfo.Names.emplace_back(
LLVM::createMappingInformation(memberClause.getLoc(), ompBuilder));
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIndex]);
combinedInfo.Pointers.emplace_back(mapData.Pointers[memberDataIdx]);
combinedInfo.Sizes.emplace_back(mapData.Sizes[memberDataIdx]);
}
}
static void
processIndividualMap(MapInfoData &mapData, size_t mapDataIdx,
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo,
bool isTargetParams, int mapDataParentIdx = -1) {
// Declare Target Mappings are excluded from being marked as
// OMP_MAP_TARGET_PARAM as they are not passed as parameters, they're
// marked with OMP_MAP_PTR_AND_OBJ instead.
auto mapFlag = mapData.Types[mapDataIdx];
auto mapInfoOp =
llvm::cast<mlir::omp::MapInfoOp>(mapData.MapClause[mapDataIdx]);
bool isPtrTy = checkIfPointerMap(mapInfoOp);
if (isPtrTy)
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
if (isTargetParams && !mapData.IsDeclareTarget[mapDataIdx])
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
if (mapInfoOp.getMapCaptureType().value() ==
mlir::omp::VariableCaptureKind::ByCopy &&
!isPtrTy)
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_LITERAL;
// if we're provided a mapDataParentIdx, then the data being mapped is
// part of a larger object (in a parent <-> member mapping) and in this
// case our BasePointer should be the parent.
if (mapDataParentIdx >= 0)
combinedInfo.BasePointers.emplace_back(
mapData.BasePointers[mapDataParentIdx]);
else
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIdx]);
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIdx]);
combinedInfo.DevicePointers.emplace_back(mapData.DevicePointers[mapDataIdx]);
combinedInfo.Names.emplace_back(mapData.Names[mapDataIdx]);
combinedInfo.Types.emplace_back(mapFlag);
combinedInfo.Sizes.emplace_back(mapData.Sizes[mapDataIdx]);
}
static void processMapWithMembersOf(
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl,
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo, MapInfoData &mapData,
uint64_t mapDataIndex, bool isTargetParams) {
auto parentClause =
llvm::cast<mlir::omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
// If we have a partial map (no parent referenced in the map clauses of the
// directive, only members) and only a single member, we do not need to bind
// the map of the member to the parent, we can pass the member separately.
if (parentClause.getMembers().size() == 1 && parentClause.getPartialMap()) {
auto memberClause = llvm::cast<mlir::omp::MapInfoOp>(
parentClause.getMembers()[0].getDefiningOp());
int memberDataIdx = getMapDataMemberIdx(mapData, memberClause);
// Note: Clang treats arrays with explicit bounds that fall into this
// category as a parent with map case, however, it seems this isn't a
// requirement, and processing them as an individual map is fine. So,
// we will handle them as individual maps for the moment, as it's
// difficult for us to check this as we always require bounds to be
// specified currently and it's also marginally more optimal (single
// map rather than two). The difference may come from the fact that
// Clang maps array without bounds as pointers (which we do not
// currently do), whereas we treat them as arrays in all cases
// currently.
processIndividualMap(mapData, memberDataIdx, combinedInfo, isTargetParams,
mapDataIndex);
return;
}
llvm::omp::OpenMPOffloadMappingFlags memberOfParentFlag =
mapParentWithMembers(moduleTranslation, builder, ompBuilder, dl,
combinedInfo, mapData, mapDataIndex, isTargetParams);
processMapMembersWithParent(moduleTranslation, builder, ompBuilder, dl,
combinedInfo, mapData, mapDataIndex,
memberOfParentFlag);
}
// This is a variation on Clang's GenerateOpenMPCapturedVars, which
// generates different operation (e.g. load/store) combinations for
// arguments to the kernel, based on map capture kinds which are then
// utilised in the combinedInfo in place of the original Map value.
static void
createAlteredByCaptureMap(MapInfoData &mapData,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder) {
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
// if it's declare target, skip it, it's handled separately.
if (!mapData.IsDeclareTarget[i]) {
auto mapOp =
mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(mapData.MapClause[i]);
mlir::omp::VariableCaptureKind captureKind =
mapOp.getMapCaptureType().value_or(
mlir::omp::VariableCaptureKind::ByRef);
bool isPtrTy = checkIfPointerMap(mapOp);
// Currently handles array sectioning lowerbound case, but more
// logic may be required in the future. Clang invokes EmitLValue,
// which has specialised logic for special Clang types such as user
// defines, so it is possible we will have to extend this for
// structures or other complex types. As the general idea is that this
// function mimics some of the logic from Clang that we require for
// kernel argument passing from host -> device.
switch (captureKind) {
case mlir::omp::VariableCaptureKind::ByRef: {
llvm::Value *newV = mapData.Pointers[i];
std::vector<llvm::Value *> offsetIdx = calculateBoundsOffset(
moduleTranslation, builder, mapData.BaseType[i]->isArrayTy(),
mapOp.getBounds());
if (isPtrTy)
newV = builder.CreateLoad(builder.getPtrTy(), newV);
if (!offsetIdx.empty())
newV = builder.CreateInBoundsGEP(mapData.BaseType[i], newV, offsetIdx,
"array_offset");
mapData.Pointers[i] = newV;
} break;
case mlir::omp::VariableCaptureKind::ByCopy: {
llvm::Type *type = mapData.BaseType[i];
llvm::Value *newV;
if (mapData.Pointers[i]->getType()->isPointerTy())
newV = builder.CreateLoad(type, mapData.Pointers[i]);
else
newV = mapData.Pointers[i];
if (!isPtrTy) {
auto curInsert = builder.saveIP();
builder.restoreIP(findAllocaInsertPoint(builder, moduleTranslation));
auto *memTempAlloc =
builder.CreateAlloca(builder.getPtrTy(), nullptr, ".casted");
builder.restoreIP(curInsert);
builder.CreateStore(newV, memTempAlloc);
newV = builder.CreateLoad(builder.getPtrTy(), memTempAlloc);
}
mapData.Pointers[i] = newV;
mapData.BasePointers[i] = newV;
} break;
case mlir::omp::VariableCaptureKind::This:
case mlir::omp::VariableCaptureKind::VLAType:
mapData.MapClause[i]->emitOpError("Unhandled capture kind");
break;
}
}
}
}
// Generate all map related information and fill the combinedInfo.
