1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
|
// RUN: mlir-opt %s -test-linalg-data-layout-propagation -split-input-file | FileCheck %s
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func.func @dynamic_elem_pack(%arg0: tensor<?x?xf32>, %dest: tensor<?x?x8x2xf32>) -> tensor<?x?x8x2xf32>
{
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
%1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
%2 = tensor.empty(%0, %1) : tensor<?x?xf32>
%3 = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]}
ins(%arg0 : tensor<?x?xf32>)
outs(%2 : tensor<?x?xf32>) {
^bb0(%arg3: f32, %arg4: f32):
%4 = arith.addf %arg3, %arg3 : f32
linalg.yield %4 : f32
} -> tensor<?x?xf32>
%4 = tensor.pack %3
inner_dims_pos = [0, 1]
inner_tiles = [8, 2]
into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
return %4 : tensor<?x?x8x2xf32>
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<()[s0] -> (s0 ceildiv 2)>
// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func.func @dynamic_elem_pack
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK-DAG: %[[OUTER_D0:.+]] = affine.apply #[[$MAP0]]()[%[[D0]]]
// CHECK-DAG: %[[OUTER_D1:.+]] = affine.apply #[[$MAP1]]()[%[[D1]]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty(%[[OUTER_D0]], %[[OUTER_D1]]) : tensor<?x?x8x2xf32>
// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [8, 2]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK: %[[ELEM:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP2]], #[[$MAP2]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
// CHECK-SAME: ins(%[[PACK_ARG0]]
// CHECK-SAME: outs(%[[DEST]]
// CHECK: return %[[ELEM]] : tensor<?x?x8x2xf32>
// -----
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func.func @elem_pack_transpose_inner_dims(%arg0: tensor<128x256xi32>, %dest: tensor<4x16x16x32xi32>) -> tensor<4x16x16x32xi32>{
%init = tensor.empty() : tensor<128x256xi32>
%elem = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]}
ins(%arg0 : tensor<128x256xi32>)
outs(%init : tensor<128x256xi32>) {
^bb0(%arg3: i32, %arg4: i32):
%4 = arith.addi %arg3, %arg3 : i32
linalg.yield %4 : i32
} -> tensor<128x256xi32>
%pack = tensor.pack %elem
inner_dims_pos = [1, 0]
inner_tiles = [16, 32]
into %dest : tensor<128x256xi32> -> tensor<4x16x16x32xi32>
return %pack : tensor<4x16x16x32xi32>
}
// CHECK-DAG: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func.func @elem_pack_transpose_inner_dims
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x16x32xi32>
// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK: %[[ELEM:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
// CHECK-SAME: ins(%[[PACK_ARG0]]
// CHECK-SAME: outs(%[[DEST]]
// CHECK: return %[[ELEM]] : tensor<4x16x16x32xi32>
// -----
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func.func @elem_pack_transpose_outer_dims(%arg0: tensor<128x256xi32>, %dest: tensor<16x4x32x16xi32>) -> tensor<16x4x32x16xi32>{
%init = tensor.empty() : tensor<128x256xi32>
%elem = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]}
ins(%arg0 : tensor<128x256xi32>)
outs(%init : tensor<128x256xi32>) {
^bb0(%arg3: i32, %arg4: i32):
%4 = arith.addi %arg3, %arg3 : i32
linalg.yield %4 : i32
} -> tensor<128x256xi32>
%pack = tensor.pack %elem
outer_dims_perm = [1, 0]
inner_dims_pos = [0, 1]
inner_tiles = [32, 16]
into %dest : tensor<128x256xi32> -> tensor<16x4x32x16xi32>
return %pack : tensor<16x4x32x16xi32>
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func.func @elem_pack_transpose_outer_dims
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32>
// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16]
// CHECK-SAME: into %[[ARG0_EMPTY]] : tensor<128x256xi32> -> tensor<16x4x32x16xi32>
// CHECK: %[[ELEM:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP0]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
// CHECK-SAME: ins(%[[PACK_ARG0]]
// CHECK-SAME: outs(%[[DEST]]
// CHECK: return %[[ELEM]] : tensor<16x4x32x16xi32>
// -----
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func.func @elem_pack_transpose_inner_and_outer_dims(%arg0: tensor<128x256xi32>, %dest: tensor<16x4x16x32xi32>) -> tensor<16x4x16x32xi32>{
%init = tensor.empty() : tensor<128x256xi32>
