File: one-shot-bufferize-analysis-bottom-up-from-terminators.mlir

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (36 lines) | stat: -rw-r--r-- 1,742 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
// RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only analysis-heuristic=bottom-up-from-terminators" -split-input-file | FileCheck %s

// CHECK-LABEL: func @simple_test(
func.func @simple_test(%lb: index, %ub: index, %step: index, %f1: f32, %f2: f32) -> (tensor<5xf32>, tensor<5xf32>) {
  %c0 = arith.constant 0 : index
  %p = arith.constant 0.0 : f32

  // Make sure that ops that feed into region terminators bufferize in-place
  // (if possible).
  // Note: This test case fails to bufferize with a "top-down" or "bottom-up"
  // heuristic.

  %0 = tensor.empty() : tensor<5xf32>
  %1 = scf.for %iv = %lb to %ub step %step iter_args(%t = %0) -> (tensor<5xf32>) {
    // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "false"]}
    %2 = linalg.fill ins(%f1 : f32) outs(%t : tensor<5xf32>) -> tensor<5xf32>
    // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "true"]}
    %3 = linalg.fill ins(%f2 : f32) outs(%t : tensor<5xf32>) -> tensor<5xf32>
    %4 = vector.transfer_read %2[%c0], %p : tensor<5xf32>, vector<5xf32>
    vector.print %4 : vector<5xf32>
    scf.yield %3 : tensor<5xf32>
  }

  %5 = tensor.empty() : tensor<5xf32>
  %6 = scf.for %iv = %lb to %ub step %step iter_args(%t = %0) -> (tensor<5xf32>) {
    // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "true"]}
    %7 = linalg.fill ins(%f1 : f32) outs(%t : tensor<5xf32>) -> tensor<5xf32>
    // CHECK: linalg.fill {__inplace_operands_attr__ = ["none", "false"]}
    %8 = linalg.fill ins(%f2 : f32) outs(%t : tensor<5xf32>) -> tensor<5xf32>
    %9 = vector.transfer_read %8[%c0], %p : tensor<5xf32>, vector<5xf32>
    vector.print %9 : vector<5xf32>
    scf.yield %7 : tensor<5xf32>
  }

  return %1, %6 : tensor<5xf32>, tensor<5xf32>
}