static void genMapInfos(llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
DataLayout &dl,
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo,
MapInfoData &mapData,
const SmallVector<Value> &devPtrOperands = {},
const SmallVector<Value> &devAddrOperands = {},
bool isTargetParams = false) {
// We wish to modify some of the methods in which arguments are
// passed based on their capture type by the target region, this can
// involve generating new loads and stores, which changes the
// MLIR value to LLVM value mapping, however, we only wish to do this
// locally for the current function/target and also avoid altering
// ModuleTranslation, so we remap the base pointer or pointer stored
// in the map infos corresponding MapInfoData, which is later accessed
// by genMapInfos and createTarget to help generate the kernel and
// kernel arg structure. It primarily becomes relevant in cases like
// bycopy, or byref range'd arrays. In the default case, we simply
// pass thee pointer byref as both basePointer and pointer.
if (!moduleTranslation.getOpenMPBuilder()->Config.isTargetDevice())
createAlteredByCaptureMap(mapData, moduleTranslation, builder);
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
auto fail = [&combinedInfo]() -> void {
combinedInfo.BasePointers.clear();
combinedInfo.Pointers.clear();
combinedInfo.DevicePointers.clear();
combinedInfo.Sizes.clear();
combinedInfo.Types.clear();
combinedInfo.Names.clear();
};
// We operate under the assumption that all vectors that are
// required in MapInfoData are of equal lengths (either filled with
// default constructed data or appropiate information) so we can
// utilise the size from any component of MapInfoData, if we can't
// something is missing from the initial MapInfoData construction.
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
// NOTE/TODO: We currently do not support arbitrary depth record
// type mapping.
if (mapData.IsAMember[i])
continue;
auto mapInfoOp = mlir::dyn_cast<mlir::omp::MapInfoOp>(mapData.MapClause[i]);
if (!mapInfoOp.getMembers().empty()) {
processMapWithMembersOf(moduleTranslation, builder, *ompBuilder, dl,
combinedInfo, mapData, i, isTargetParams);
continue;
}
processIndividualMap(mapData, i, combinedInfo, isTargetParams);
}
auto findMapInfo = [&combinedInfo](llvm::Value *val, unsigned &index) {
index = 0;
for (llvm::Value *basePtr : combinedInfo.BasePointers) {
if (basePtr == val)
return true;
index++;
}
return false;
};
auto addDevInfos = [&, fail](auto devOperands, auto devOpType) -> void {
for (const auto &devOp : devOperands) {
// TODO: Only LLVMPointerTypes are handled.
if (!isa<LLVM::LLVMPointerType>(devOp.getType()))
return fail();
llvm::Value *mapOpValue = moduleTranslation.lookupValue(devOp);
// Check if map info is already present for this entry.
unsigned infoIndex;
if (findMapInfo(mapOpValue, infoIndex)) {
combinedInfo.Types[infoIndex] |=
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM;
combinedInfo.DevicePointers[infoIndex] = devOpType;
} else {
combinedInfo.BasePointers.emplace_back(mapOpValue);
combinedInfo.Pointers.emplace_back(mapOpValue);
combinedInfo.DevicePointers.emplace_back(devOpType);
combinedInfo.Names.emplace_back(
LLVM::createMappingInformation(devOp.getLoc(), *ompBuilder));
combinedInfo.Types.emplace_back(
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM);
combinedInfo.Sizes.emplace_back(builder.getInt64(0));
}
}
};
addDevInfos(devPtrOperands, llvm::OpenMPIRBuilder::DeviceInfoTy::Pointer);
addDevInfos(devAddrOperands, llvm::OpenMPIRBuilder::DeviceInfoTy::Address);
}
static LogicalResult
convertOmpTargetData(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::Value *ifCond = nullptr;
int64_t deviceID = llvm::omp::OMP_DEVICEID_UNDEF;
SmallVector<Value> mapOperands;
SmallVector<Value> useDevPtrOperands;
SmallVector<Value> useDevAddrOperands;
llvm::omp::RuntimeFunction RTLFn;
DataLayout DL = DataLayout(op->getParentOfType<ModuleOp>());
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
LogicalResult result =
llvm::TypeSwitch<Operation *, LogicalResult>(op)
.Case([&](omp::TargetDataOp dataOp) {
if (auto ifExprVar = dataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifExprVar);
if (auto devId = dataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
mapOperands = dataOp.getMapOperands();
useDevPtrOperands = dataOp.getUseDevicePtr();
useDevAddrOperands = dataOp.getUseDeviceAddr();
return success();
})
.Case([&](omp::TargetEnterDataOp enterDataOp) {
if (enterDataOp.getNowait())
return (LogicalResult)(enterDataOp.emitError(
"`nowait` is not supported yet"));
if (auto ifExprVar = enterDataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifExprVar);
if (auto devId = enterDataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
RTLFn = llvm::omp::OMPRTL___tgt_target_data_begin_mapper;
mapOperands = enterDataOp.getMapOperands();
return success();
})
.Case([&](omp::TargetExitDataOp exitDataOp) {
if (exitDataOp.getNowait())
return (LogicalResult)(exitDataOp.emitError(
"`nowait` is not supported yet"));
if (auto ifExprVar = exitDataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifExprVar);
if (auto devId = exitDataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
RTLFn = llvm::omp::OMPRTL___tgt_target_data_end_mapper;
mapOperands = exitDataOp.getMapOperands();
return success();
})
.Case([&](omp::TargetUpdateOp updateDataOp) {
if (updateDataOp.getNowait())
return (LogicalResult)(updateDataOp.emitError(
"`nowait` is not supported yet"));
if (auto ifExprVar = updateDataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifExprVar);
if (auto devId = updateDataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
RTLFn = llvm::omp::OMPRTL___tgt_target_data_update_mapper;
mapOperands = updateDataOp.getMapOperands();
return success();
})
.Default([&](Operation *op) {
return op->emitError("unsupported OpenMP operation: ")
<< op->getName();
});
if (failed(result))
return failure();
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
MapInfoData mapData;
collectMapDataFromMapOperands(mapData, mapOperands, moduleTranslation, DL,
builder);
// Fill up the arrays with all the mapped variables.