%elem = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]}
ins(%arg0 : tensor<128x256xi32>)
outs(%init : tensor<128x256xi32>) {
^bb0(%arg3: i32, %arg4: i32):
%4 = arith.addi %arg3, %arg3 : i32
linalg.yield %4 : i32
} -> tensor<128x256xi32>
%pack = tensor.pack %elem
outer_dims_perm = [1, 0]
inner_dims_pos = [1, 0]
inner_tiles = [16, 32]
into %dest : tensor<128x256xi32> -> tensor<16x4x16x32xi32>
return %pack : tensor<16x4x16x32xi32>
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func.func @elem_pack_transpose_inner_and_outer_dims
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x16x32xi32>
// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [16, 32]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK: %[[ELEM:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP0]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
// CHECK-SAME: ins(%[[PACK_ARG0]]
// CHECK-SAME: outs(%[[DEST]]
// CHECK: return %[[ELEM]] : tensor<16x4x16x32xi32>
// -----
#map0 = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0, d1) -> (d0)>
#map2 = affine_map<(d0, d1) -> (d1)>
func.func @dynamic_broadcast_pack(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %dest: tensor<?x?x8x2xf32>) -> tensor<?x?x8x2xf32>
{
%c0 = arith.constant 0 : index
%0 = tensor.dim %arg0, %c0 : tensor<?xf32>
%1 = tensor.dim %arg1, %c0 : tensor<?xf32>
%2 = tensor.empty(%0, %1) : tensor<?x?xf32>
%3 = linalg.generic {indexing_maps = [#map1, #map2, #map0], iterator_types = ["parallel", "parallel"]}
ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
outs(%2 : tensor<?x?xf32>) {
^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
%4 = arith.addf %arg3, %arg4 : f32
linalg.yield %4 : f32
} -> tensor<?x?xf32>
%4 = tensor.pack %3
inner_dims_pos = [0, 1]
inner_tiles = [8, 2]
into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
return %4 : tensor<?x?x8x2xf32>
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<()[s0] -> (s0 ceildiv 8)>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<()[s0] -> (s0 ceildiv 2)>
// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d2)>
// CHECK-DAG: #[[$MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)>
// CHECK-DAG: #[[$MAP4:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func.func @dynamic_broadcast_pack
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK-DAG: %[[OUTER_D0:.+]] = affine.apply #[[$MAP0]]()[%[[D0]]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty(%[[OUTER_D0]]) : tensor<?x8xf32>
// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [8]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG1]], %[[C0]]
// CHECK-DAG: %[[OUTER_D1:.+]] = affine.apply #[[$MAP1]]()[%[[D1]]]
// CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty(%[[OUTER_D1]]) : tensor<?x2xf32>
// CHECK: %[[PACK_ARG1:.+]] = tensor.pack %[[ARG1]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [2]
// CHECK-SAME: into %[[ARG1_EMPTY]]
// CHECK: %[[ELEM:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP2]], #[[$MAP3]], #[[$MAP4]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"]
// CHECK-SAME: ins(%[[PACK_ARG0]], %[[PACK_ARG0]]
// CHECK-SAME: outs(%[[DEST]]
// CHECK: return %[[ELEM]] : tensor<?x?x8x2xf32>
// -----
#map = affine_map<(d0, d1, d2, d3) -> (d3)>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @elem_pack_transpose_inner_and_outer_dims2(%arg0: tensor<64xf32>, %dest: tensor<1x2x56x57x32xf32>) -> tensor<1x2x56x57x32xf32> {
%0 = tensor.empty() : tensor<1x56x57x64xf32>
%1 = linalg.generic {
indexing_maps = [#map, #map1],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
ins(%arg0 : tensor<64xf32>)
outs(%0 : tensor<1x56x57x64xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<1x56x57x64xf32>
%2 = tensor.pack %1 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %dest : tensor<1x56x57x64xf32> -> tensor<1x2x56x57x32xf32>
return %2 : tensor<1x2x56x57x32xf32>
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d1, d4)>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func.func @elem_pack_transpose_inner_and_outer_dims2
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<2x32xf32>
// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
// CHECK-SAME: ins(%[[PACKED_ARG0]]
// CHECK-SAME: outs(%[[DEST]]
// -----
