File: canonicalize.mlir

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (262 lines) | stat: -rw-r--r-- 9,039 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// RUN: mlir-opt %s -canonicalize="test-convergence" --split-input-file -allow-unregistered-dialect | FileCheck %s

// Fold all the gpu.wait ops as they are redundant.
// CHECK-LABEL: func @fold_wait_op_test1
func.func @fold_wait_op_test1() {
  %1 = gpu.wait async
  gpu.wait []
  %3 = gpu.wait async
  gpu.wait [%3]
  return
}
// CHECK-NOT: gpu.wait

// -----

// Erase duplicate barriers.
// CHECK-LABEL: func @erase_barriers
//       CHECK-NEXT: gpu.barrier
//       CHECK-NEXT: return
func.func @erase_barriers() {
  gpu.barrier
  gpu.barrier
  return
}

// -----

// Replace uses of gpu.wait op with its async dependency.
// CHECK-LABEL: func @fold_wait_op_test2
func.func @fold_wait_op_test2(%arg0: i1) -> (memref<5xf16>, memref<5xf16>) {
  %0 = gpu.wait async
  %memref, %asyncToken = gpu.alloc async [%0] () : memref<5xf16>
  gpu.wait [%0]
  %1 = gpu.wait async [%0]
  %memref_0, %asyncToken_0 = gpu.alloc async [%1] () : memref<5xf16>
  gpu.wait [%1]
  return %memref, %memref_0 : memref<5xf16>, memref<5xf16>
}
// CHECK-NEXT: %[[TOKEN0:.*]] = gpu.wait async
// CHECK-NEXT: gpu.alloc async [%[[TOKEN0]]] ()
// CHECK-NEXT: %[[TOKEN1:.*]] = gpu.wait async
// CHECK-NEXT: gpu.alloc async [%[[TOKEN1]]] ()
// CHECK-NEXT: return

// -----

// CHECK-LABEL: func @fold_memcpy_op
func.func @fold_memcpy_op(%arg0: i1) {
    %cst = arith.constant 0.000000e+00 : f16
    %1 = memref.alloc() : memref<2xf16>
    %2 = gpu.wait async
    %memref, %asyncToken = gpu.alloc async [%2] () : memref<2xf16>
    gpu.wait [%2]
    affine.store %cst, %memref[0] : memref<2xf16>
    %3 = gpu.wait async
    %4 = gpu.memcpy async [%3] %1, %memref : memref<2xf16>, memref<2xf16>
    gpu.wait [%3]
    %5 = scf.if %arg0 -> (i1) {
      memref.dealloc %1 : memref<2xf16>
      scf.yield %arg0 : i1
    } else {
      memref.dealloc %1 : memref<2xf16>
      scf.yield %arg0 : i1
    }
    return
}
// CHECK-NOT: gpu.memcpy

// -----

// We cannot fold memcpy here as dest is a block argument.
// CHECK-LABEL: func @do_not_fold_memcpy_op1
func.func @do_not_fold_memcpy_op1(%arg0: i1, %arg1: memref<2xf16>) {
    %cst = arith.constant 0.000000e+00 : f16
    %2 = gpu.wait async
    %memref, %asyncToken = gpu.alloc async [%2] () : memref<2xf16>
    gpu.wait [%2]
    affine.store %cst, %memref[0] : memref<2xf16>
    %3 = gpu.wait async
    %4 = gpu.memcpy async [%3] %arg1, %memref : memref<2xf16>, memref<2xf16>
    gpu.wait [%3]
    return
}
// CHECK: gpu.memcpy

// -----

// We cannot fold gpu.memcpy as it is used by an op having read effect on dest.
// CHECK-LABEL: func @do_not_fold_memcpy_op2
func.func @do_not_fold_memcpy_op2(%arg0: i1, %arg1: index) -> f16 {
    %cst = arith.constant 0.000000e+00 : f16
    %1 = memref.alloc() : memref<2xf16>
    %2 = gpu.wait async
    %memref, %asyncToken = gpu.alloc async [%2] () : memref<2xf16>
    gpu.wait [%2]
    affine.store %cst, %memref[0] : memref<2xf16>
    %3 = gpu.wait async
    %4 = gpu.memcpy async [%3] %1, %memref : memref<2xf16>, memref<2xf16>
    gpu.wait [%3]
    %5 = memref.load %1[%arg1] : memref<2xf16>
    return %5 : f16
}
// CHECK: gpu.memcpy