llvm::OpenMPIRBuilder::MapInfosTy combinedInfo;
auto genMapInfoCB =
[&](InsertPointTy codeGenIP) -> llvm::OpenMPIRBuilder::MapInfosTy & {
builder.restoreIP(codeGenIP);
if (auto dataOp = dyn_cast<omp::TargetDataOp>(op)) {
genMapInfos(builder, moduleTranslation, DL, combinedInfo, mapData,
useDevPtrOperands, useDevAddrOperands);
} else {
genMapInfos(builder, moduleTranslation, DL, combinedInfo, mapData);
}
return combinedInfo;
};
llvm::OpenMPIRBuilder::TargetDataInfo info(/*RequiresDevicePointerInfo=*/true,
/*SeparateBeginEndCalls=*/true);
using BodyGenTy = llvm::OpenMPIRBuilder::BodyGenTy;
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy codeGenIP, BodyGenTy bodyGenType) {
assert(isa<omp::TargetDataOp>(op) &&
"BodyGen requested for non TargetDataOp");
Region ®ion = cast<omp::TargetDataOp>(op).getRegion();
switch (bodyGenType) {
case BodyGenTy::Priv:
// Check if any device ptr/addr info is available
if (!info.DevicePtrInfoMap.empty()) {
builder.restoreIP(codeGenIP);
unsigned argIndex = 0;
for (auto &devPtrOp : useDevPtrOperands) {
llvm::Value *mapOpValue = moduleTranslation.lookupValue(devPtrOp);
const auto &arg = region.front().getArgument(argIndex);
moduleTranslation.mapValue(arg,
info.DevicePtrInfoMap[mapOpValue].second);
argIndex++;
}
for (auto &devAddrOp : useDevAddrOperands) {
llvm::Value *mapOpValue = moduleTranslation.lookupValue(devAddrOp);
const auto &arg = region.front().getArgument(argIndex);
auto *LI = builder.CreateLoad(
builder.getPtrTy(), info.DevicePtrInfoMap[mapOpValue].second);
moduleTranslation.mapValue(arg, LI);
argIndex++;
}
bodyGenStatus = inlineConvertOmpRegions(region, "omp.data.region",
builder, moduleTranslation);
}
break;
case BodyGenTy::DupNoPriv:
break;
case BodyGenTy::NoPriv:
// If device info is available then region has already been generated
if (info.DevicePtrInfoMap.empty()) {
builder.restoreIP(codeGenIP);
bodyGenStatus = inlineConvertOmpRegions(region, "omp.data.region",
builder, moduleTranslation);
}
break;
}
return builder.saveIP();
};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
if (isa<omp::TargetDataOp>(op)) {
builder.restoreIP(ompBuilder->createTargetData(
ompLoc, allocaIP, builder.saveIP(), builder.getInt64(deviceID), ifCond,
info, genMapInfoCB, nullptr, bodyGenCB));
} else {
builder.restoreIP(ompBuilder->createTargetData(
ompLoc, allocaIP, builder.saveIP(), builder.getInt64(deviceID), ifCond,
info, genMapInfoCB, &RTLFn));
}
return bodyGenStatus;
}
/// Lowers the FlagsAttr which is applied to the module on the device
/// pass when offloading, this attribute contains OpenMP RTL globals that can
/// be passed as flags to the frontend, otherwise they are set to default
LogicalResult convertFlagsAttr(Operation *op, mlir::omp::FlagsAttr attribute,
LLVM::ModuleTranslation &moduleTranslation) {
if (!cast<mlir::ModuleOp>(op))
return failure();
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
ompBuilder->M.addModuleFlag(llvm::Module::Max, "openmp-device",
attribute.getOpenmpDeviceVersion());
if (attribute.getNoGpuLib())
return success();
ompBuilder->createGlobalFlag(
attribute.getDebugKind() /*LangOpts().OpenMPTargetDebug*/,
"__omp_rtl_debug_kind");
ompBuilder->createGlobalFlag(
attribute
.getAssumeTeamsOversubscription() /*LangOpts().OpenMPTeamSubscription*/
,
"__omp_rtl_assume_teams_oversubscription");
ompBuilder->createGlobalFlag(
attribute
.getAssumeThreadsOversubscription() /*LangOpts().OpenMPThreadSubscription*/
,
"__omp_rtl_assume_threads_oversubscription");
ompBuilder->createGlobalFlag(
attribute.getAssumeNoThreadState() /*LangOpts().OpenMPNoThreadState*/,
"__omp_rtl_assume_no_thread_state");
ompBuilder->createGlobalFlag(
attribute
.getAssumeNoNestedParallelism() /*LangOpts().OpenMPNoNestedParallelism*/
,
"__omp_rtl_assume_no_nested_parallelism");
return success();
}
static bool getTargetEntryUniqueInfo(llvm::TargetRegionEntryInfo &targetInfo,
omp::TargetOp targetOp,
llvm::StringRef parentName = "") {
auto fileLoc = targetOp.getLoc()->findInstanceOf<FileLineColLoc>();
assert(fileLoc && "No file found from location");
StringRef fileName = fileLoc.getFilename().getValue();
llvm::sys::fs::UniqueID id;
if (auto ec = llvm::sys::fs::getUniqueID(fileName, id)) {
targetOp.emitError("Unable to get unique ID for file");
return false;
}
uint64_t line = fileLoc.getLine();
targetInfo = llvm::TargetRegionEntryInfo(parentName, id.getDevice(),
id.getFile(), line);
return true;
}