func.func @transpose_pack(%arg0: tensor<100x128x200x256xi32>, %arg1: tensor<100xi32>, %arg2: tensor<128xi32>, %dest: tensor<100x200x4x16x16x32xi32>) -> tensor<100x200x4x16x16x32xi32>
{
%init_transpose = tensor.empty() : tensor<100x200x128x256xi32>
%transpose = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>,
affine_map<(d0, d1, d2, d3) -> (d0)>,
affine_map<(d0, d1, d2, d3) -> (d1)>,
affine_map<(d0, d1, d2, d3) -> (d0, d2, d1, d3)>],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
ins(%arg0, %arg1, %arg2 : tensor<100x128x200x256xi32>, tensor<100xi32>, tensor<128xi32>)
outs(%init_transpose : tensor<100x200x128x256xi32>) {
^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32):
%0 = arith.addi %b0, %b1 : i32
%1 = arith.addi %0, %b2 : i32
linalg.yield %1 : i32
} -> tensor<100x200x128x256xi32>
%4 = tensor.pack %transpose
inner_dims_pos = [3, 2]
inner_tiles = [16, 32]
into %dest : tensor<100x200x128x256xi32> -> tensor<100x200x4x16x16x32xi32>
return %4 : tensor<100x200x4x16x16x32xi32>
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0)>
// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d5)>
// CHECK-DAG: #[[$MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d1, d3, d4, d5)>
// CHECK-LABEL: func.func @transpose_pack
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<100x4x200x16x16x32xi32>
// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [3, 1] inner_tiles = [16, 32]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32>
// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
// CHECK-SAME: into %[[ARG2_EMPTY]]
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]], #[[$MAP3]]]
// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
// CHECK-SAME: outs(%[[DEST]]
// -----
func.func @affine_constant_expr_pack(%arg0: tensor<100x128x200x256xi32>, %arg1: tensor<100x1x1x1xi32>, %arg2: tensor<1x128x1x1xi32>, %dest: tensor<100x200x4x16x16x32xi32>) -> tensor<100x200x4x16x16x32xi32>
{
%init_transpose = tensor.empty() : tensor<100x200x128x256xi32>
%transpose = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>,
affine_map<(d0, d1, d2, d3) -> (d0, 0, 0, 0)>,
affine_map<(d0, d1, d2, d3) -> (0, d1, 0, 0)>,
affine_map<(d0, d1, d2, d3) -> (d0, d2, d1, d3)>],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
ins(%arg0, %arg1, %arg2 : tensor<100x128x200x256xi32>, tensor<100x1x1x1xi32>, tensor<1x128x1x1xi32>)
outs(%init_transpose : tensor<100x200x128x256xi32>) {
^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32):
%0 = arith.addi %b0, %b1 : i32
%1 = arith.addi %0, %b2 : i32
linalg.yield %1 : i32
} -> tensor<100x200x128x256xi32>
%4 = tensor.pack %transpose
inner_dims_pos = [3, 2]
inner_tiles = [16, 32]
into %dest : tensor<100x200x128x256xi32> -> tensor<100x200x4x16x16x32xi32>
return %4 : tensor<100x200x4x16x16x32xi32>
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, 0, 0, 0)>
// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (0, d1, 0, 0, d5)>
// CHECK-DAG: #[[$MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d1, d3, d4, d5)>
// CHECK-LABEL: func.func @affine_constant_expr_pack
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<100x4x200x16x16x32xi32>
// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [3, 1] inner_tiles = [16, 32]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<1x4x1x1x32xi32>
// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [32]
// CHECK-SAME: into %[[ARG2_EMPTY]]
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]], #[[$MAP3]]]
// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
// CHECK-SAME: outs(%[[DEST]]
// -----
func.func @transpose_pack_with_outer_dims(%arg0: tensor<100x128x200x256xi32>, %arg1: tensor<100xi32>, %arg2: tensor<128xi32>, %dest: tensor<200x4x16x100x16x32xi32>) -> tensor<200x4x16x100x16x32xi32>
{
%init_transpose = tensor.empty() : tensor<100x200x128x256xi32>
%transpose = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>,
affine_map<(d0, d1, d2, d3) -> (d0)>,
affine_map<(d0, d1, d2, d3) -> (d1)>,
affine_map<(d0, d1, d2, d3) -> (d0, d2, d1, d3)>],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
ins(%arg0, %arg1, %arg2 : tensor<100x128x200x256xi32>, tensor<100xi32>, tensor<128xi32>)
outs(%init_transpose : tensor<100x200x128x256xi32>) {