// -----

// We cannot fold gpu.memcpy, as the defining op if dest is not a alloc like op.
// CHECK-LABEL: func @do_not_fold_memcpy_op3
func.func @do_not_fold_memcpy_op3(%arg0: memref<1xi8>, %arg1: memref<i1>) {
  %0 = arith.constant 0 : index
  %1 = memref.view %arg0[%0][] : memref<1xi8> to memref<i1>
  gpu.memcpy  %1, %arg1 : memref<i1>, memref<i1>
  func.return
}
// CHECK: gpu.memcpy

// -----

// CHECK-LABEL: @memcpy_after_cast
func.func @memcpy_after_cast(%arg0: memref<10xf32>, %arg1: memref<10xf32>) {
  // CHECK-NOT: memref.cast
  // CHECK: gpu.memcpy
  %0 = memref.cast %arg0 : memref<10xf32> to memref<?xf32>
  %1 = memref.cast %arg1 : memref<10xf32> to memref<?xf32>
  gpu.memcpy %0, %1 : memref<?xf32>, memref<?xf32>
  return
}

// -----

// CHECK-LABEL: @memset_after_cast
func.func @memset_after_cast(%arg0: memref<10xf32>, %arg1: f32) {
  // CHECK-NOT: memref.cast
  // CHECK: gpu.memset
  %0 = memref.cast %arg0 : memref<10xf32> to memref<?xf32>
  gpu.memset %0, %arg1 : memref<?xf32>, f32
  return
}

// -----

// Test case: Folding of memref.dim(gpu.alloc(%size), %idx) -> %size
// CHECK-LABEL: func @gpu_dim_of_alloc(
//  CHECK-SAME:     %[[SIZE:[0-9a-z]+]]: index
//  CHECK-NEXT:   return %[[SIZE]] : index
func.func @gpu_dim_of_alloc(%size: index) -> index {
  %0 = gpu.alloc(%size) : memref<?xindex>
  %c0 = arith.constant 0 : index
  %1 = memref.dim %0, %c0 : memref<?xindex>
  return %1 : index
}

// -----

// CHECK-LABEL: func @simplify_gpu_launch
func.func @simplify_gpu_launch() attributes {llvm.emit_c_interface} {
  %cst = arith.constant 0.000000e+00 : f32
  %c1 = arith.constant 1 : index
  %c32 = arith.constant 32 : index
  %c16 = arith.constant 16 : index
  %c2 = arith.constant 2 : index
  %c0 = arith.constant 0 : index
  %0 = memref.alloc() : memref<2x16x16xf32>
  scf.for %arg0 = %c0 to %c2 step %c1 {
    scf.for %arg1 = %c0 to %c16 step %c1 {
      scf.for %arg2 = %c0 to %c16 step %c1 {
        memref.store %cst, %0[%arg0, %arg1, %arg2] : memref<2x16x16xf32>
      }
    }
  }
  %1 = gpu.wait async
  %memref, %asyncToken = gpu.alloc async [%1] () : memref<2x16x16xf32>
  %2 = gpu.memcpy async [%1] %memref, %0 : memref<2x16x16xf32>, memref<2x16x16xf32>
  gpu.wait [%1]
  gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %c1, %arg7 = %c1, %arg8 = %c1)
    threads(%arg3, %arg4, %arg5) in (%arg9 = %c32, %arg10 = %c1, %arg11 = %c1) {
    %3 = arith.muli %arg5, %c32 : index
    %4 = arith.muli %arg4, %c32 : index
    %5 = arith.addi %3, %4 : index
    %6 = arith.addi %5, %arg3 : index
    %7 = arith.divui %6, %c32 : index
    %8 = arith.muli %arg0, %c16 : index
    %9 = arith.muli %arg1, %c2 : index
    %10 = arith.muli %7, %c2 : index
    %11 = arith.addi %9, %10 : index
    %12 = memref.load %memref[%11, %c0, %8] : memref<2x16x16xf32>
    %13 = arith.addi %11, %c1 : index
    %14 = memref.load %memref[%13, %c0, %8] : memref<2x16x16xf32>
    memref.store %12, %memref[%11, %c0, %8] : memref<2x16x16xf32>
    memref.store %14, %memref[%13, %c0, %8] : memref<2x16x16xf32>
    gpu.terminator
  }
  return
}

// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK: gpu.launch blocks(%{{.*}}, %{{.*}}, %{{.*}}) in (%{{.*}} = %[[C1]], %{{.*}} = %[[C1]], %{{.*}} = %[[C1]]) threads(%[[TIDX:.*]], %{{.*}}, %{{.*}}) in (%{{.*}} = %c32, %{{.*}} = %[[C1]], %{{.*}} = %[[C1]]) {
// CHECK-NEXT:    arith.divui %[[TIDX]], %c32 : index
// CHECK-NEXT:    arith.muli %{{.*}}, %c2 : index
// CHECK-NEXT:    memref.load %memref[%{{.*}}, %[[C0]], %[[C0]]] : memref<2x16x16xf32>
// CHECK-NEXT:    arith.addi %{{.*}}, %[[C1]] : index
// CHECK-NEXT:    memref.load %memref[%{{.*}}, %[[C0]], %[[C0]]] : memref<2x16x16xf32>
// CHECK-NEXT:    memref.store %{{.*}}, %memref[%{{.*}}, %[[C0]], %[[C0]]] : memref<2x16x16xf32>
// CHECK-NEXT:    memref.store %{{.*}}, %memref[%{{.*}}, %[[C0]], %[[C0]]] : memref<2x16x16xf32>
// CHECK-NEXT:    gpu.terminator
// CHECK-NEXT:  }

// -----

// CHECK-LABEL: func @make_reduce_uniform
//       CHECK: gpu.launch blocks
//       CHECK: %[[V1:.*]] = "test.test2"() : () -> i32
//       CHECK: %[[V2:.*]] = gpu.all_reduce add %[[V1]] uniform {
//       CHECK: "test.test3"(%[[V2]]) : (i32) -> ()
func.func @make_reduce_uniform() {
  %0:6 = "test.test1"() : () -> (index, index, index, index, index, index)
  gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %0#0, %arg7 = %0#1, %arg8 = %0#2)
    threads(%arg3, %arg4, %arg5) in (%arg9 = %0#3, %arg10 = %0#4, %arg11 = %0#5) {
    %1 = "test.test2"() : () -> i32
    %2 = gpu.all_reduce add %1 {} : (i32) -> (i32)
    "test.test3"(%2) : (i32) -> ()
    gpu.terminator
  }
  return
}

// -----

// CHECK-LABEL: func @make_subgroup_reduce_uniform
//       CHECK: gpu.launch blocks
//       CHECK: %[[V1:.*]] = "test.test2"() : () -> i32
//       CHECK: %[[V2:.*]] = gpu.subgroup_reduce add %[[V1]] uniform
//       CHECK: "test.test3"(%[[V2]]) : (i32) -> ()
func.func @make_subgroup_reduce_uniform() {
  %0:6 = "test.test1"() : () -> (index, index, index, index, index, index)
  gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %0#0, %arg7 = %0#1, %arg8 = %0#2)
    threads(%arg3, %arg4, %arg5) in (%arg9 = %0#3, %arg10 = %0#4, %arg11 = %0#5) {
    %1 = "test.test2"() : () -> i32
    %2 = gpu.subgroup_reduce add %1 : (i32) -> (i32)
    "test.test3"(%2) : (i32) -> ()
    gpu.terminator
  }
  return
}

// -----

// The GPU kernel does not have any side effecting ops, so the entire
// gpu.launch op can fold away.

// CHECK-LABEL: func @gpu_launch_without_side_effects
//   CHECK-NOT:   gpu.launch
func.func @gpu_launch_without_side_effects() {
  %0:6 = "test.test1"() : () -> (index, index, index, index, index, index)
  gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %0#0, %arg7 = %0#1, %arg8 = %0#2)
    threads(%arg3, %arg4, %arg5) in (%arg9 = %0#3, %arg10 = %0#4, %arg11 = %0#5) {
    %1 = arith.addi %arg0, %arg1 : index
    gpu.terminator
  }
  return
}