static bool targetOpSupported(Operation &opInst) {
auto targetOp = cast<omp::TargetOp>(opInst);
if (targetOp.getIfExpr()) {
opInst.emitError("If clause not yet supported");
return false;
}
if (targetOp.getDevice()) {
opInst.emitError("Device clause not yet supported");
return false;
}
if (targetOp.getThreadLimit()) {
opInst.emitError("Thread limit clause not yet supported");
return false;
}
if (targetOp.getNowait()) {
opInst.emitError("Nowait clause not yet supported");
return false;
}
return true;
}
static void
handleDeclareTargetMapVar(MapInfoData &mapData,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder, llvm::Function *func) {
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
// In the case of declare target mapped variables, the basePointer is
// the reference pointer generated by the convertDeclareTargetAttr
// method. Whereas the kernelValue is the original variable, so for
// the device we must replace all uses of this original global variable
// (stored in kernelValue) with the reference pointer (stored in
// basePointer for declare target mapped variables), as for device the
// data is mapped into this reference pointer and should be loaded
// from it, the original variable is discarded. On host both exist and
// metadata is generated (elsewhere in the convertDeclareTargetAttr)
// function to link the two variables in the runtime and then both the
// reference pointer and the pointer are assigned in the kernel argument
// structure for the host.
if (mapData.IsDeclareTarget[i]) {
// If the original map value is a constant, then we have to make sure all
// of it's uses within the current kernel/function that we are going to
// rewrite are converted to instructions, as we will be altering the old
// use (OriginalValue) from a constant to an instruction, which will be
// illegal and ICE the compiler if the user is a constant expression of
// some kind e.g. a constant GEP.
if (auto *constant = dyn_cast<llvm::Constant>(mapData.OriginalValue[i]))
convertUsersOfConstantsToInstructions(constant, func, false);
// The users iterator will get invalidated if we modify an element,
// so we populate this vector of uses to alter each user on an
// individual basis to emit its own load (rather than one load for
// all).
llvm::SmallVector<llvm::User *> userVec;
for (llvm::User *user : mapData.OriginalValue[i]->users())
userVec.push_back(user);
for (llvm::User *user : userVec) {
if (auto *insn = dyn_cast<llvm::Instruction>(user)) {
if (insn->getFunction() == func) {
auto *load = builder.CreateLoad(mapData.BasePointers[i]->getType(),
mapData.BasePointers[i]);
load->moveBefore(insn);
user->replaceUsesOfWith(mapData.OriginalValue[i], load);
}
}
}
}
}
}
// The createDeviceArgumentAccessor function generates
// instructions for retrieving (acessing) kernel
// arguments inside of the device kernel for use by
// the kernel. This enables different semantics such as
// the creation of temporary copies of data allowing
// semantics like read-only/no host write back kernel
// arguments.
//
// This currently implements a very light version of Clang's
// EmitParmDecl's handling of direct argument handling as well
// as a portion of the argument access generation based on
// capture types found at the end of emitOutlinedFunctionPrologue
// in Clang. The indirect path handling of EmitParmDecl's may be
// required for future work, but a direct 1-to-1 copy doesn't seem
// possible as the logic is rather scattered throughout Clang's
// lowering and perhaps we wish to deviate slightly.
//
// \param mapData - A container containing vectors of information
// corresponding to the input argument, which should have a
// corresponding entry in the MapInfoData containers
// OrigialValue's.
// \param arg - This is the generated kernel function argument that
// corresponds to the passed in input argument. We generated different
// accesses of this Argument, based on capture type and other Input
// related information.
// \param input - This is the host side value that will be passed to
// the kernel i.e. the kernel input, we rewrite all uses of this within
// the kernel (as we generate the kernel body based on the target's region
// which maintians references to the original input) to the retVal argument
// apon exit of this function inside of the OMPIRBuilder. This interlinks
// the kernel argument to future uses of it in the function providing
// appropriate "glue" instructions inbetween.