^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32):
%0 = arith.addi %b0, %b1 : i32
%1 = arith.addi %0, %b2 : i32
linalg.yield %1 : i32
} -> tensor<100x200x128x256xi32>
%4 = tensor.pack %transpose
outer_dims_perm = [1, 2, 3, 0]
inner_dims_pos = [3, 2]
inner_tiles = [16, 32]
into %dest : tensor<100x200x128x256xi32> -> tensor<200x4x16x100x16x32xi32>
return %4 : tensor<200x4x16x100x16x32xi32>
}
// CHECK-DAG: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)>
// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d5)>
// CHECK-LABEL: func.func @transpose_pack_with_outer_dims
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<200x4x16x100x16x32xi32>
// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [3, 1] inner_tiles = [16, 32]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32>
// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
// CHECK-SAME: into %[[ARG2_EMPTY]]
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP1]], #[[$MAP2]], #[[$MAP]]]
// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
// CHECK-SAME: outs(%[[DEST]]
// -----
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func.func @elem_pack_transpose_outer_dims(%arg0: tensor<128x256xi32>, %init: tensor<128x256xi32>) -> tensor<16x4x32x16xi32>{
%elem = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]}
ins(%arg0 : tensor<128x256xi32>)
outs(%init : tensor<128x256xi32>) {
^bb0(%arg3: i32, %arg4: i32):
%4 = arith.addi %arg3, %arg4 : i32
linalg.yield %4 : i32
} -> tensor<128x256xi32>
%empty = tensor.empty() : tensor<16x4x32x16xi32>
%pack = tensor.pack %elem
outer_dims_perm = [1, 0]
inner_dims_pos = [0, 1]
inner_tiles = [32, 16]
into %empty : tensor<128x256xi32> -> tensor<16x4x32x16xi32>
return %pack : tensor<16x4x32x16xi32>
}
// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func.func @elem_pack_transpose_outer_dims
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32>
// CHECK: %[[PACKED_ARG1:.+]] = tensor.pack %[[ARG1]]
// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16]
// CHECK-SAME: into %[[ARG1_EMPTY]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<16x4x32x16xi32>
// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
// CHECK-SAME: ins(%[[PACKED_ARG0]]
// CHECK-SAME: outs(%[[PACKED_ARG1]]
// -----
#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @unpack_on_output(%arg0: tensor<12x2x56x56x32xf32>) -> tensor<12x56x56x64xf32> {
%0 = tensor.empty() : tensor<12x56x56x64xf32>
%1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<12x2x56x56x32xf32> -> tensor<12x56x56x64xf32>
%2 = linalg.generic {indexing_maps = [#map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} outs(%1 : tensor<12x56x56x64xf32>) {
^bb0(%out: f32):
%3 = arith.addf %out, %out : f32
linalg.yield %3 : f32
} -> tensor<12x56x56x64xf32>
return %2 : tensor<12x56x56x64xf32>
}
// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func.func @unpack_on_output
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_EMPTY_UNPACK:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_EMPTY_UNPACK]]
// CHECK: %[[ARG0_EMPTY_PACK:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_EMPTY_PACK]]
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP]]]
// CHECK-SAME: outs(%[[PACKED_ARG0]]
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_EMPTY_UNPACK]]
// -----
#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @unpack_on_input(%arg0: tensor<12x2x56x56x32xf32>, %init: tensor<12x56x56x64xf32>) -> tensor<12x56x56x64xf32> {
%0 = tensor.empty() : tensor<12x56x56x64xf32>
%1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<12x2x56x56x32xf32> -> tensor<12x56x56x64xf32>
%2 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1: tensor<12x56x56x64xf32>) outs(%init : tensor<12x56x56x64xf32>) {
^bb0(%in: f32, %out: f32):
%3 = arith.addf %in, %out : f32
linalg.yield %3 : f32
} -> tensor<12x56x56x64xf32>
return %2 : tensor<12x56x56x64xf32>
}
// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func.func @unpack_on_input
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
// CHECK: %[[ARG1_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
// CHECK: %[[ARG1_PACK:.+]] = tensor.pack %[[ARG1]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG1_PACK_EMPTY]]
// CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
// CHECK: %[[ARG0_PACK:.+]] = tensor.pack %[[UNPACKED_ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_PACK_EMPTY]]
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
// CHECK-SAME: ins(%[[ARG0_PACK]]
// CHECK-SAME: outs(%[[ARG1_PACK]]
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
// -----
#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @unpack_element_type_change(%arg0: tensor<12x2x56x56x32xf32>, %init: tensor<12x56x56x64xf16>) -> tensor<12x56x56x64xf16> {
%0 = tensor.empty() : tensor<12x56x56x64xf32>
%1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<12x2x56x56x32xf32> -> tensor<12x56x56x64xf32>
%2 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1: tensor<12x56x56x64xf32>) outs(%init : tensor<12x56x56x64xf16>) {
^bb0(%in: f32, %out: f16):
%3 = arith.truncf %in : f32 to f16
linalg.yield %3 : f16
} -> tensor<12x56x56x64xf16>
return %2 : tensor<12x56x56x64xf16>
}
// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func.func @unpack_element_type_change
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
// CHECK: %[[ARG1_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf16>
// CHECK: %[[ARG1_PACK:.+]] = tensor.pack %[[ARG1]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG1_PACK_EMPTY]]
// CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
// CHECK: %[[ARG0_PACK:.+]] = tensor.pack %[[UNPACKED_ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_PACK_EMPTY]]
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
// CHECK-SAME: ins(%[[ARG0_PACK]]
// CHECK-SAME: outs(%[[ARG1_PACK]]
// CHECK: %[[ARG0_NEW_EMPTY_UNPACK:.+]] = tensor.empty() : tensor<12x56x56x64xf16>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[RES]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_NEW_EMPTY_UNPACK]]
// -----
#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @forward_tensor_empty(%arg0: tensor<12x2x56x56x32xf32>) -> tensor<12x56x56x64xf32> {
%init = tensor.empty() : tensor<12x56x56x64xf32>
%0 = tensor.empty() : tensor<12x56x56x64xf32>
%1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<12x2x56x56x32xf32> -> tensor<12x56x56x64xf32>
%2 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1: tensor<12x56x56x64xf32>) outs(%init : tensor<12x56x56x64xf32>) {
^bb0(%in: f32, %out: f32):
%3 = arith.addf %in, %in : f32
linalg.yield %3 : f32
} -> tensor<12x56x56x64xf32>
return %2 : tensor<12x56x56x64xf32>
}
// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func.func @forward_tensor_empty
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[ARG0_UNPACK_EMPTY:.+]] = tensor.empty() : tensor<12x56x56x64xf32>
// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
// CHECK: %[[DEST:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
// CHECK: %[[ARG0_PACK_EMPTY:.+]] = tensor.empty() : tensor<12x2x56x56x32xf32>
// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_PACK_EMPTY]]
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP]]]
// CHECK-SAME: ins(%[[PACKED_ARG0]]
// CHECK-SAME: outs(%[[DEST]]
// CHECK: %[[UNPACKED:.+]] = tensor.unpack %[[RES]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[ARG0_UNPACK_EMPTY]]
// -----
func.func @pad_valid_unpack_propagation(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<1x58x58x64xf32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<1x56x56x64xf32>
%1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32>
%padded = tensor.pad %1 low[0, 1, 1, 0] high[0, 1, 1, 0] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst : f32
} : tensor<1x56x56x64xf32> to tensor<1x58x58x64xf32>
return %padded : tensor<1x58x58x64xf32>
}
// CHECK-LABEL: func.func @pad_valid_unpack_propagation(
// CHECK-SAME: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>)
// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[PADDED:.+]] = tensor.pad %[[ARG0]] low[0, 0, 1, 1, 0] high[0, 0, 1, 1, 0]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x58x58x64xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[PADDED]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[EMPTY]] : tensor<1x2x58x58x32xf32> -> tensor<1x58x58x64xf32>
// -----
func.func @pad_valid_unpack_propagation(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<2x58x58x64xf32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<1x56x56x64xf32>
%1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32>
%padded = tensor.pad %1 low[1, 1, 1, 0] high[0, 1, 1, 0] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst : f32
} : tensor<1x56x56x64xf32> to tensor<2x58x58x64xf32>
return %padded : tensor<2x58x58x64xf32>
}
// CHECK-LABEL: func.func @pad_valid_unpack_propagation(
// CHECK-SAME: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>)
// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[PADDED:.+]] = tensor.pad %[[ARG0]] low[1, 0, 1, 1, 0] high[0, 0, 1, 1, 0]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<2x58x58x64xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[PADDED]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[EMPTY]] : tensor<2x2x58x58x32xf32> -> tensor<2x58x58x64xf32>
// -----
func.func @pad_along_unpacked_dim(%arg0: tensor<1x2x56x56x32xf32>) -> tensor<1x58x58x66xf32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<1x56x56x64xf32>
%1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %0 : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32>
%padded = tensor.pad %1 low[0, 1, 1, 1] high[0, 1, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst : f32
} : tensor<1x56x56x64xf32> to tensor<1x58x58x66xf32>
return %padded : tensor<1x58x58x66xf32>
}
// CHECK-LABEL: func.func @pad_along_unpacked_dim(
// CHECK: %[[ARG0:.+]]: tensor<1x2x56x56x32xf32>)
// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x56x56x64xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[EMPTY]] : tensor<1x2x56x56x32xf32> -> tensor<1x56x56x64xf32>
// CHECK: %[[PADDED:.+]] = tensor.pad %[[UNPACK]] low[0, 1, 1, 1] high[0, 1, 1, 1]
// -----
func.func @pad_valid_pack_propagation(%arg0: tensor<1x64x56x56xf32>) -> tensor<1x2x58x58x32xf32> {
%cst = arith.constant 0.000000e+00 : f32
%padded = tensor.pad %arg0 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst : f32
} : tensor<1x64x56x56xf32> to tensor<1x64x58x58xf32>
%0 = tensor.empty() : tensor<1x2x58x58x32xf32>
%1 = tensor.pack %padded inner_dims_pos = [1] inner_tiles = [32] into %0 : tensor<1x64x58x58xf32> -> tensor<1x2x58x58x32xf32>
return %1 : tensor<1x2x58x58x32xf32>
}
// CHECK-LABEL: func.func @pad_valid_pack_propagation(
// CHECK-SAME: %[[ARG0:.+]]: tensor<1x64x56x56xf32>)
// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x2x56x56x32xf32>
// CHECK: %[[PACKED:.+]] = tensor.pack %[[ARG0]] inner_dims_pos = [1] inner_tiles = [32]
// CHECK-SAME: into %[[EMPTY]] : tensor<1x64x56x56xf32> -> tensor<1x2x56x56x32xf32>
// CHECK: %[[PADDED:.+]] = tensor.pad %[[PACKED]] low[0, 0, 1, 1, 0] high[0, 0, 1, 1, 0]
// CHECK: return %[[PADDED]]
// -----
func.func @pad_valid_outer_dims_pack_propagation(%arg0: tensor<1x64x56x56xf32>) -> tensor<1x58x58x2x32xf32> {
%cst = arith.constant 0.000000e+00 : f32
%padded = tensor.pad %arg0 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst : f32
} : tensor<1x64x56x56xf32> to tensor<1x64x58x58xf32>
%0 = tensor.empty() : tensor<1x58x58x2x32xf32>
%1 = tensor.pack %padded outer_dims_perm = [0, 3, 2, 1] inner_dims_pos = [1] inner_tiles = [32] into %0 : tensor<1x64x58x58xf32> -> tensor<1x58x58x2x32xf32>
return %1 : tensor<1x58x58x2x32xf32>
}
// CHECK-LABEL: func.func @pad_valid_outer_dims_pack_propagation(
// CHECK-SAME: %[[ARG0:.+]]: tensor<1x64x56x56xf32>)
// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x56x56x2x32xf32>
// CHECK: %[[PACKED:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 2, 1] inner_dims_pos = [1] inner_tiles = [32]
// CHECK-SAME: into %[[EMPTY]] : tensor<1x64x56x56xf32> -> tensor<1x56x56x2x32xf32>
// CHECK: %[[PADDED:.+]] = tensor.pad %[[PACKED]] low[0, 1, 1, 0, 0] high[0, 1, 1, 0, 0]
// CHECK: return %[[PADDED]]
// -----
func.func @pad_along_packed_dim(%arg0: tensor<1x60x56x56xf32>) -> tensor<1x2x58x58x32xf32> {
%cst = arith.constant 0.000000e+00 : f32
%padded = tensor.pad %arg0 low[0, 2, 1, 1] high[0, 2, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst : f32
} : tensor<1x60x56x56xf32> to tensor<1x64x58x58xf32>
%0 = tensor.empty() : tensor<1x2x58x58x32xf32>