// \param retVal - This is the value that all uses of input inside of the
// kernel will be re-written to, the goal of this function is to generate
// an appropriate location for the kernel argument to be accessed from,
// e.g. ByRef will result in a temporary allocation location and then
// a store of the kernel argument into this allocated memory which
// will then be loaded from, ByCopy will use the allocated memory
// directly.
static llvm::IRBuilderBase::InsertPoint
createDeviceArgumentAccessor(MapInfoData &mapData, llvm::Argument &arg,
llvm::Value *input, llvm::Value *&retVal,
llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase::InsertPoint allocaIP,
llvm::IRBuilderBase::InsertPoint codeGenIP) {
builder.restoreIP(allocaIP);
mlir::omp::VariableCaptureKind capture =
mlir::omp::VariableCaptureKind::ByRef;
// Find the associated MapInfoData entry for the current input
for (size_t i = 0; i < mapData.MapClause.size(); ++i)
if (mapData.OriginalValue[i] == input) {
if (auto mapOp = mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(
mapData.MapClause[i])) {
capture = mapOp.getMapCaptureType().value_or(
mlir::omp::VariableCaptureKind::ByRef);
}
break;
}
unsigned int allocaAS = ompBuilder.M.getDataLayout().getAllocaAddrSpace();
unsigned int defaultAS =
ompBuilder.M.getDataLayout().getProgramAddressSpace();
// Create the alloca for the argument the current point.
llvm::Value *v = builder.CreateAlloca(arg.getType(), allocaAS);
if (allocaAS != defaultAS && arg.getType()->isPointerTy())
v = builder.CreatePointerBitCastOrAddrSpaceCast(
v, arg.getType()->getPointerTo(defaultAS));
builder.CreateStore(&arg, v);
builder.restoreIP(codeGenIP);
switch (capture) {
case mlir::omp::VariableCaptureKind::ByCopy: {
retVal = v;
break;
}
case mlir::omp::VariableCaptureKind::ByRef: {
retVal = builder.CreateAlignedLoad(
v->getType(), v,
ompBuilder.M.getDataLayout().getPrefTypeAlign(v->getType()));
break;
}
case mlir::omp::VariableCaptureKind::This:
case mlir::omp::VariableCaptureKind::VLAType:
assert(false && "Currently unsupported capture kind");
break;
}
return builder.saveIP();
}
static LogicalResult
convertOmpTarget(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (!targetOpSupported(opInst))
return failure();
auto parentFn = opInst.getParentOfType<LLVM::LLVMFuncOp>();
auto targetOp = cast<omp::TargetOp>(opInst);
auto &targetRegion = targetOp.getRegion();
DataLayout dl = DataLayout(opInst.getParentOfType<ModuleOp>());
SmallVector<Value> mapOperands = targetOp.getMapOperands();
llvm::Function *llvmOutlinedFn = nullptr;
LogicalResult bodyGenStatus = success();
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto bodyCB = [&](InsertPointTy allocaIP,
InsertPointTy codeGenIP) -> InsertPointTy {
// Forward target-cpu and target-features function attributes from the
// original function to the new outlined function.
llvm::Function *llvmParentFn =
moduleTranslation.lookupFunction(parentFn.getName());
llvmOutlinedFn = codeGenIP.getBlock()->getParent();
assert(llvmParentFn && llvmOutlinedFn &&
"Both parent and outlined functions must exist at this point");
if (auto attr = llvmParentFn->getFnAttribute("target-cpu");
attr.isStringAttribute())
llvmOutlinedFn->addFnAttr(attr);
if (auto attr = llvmParentFn->getFnAttribute("target-features");
attr.isStringAttribute())
llvmOutlinedFn->addFnAttr(attr);
builder.restoreIP(codeGenIP);
unsigned argIndex = 0;
for (auto &mapOp : mapOperands) {
auto mapInfoOp =
mlir::dyn_cast<mlir::omp::MapInfoOp>(mapOp.getDefiningOp());
llvm::Value *mapOpValue =
moduleTranslation.lookupValue(mapInfoOp.getVarPtr());
const auto &arg = targetRegion.front().getArgument(argIndex);
moduleTranslation.mapValue(arg, mapOpValue);
argIndex++;
}
llvm::BasicBlock *exitBlock = convertOmpOpRegions(
targetRegion, "omp.target", builder, moduleTranslation, bodyGenStatus);
builder.SetInsertPoint(exitBlock);
return builder.saveIP();
};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
StringRef parentName = parentFn.getName();
llvm::TargetRegionEntryInfo entryInfo;
if (!getTargetEntryUniqueInfo(entryInfo, targetOp, parentName))
return failure();
int32_t defaultValTeams = -1;
int32_t defaultValThreads = 0;
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
MapInfoData mapData;
collectMapDataFromMapOperands(mapData, mapOperands, moduleTranslation, dl,
builder);
llvm::OpenMPIRBuilder::MapInfosTy combinedInfos;
auto genMapInfoCB = [&](llvm::OpenMPIRBuilder::InsertPointTy codeGenIP)
-> llvm::OpenMPIRBuilder::MapInfosTy & {
builder.restoreIP(codeGenIP);
genMapInfos(builder, moduleTranslation, dl, combinedInfos, mapData, {}, {},
true);
return combinedInfos;
};
auto argAccessorCB = [&](llvm::Argument &arg, llvm::Value *input,
llvm::Value *&retVal, InsertPointTy allocaIP,
InsertPointTy codeGenIP) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// We just return the unaltered argument for the host function
// for now, some alterations may be required in the future to
// keep host fallback functions working identically to the device
// version (e.g. pass ByCopy values should be treated as such on
// host and device, currently not always the case)
if (!ompBuilder->Config.isTargetDevice()) {
retVal = cast<llvm::Value>(&arg);
return codeGenIP;
}
return createDeviceArgumentAccessor(mapData, arg, input, retVal, builder,
*ompBuilder, moduleTranslation,
allocaIP, codeGenIP);
};
llvm::SmallVector<llvm::Value *, 4> kernelInput;
for (size_t i = 0; i < mapOperands.size(); ++i) {
// declare target arguments are not passed to kernels as arguments
// TODO: We currently do not handle cases where a member is explicitly
// passed in as an argument, this will likley need to be handled in
// the near future, rather than using IsAMember, it may be better to
// test if the relevant BlockArg is used within the target region and
// then use that as a basis for exclusion in the kernel inputs.