%1 = tensor.pack %padded inner_dims_pos = [1] inner_tiles = [32] into %0 : tensor<1x64x58x58xf32> -> tensor<1x2x58x58x32xf32>
return %1 : tensor<1x2x58x58x32xf32>
}
// CHECK-LABEL: func.func @pad_along_packed_dim(
// CHECK-SAME: %[[ARG0:.+]]: tensor<1x60x56x56xf32>)
// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[PADDED:.+]] = tensor.pad %[[ARG0]] low[0, 2, 1, 1] high[0, 2, 1, 1]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x2x58x58x32xf32>
// CHECK: tensor.pack %[[PADDED]] inner_dims_pos = [1] inner_tiles = [32]
// CHECK-SAME: into %[[EMPTY]] : tensor<1x64x58x58xf32> -> tensor<1x2x58x58x32xf32>
// -----
func.func @multi_use_pad_pack_propagation(%arg0: tensor<1x64x56x56xf32>) -> (tensor<1x64x58x58xf32>, tensor<1x2x58x58x32xf32>) {
%cst = arith.constant 0.000000e+00 : f32
%padded = tensor.pad %arg0 low[0, 0, 1, 1] high[0, 0, 1, 1] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst : f32
} : tensor<1x64x56x56xf32> to tensor<1x64x58x58xf32>
%0 = tensor.empty() : tensor<1x2x58x58x32xf32>
%1 = tensor.pack %padded inner_dims_pos = [1] inner_tiles = [32] into %0 : tensor<1x64x58x58xf32> -> tensor<1x2x58x58x32xf32>
return %padded, %1 : tensor<1x64x58x58xf32>, tensor<1x2x58x58x32xf32>
}
// CHECK-LABEL: func.func @multi_use_pad_pack_propagation(
// CHECK-SAME: %[[ARG0:.+]]: tensor<1x64x56x56xf32>)
// CHECK: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x2x56x56x32xf32>
// CHECK: %[[PACKED:.+]] = tensor.pack %[[ARG0]] inner_dims_pos = [1] inner_tiles = [32]
// CHECK-SAME: into %[[EMPTY]] : tensor<1x64x56x56xf32> -> tensor<1x2x56x56x32xf32>
// CHECK: %[[PADDED:.+]] = tensor.pad %[[PACKED]] low[0, 0, 1, 1, 0] high[0, 0, 1, 1, 0]
// CHECK: %[[UNPACKED:.+]] = tensor.unpack %[[PADDED]] inner_dims_pos = [1] inner_tiles = [32]
// CHECK: return %[[UNPACKED]], %[[PADDED]]
// -----
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func.func @would_break_dominance(%arg0: tensor<128x256xi32>) -> tensor<4x16x16x32xi32>{
%init = tensor.empty() : tensor<128x256xi32>
%elem = linalg.generic {indexing_maps = [#map0, #map0], iterator_types = ["parallel", "parallel"]}
ins(%arg0 : tensor<128x256xi32>)
outs(%init : tensor<128x256xi32>) {
^bb0(%arg3: i32, %arg4: i32):
%4 = arith.addi %arg3, %arg3 : i32
linalg.yield %4 : i32
} -> tensor<128x256xi32>
%dest = bufferization.alloc_tensor() : tensor<4x16x16x32xi32>
%pack = tensor.pack %elem
inner_dims_pos = [1, 0]
inner_tiles = [16, 32]
into %dest : tensor<128x256xi32> -> tensor<4x16x16x32xi32>
return %pack : tensor<4x16x16x32xi32>
}
// CHECK-LABEL: func.func @would_break_dominance(
// CHECK-SAME: %[[ARG0:.+]]: tensor<128x256xi32>)
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<128x256xi32>
// CHECK-NEXT: %[[GEN:.+]] = linalg.generic
// CHECK-SAME: ins(%[[ARG0]]
// CHECK-SAME: outs(%[[EMPTY]]
// CHECK: %[[ALLOC:.+]] = bufferization.alloc_tensor() : tensor<4x16x16x32xi32>
// CHECK-NEXT: %{{.+}} = tensor.pack %[[GEN]]
// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
// CHECK-SAME: into %[[ALLOC]]
// -----
#map0 = affine_map<(d0, d1, d2, d3) -> ()>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @scalar_tensor(%arg0 : tensor<f32>) -> tensor<1x32x7x7x32xf32> {
%empty_gen = tensor.empty() : tensor<1x7x7x1024xf32>
%gen = linalg.generic {indexing_maps = [#map0, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0 : tensor<f32>) outs(%empty_gen : tensor<1x7x7x1024xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<1x7x7x1024xf32>
%empty_pack = tensor.empty() : tensor<1x32x7x7x32xf32>
%pack = tensor.pack %gen outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [32] into %empty_pack : tensor<1x7x7x1024xf32> -> tensor<1x32x7x7x32xf32>
return %pack : tensor<1x32x7x7x32xf32>
}
// CHECK-DAG: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4) -> ()>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func.func @scalar_tensor
// CHECK-SAME: %[[ARG0:.+]]: tensor<f32>)
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x32x7x7x32xf32>
// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP1]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]
// CHECK-SAME: ins(%[[ARG0]]
// CHECK-SAME: outs(%[[EMPTY]]
// -----
#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @unpack_empty_inner_dims(%arg0: tensor<12x64x56x56xf32>) -> tensor<12x56x56x64xf32> {