if (!mapData.IsDeclareTarget[i] && !mapData.IsAMember[i])
kernelInput.push_back(mapData.OriginalValue[i]);
}
SmallVector<llvm::OpenMPIRBuilder::DependData> dds;
buildDependData(targetOp.getDepends(), targetOp.getDependVars(),
moduleTranslation, dds);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTarget(
ompLoc, allocaIP, builder.saveIP(), entryInfo, defaultValTeams,
defaultValThreads, kernelInput, genMapInfoCB, bodyCB, argAccessorCB,
dds));
// Remap access operations to declare target reference pointers for the
// device, essentially generating extra loadop's as necessary
if (moduleTranslation.getOpenMPBuilder()->Config.isTargetDevice())
handleDeclareTargetMapVar(mapData, moduleTranslation, builder,
llvmOutlinedFn);
return bodyGenStatus;
}
static LogicalResult
convertDeclareTargetAttr(Operation *op, mlir::omp::DeclareTargetAttr attribute,
LLVM::ModuleTranslation &moduleTranslation) {
// Amend omp.declare_target by deleting the IR of the outlined functions
// created for target regions. They cannot be filtered out from MLIR earlier
// because the omp.target operation inside must be translated to LLVM, but
// the wrapper functions themselves must not remain at the end of the
// process. We know that functions where omp.declare_target does not match
// omp.is_target_device at this stage can only be wrapper functions because
// those that aren't are removed earlier as an MLIR transformation pass.
if (FunctionOpInterface funcOp = dyn_cast<FunctionOpInterface>(op)) {
if (auto offloadMod = dyn_cast<omp::OffloadModuleInterface>(
op->getParentOfType<ModuleOp>().getOperation())) {
if (!offloadMod.getIsTargetDevice())
return success();
omp::DeclareTargetDeviceType declareType =
attribute.getDeviceType().getValue();
if (declareType == omp::DeclareTargetDeviceType::host) {
llvm::Function *llvmFunc =
moduleTranslation.lookupFunction(funcOp.getName());
llvmFunc->dropAllReferences();
llvmFunc->eraseFromParent();
}
}
return success();
}
if (LLVM::GlobalOp gOp = dyn_cast<LLVM::GlobalOp>(op)) {
llvm::Module *llvmModule = moduleTranslation.getLLVMModule();
if (auto *gVal = llvmModule->getNamedValue(gOp.getSymName())) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
bool isDeclaration = gOp.isDeclaration();
bool isExternallyVisible =
gOp.getVisibility() != mlir::SymbolTable::Visibility::Private;
auto loc = op->getLoc()->findInstanceOf<FileLineColLoc>();
llvm::StringRef mangledName = gOp.getSymName();
auto captureClause =
convertToCaptureClauseKind(attribute.getCaptureClause().getValue());
auto deviceClause =
convertToDeviceClauseKind(attribute.getDeviceType().getValue());
// unused for MLIR at the moment, required in Clang for book
// keeping
std::vector<llvm::GlobalVariable *> generatedRefs;
std::vector<llvm::Triple> targetTriple;
auto targetTripleAttr = dyn_cast_or_null<mlir::StringAttr>(
op->getParentOfType<mlir::ModuleOp>()->getAttr(
LLVM::LLVMDialect::getTargetTripleAttrName()));
if (targetTripleAttr)
targetTriple.emplace_back(targetTripleAttr.data());
auto fileInfoCallBack = [&loc]() {
std::string filename = "";
std::uint64_t lineNo = 0;
if (loc) {
filename = loc.getFilename().str();
lineNo = loc.getLine();
}
return std::pair<std::string, std::uint64_t>(llvm::StringRef(filename),
lineNo);
};
ompBuilder->registerTargetGlobalVariable(
captureClause, deviceClause, isDeclaration, isExternallyVisible,
ompBuilder->getTargetEntryUniqueInfo(fileInfoCallBack), mangledName,
generatedRefs, /*OpenMPSimd*/ false, targetTriple,
/*GlobalInitializer*/ nullptr, /*VariableLinkage*/ nullptr,
gVal->getType(), gVal);
if (ompBuilder->Config.isTargetDevice() &&
(attribute.getCaptureClause().getValue() !=
mlir::omp::DeclareTargetCaptureClause::to ||
ompBuilder->Config.hasRequiresUnifiedSharedMemory())) {
ompBuilder->getAddrOfDeclareTargetVar(
captureClause, deviceClause, isDeclaration, isExternallyVisible,
ompBuilder->getTargetEntryUniqueInfo(fileInfoCallBack), mangledName,
generatedRefs, /*OpenMPSimd*/ false, targetTriple, gVal->getType(),
/*GlobalInitializer*/ nullptr,
/*VariableLinkage*/ nullptr);
}
}
}
return success();
}
// Returns true if the operation is inside a TargetOp or
// is part of a declare target function.
static bool isTargetDeviceOp(Operation *op) {
// Assumes no reverse offloading
if (op->getParentOfType<omp::TargetOp>())
return true;
if (auto parentFn = op->getParentOfType<LLVM::LLVMFuncOp>())
if (auto declareTargetIface =
llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(
parentFn.getOperation()))
if (declareTargetIface.isDeclareTarget() &&
declareTargetIface.getDeclareTargetDeviceType() !=
mlir::omp::DeclareTargetDeviceType::host)
return true;
return false;
}
/// Given an OpenMP MLIR operation, create the corresponding LLVM IR
/// (including OpenMP runtime calls).
static LogicalResult
convertHostOrTargetOperation(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
return llvm::TypeSwitch<Operation *, LogicalResult>(op)
.Case([&](omp::BarrierOp) {
ompBuilder->createBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
return success();
})
.Case([&](omp::TaskwaitOp) {
ompBuilder->createTaskwait(builder.saveIP());
return success();
})
.Case([&](omp::TaskyieldOp) {
ompBuilder->createTaskyield(builder.saveIP());
return success();
})
.Case([&](omp::FlushOp) {
// No support in Openmp runtime function (__kmpc_flush) to accept
// the argument list.
// OpenMP standard states the following:
// "An implementation may implement a flush with a list by ignoring
// the list, and treating it the same as a flush without a list."
//
// The argument list is discarded so that, flush with a list is treated
// same as a flush without a list.
ompBuilder->createFlush(builder.saveIP());
return success();
})
.Case([&](omp::ParallelOp op) {
return convertOmpParallel(op, builder, moduleTranslation);
})
.Case([&](omp::MaskedOp) {
return convertOmpMasked(*op, builder, moduleTranslation);
})
.Case([&](omp::MasterOp) {
return convertOmpMaster(*op, builder, moduleTranslation);
})
.Case([&](omp::CriticalOp) {
return convertOmpCritical(*op, builder, moduleTranslation);
})
.Case([&](omp::OrderedRegionOp) {
return convertOmpOrderedRegion(*op, builder, moduleTranslation);
})
.Case([&](omp::OrderedOp) {
return convertOmpOrdered(*op, builder, moduleTranslation);
})
.Case([&](omp::WsloopOp) {
return convertOmpWsloop(*op, builder, moduleTranslation);
})
.Case([&](omp::SimdOp) {
return convertOmpSimd(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicReadOp) {
return convertOmpAtomicRead(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicWriteOp) {
return convertOmpAtomicWrite(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicUpdateOp op) {
return convertOmpAtomicUpdate(op, builder, moduleTranslation);
})
.Case([&](omp::AtomicCaptureOp op) {
return convertOmpAtomicCapture(op, builder, moduleTranslation);
})
.Case([&](omp::SectionsOp) {
return convertOmpSections(*op, builder, moduleTranslation);
})
.Case([&](omp::SingleOp op) {
return convertOmpSingle(op, builder, moduleTranslation);
})
.Case([&](omp::TeamsOp op) {
return convertOmpTeams(op, builder, moduleTranslation);
})
.Case([&](omp::TaskOp op) {
return convertOmpTaskOp(op, builder, moduleTranslation);
})
.Case([&](omp::TaskgroupOp op) {
return convertOmpTaskgroupOp(op, builder, moduleTranslation);
})
.Case<omp::YieldOp, omp::TerminatorOp, omp::DeclareReductionOp,
omp::CriticalDeclareOp>([](auto op) {
// `yield` and `terminator` can be just omitted. The block structure
// was created in the region that handles their parent operation.
// `declare_reduction` will be used by reductions and is not
// converted directly, skip it.
// `critical.declare` is only used to declare names of critical
// sections which will be used by `critical` ops and hence can be
// ignored for lowering. The OpenMP IRBuilder will create unique
// name for critical section names.
return success();
})
.Case([&](omp::ThreadprivateOp) {
return convertOmpThreadprivate(*op, builder, moduleTranslation);
})
.Case<omp::TargetDataOp, omp::TargetEnterDataOp, omp::TargetExitDataOp,
omp::TargetUpdateOp>([&](auto op) {
return convertOmpTargetData(op, builder, moduleTranslation);
})
.Case([&](omp::TargetOp) {
return convertOmpTarget(*op, builder, moduleTranslation);
})
.Case<omp::MapInfoOp, omp::MapBoundsOp, omp::PrivateClauseOp>(
[&](auto op) {
// No-op, should be handled by relevant owning operations e.g.
// TargetOp, TargetEnterDataOp, TargetExitDataOp, TargetDataOp etc.
// and then discarded
return success();
})
.Default([&](Operation *inst) {
return inst->emitError("unsupported OpenMP operation: ")
<< inst->getName();
});
}
static LogicalResult
convertTargetDeviceOp(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
return convertHostOrTargetOperation(op, builder, moduleTranslation);
}
static LogicalResult
convertTargetOpsInNest(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (isa<omp::TargetOp>(op))
return convertOmpTarget(*op, builder, moduleTranslation);
if (isa<omp::TargetDataOp>(op))
return convertOmpTargetData(op, builder, moduleTranslation);
bool interrupted =
op->walk<WalkOrder::PreOrder>([&](Operation *oper) {
if (isa<omp::TargetOp>(oper)) {
if (failed(convertOmpTarget(*oper, builder, moduleTranslation)))
return WalkResult::interrupt();
return WalkResult::skip();
}
if (isa<omp::TargetDataOp>(oper)) {
if (failed(convertOmpTargetData(oper, builder, moduleTranslation)))
return WalkResult::interrupt();
return WalkResult::skip();
}
return WalkResult::advance();
}).wasInterrupted();
return failure(interrupted);
}
namespace {
/// Implementation of the dialect interface that converts operations belonging
/// to the OpenMP dialect to LLVM IR.
class OpenMPDialectLLVMIRTranslationInterface
: public LLVMTranslationDialectInterface {
public:
using LLVMTranslationDialectInterface::LLVMTranslationDialectInterface;
/// Translates the given operation to LLVM IR using the provided IR builder
/// and saving the state in `moduleTranslation`.
LogicalResult
convertOperation(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) const final;
/// Given an OpenMP MLIR attribute, create the corresponding LLVM-IR,
/// runtime calls, or operation amendments
LogicalResult
amendOperation(Operation *op, ArrayRef<llvm::Instruction *> instructions,
NamedAttribute attribute,
LLVM::ModuleTranslation &moduleTranslation) const final;
};
} // namespace
LogicalResult OpenMPDialectLLVMIRTranslationInterface::amendOperation(
Operation *op, ArrayRef<llvm::Instruction *> instructions,
NamedAttribute attribute,
LLVM::ModuleTranslation &moduleTranslation) const {
return llvm::StringSwitch<llvm::function_ref<LogicalResult(Attribute)>>(
attribute.getName())
.Case("omp.is_target_device",
[&](Attribute attr) {
if (auto deviceAttr = dyn_cast<BoolAttr>(attr)) {
llvm::OpenMPIRBuilderConfig &config =
moduleTranslation.getOpenMPBuilder()->Config;
config.setIsTargetDevice(deviceAttr.getValue());
return success();
}
return failure();
})
.Case("omp.is_gpu",
[&](Attribute attr) {
if (auto gpuAttr = dyn_cast<BoolAttr>(attr)) {
llvm::OpenMPIRBuilderConfig &config =
moduleTranslation.getOpenMPBuilder()->Config;
config.setIsGPU(gpuAttr.getValue());
return success();
}
return failure();
})
.Case("omp.host_ir_filepath",
[&](Attribute attr) {
if (auto filepathAttr = dyn_cast<StringAttr>(attr)) {
llvm::OpenMPIRBuilder *ompBuilder =
moduleTranslation.getOpenMPBuilder();
ompBuilder->loadOffloadInfoMetadata(filepathAttr.getValue());
return success();
}
return failure();
})
.Case("omp.flags",
[&](Attribute attr) {
if (auto rtlAttr = dyn_cast<omp::FlagsAttr>(attr))
return convertFlagsAttr(op, rtlAttr, moduleTranslation);
return failure();
})
.Case("omp.version",
[&](Attribute attr) {
if (auto versionAttr = dyn_cast<omp::VersionAttr>(attr)) {
llvm::OpenMPIRBuilder *ompBuilder =
moduleTranslation.getOpenMPBuilder();
ompBuilder->M.addModuleFlag(llvm::Module::Max, "openmp",
versionAttr.getVersion());
return success();
}
return failure();
})
.Case("omp.declare_target",
[&](Attribute attr) {
if (auto declareTargetAttr =
dyn_cast<omp::DeclareTargetAttr>(attr))
return convertDeclareTargetAttr(op, declareTargetAttr,
moduleTranslation);
return failure();
})
.Case("omp.requires",
[&](Attribute attr) {
if (auto requiresAttr = dyn_cast<omp::ClauseRequiresAttr>(attr)) {
using Requires = omp::ClauseRequires;
Requires flags = requiresAttr.getValue();
llvm::OpenMPIRBuilderConfig &config =
moduleTranslation.getOpenMPBuilder()->Config;
config.setHasRequiresReverseOffload(
bitEnumContainsAll(flags, Requires::reverse_offload));
config.setHasRequiresUnifiedAddress(
bitEnumContainsAll(flags, Requires::unified_address));
config.setHasRequiresUnifiedSharedMemory(
bitEnumContainsAll(flags, Requires::unified_shared_memory));
config.setHasRequiresDynamicAllocators(
bitEnumContainsAll(flags, Requires::dynamic_allocators));
return success();
}
return failure();
})
.Default([](Attribute) {
// Fall through for omp attributes that do not require lowering.
return success();
})(attribute.getValue());
return failure();
}
/// Given an OpenMP MLIR operation, create the corresponding LLVM IR
/// (including OpenMP runtime calls).
LogicalResult OpenMPDialectLLVMIRTranslationInterface::convertOperation(
Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) const {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
if (ompBuilder->Config.isTargetDevice()) {
if (isTargetDeviceOp(op)) {
return convertTargetDeviceOp(op, builder, moduleTranslation);
} else {
return convertTargetOpsInNest(op, builder, moduleTranslation);
}
}
return convertHostOrTargetOperation(op, builder, moduleTranslation);
}
void mlir::registerOpenMPDialectTranslation(DialectRegistry ®istry) {
registry.insert<omp::OpenMPDialect>();
registry.addExtension(+[](MLIRContext *ctx, omp::OpenMPDialect *dialect) {
dialect->addInterfaces<OpenMPDialectLLVMIRTranslationInterface>();
});
}
void mlir::registerOpenMPDialectTranslation(MLIRContext &context) {
DialectRegistry registry;
registerOpenMPDialectTranslation(registry);
context.appendDialectRegistry(registry);
}
|