%init = tensor.empty() : tensor<12x56x56x64xf32>
%0 = tensor.empty() : tensor<12x56x56x64xf32>
%1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = [] into %0 : tensor<12x64x56x56xf32> -> tensor<12x56x56x64xf32>
%2 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1: tensor<12x56x56x64xf32>) outs(%init : tensor<12x56x56x64xf32>) {
^bb0(%in: f32, %out: f32):
%3 = arith.addf %in, %in : f32
linalg.yield %3 : f32
} -> tensor<12x56x56x64xf32>
return %2 : tensor<12x56x56x64xf32>
}
// CHECK-LABEL: func.func @unpack_empty_inner_dims
// CHECK: %[[UNPACKED_ARG0:.+]] = tensor.unpack
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = []
// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[UNPACKED_ARG0]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = []
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: ins(%[[PACKED_ARG0]]
// CHECK: %[[UNPACKED:.+]] = tensor.unpack %[[RES]]
// CHECK-SAME: outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [] inner_tiles = []
// -----
#map0 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d0, d1)>
func.func @reduction_pack_transpose_inner_dims(%arg0: tensor<128x256x32xi32>,
%arg1: tensor<128x256xi32>) -> tensor<4x16x16x32xi32>{
%elem = linalg.generic {indexing_maps = [#map0, #map1], iterator_types = ["parallel", "parallel", "reduction"]}
ins(%arg0 : tensor<128x256x32xi32>)
outs(%arg1 : tensor<128x256xi32>) {
^bb0(%arg3: i32, %arg4: i32):
%4 = arith.addi %arg3, %arg4 : i32
linalg.yield %4 : i32
} -> tensor<128x256xi32>
%dest = tensor.empty() : tensor<4x16x16x32xi32>
%pack = tensor.pack %elem
inner_dims_pos = [1, 0]
inner_tiles = [16, 32]
into %dest : tensor<128x256xi32> -> tensor<4x16x16x32xi32>
return %pack : tensor<4x16x16x32xi32>
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d3, d4)>
// CHECK-LABEL: func.func @reduction_pack_transpose_inner_dims
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[ARG1_EMPTY:.+]] = tensor.empty() : tensor<4x16x16x32xi32>
// CHECK: %[[PACK_ARG1:.+]] = tensor.pack %[[ARG1]]
// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
// CHECK-SAME: into %[[ARG1_EMPTY]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x32x16x32xi32>
// CHECK: %[[PACK_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 32]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK: %[[RED:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel"]
// CHECK-SAME: ins(%[[PACK_ARG0]]
// CHECK-SAME: outs(%[[PACK_ARG1]]
// CHECK: return %[[RED]] : tensor<4x16x16x32xi32>
// -----
func.func @reduction_pack_with_outer_dims(%arg0: tensor<100x128x200x256xi32>, %arg1: tensor<100xi32>,
%arg2: tensor<128xi32>, %init_reduction: tensor<100x128x256xi32>) -> tensor<4x16x100x16x32xi32>
{
%reduction = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>,
affine_map<(d0, d1, d2, d3) -> (d0)>,
affine_map<(d0, d1, d2, d3) -> (d1)>,
affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>],
iterator_types = ["parallel", "parallel", "reduction", "parallel"]}
ins(%arg0, %arg1, %arg2 : tensor<100x128x200x256xi32>, tensor<100xi32>, tensor<128xi32>)
outs(%init_reduction : tensor<100x128x256xi32>) {
^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32):
%0 = arith.addi %b0, %b1 : i32
%1 = arith.addi %0, %b2 : i32
%2 = arith.addi %1, %b3 : i32
linalg.yield %2 : i32
} -> tensor<100x128x256xi32>
%init_pack = tensor.empty() : tensor<4x16x100x16x32xi32>
%4 = tensor.pack %reduction
outer_dims_perm = [1, 2, 0]
inner_dims_pos = [2, 1]
inner_tiles = [16, 32]
into %init_pack : tensor<100x128x256xi32> -> tensor<4x16x100x16x32xi32>
return %4 : tensor<4x16x100x16x32xi32>
}
// CHECK-DAG: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)>
// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d5)>
// CHECK-DAG: #[[$MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d3, d4, d5)>
// CHECK-LABEL: func.func @reduction_pack_with_outer_dims
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]
// CHECK: %[[ARG3_EMPTY:.+]] = tensor.empty() : tensor<4x16x100x16x32xi32>
// CHECK: %[[PACKED_ARG3:.+]] = tensor.pack %[[ARG3]]
// CHECK-SAME: outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 1] inner_tiles = [16, 32]
// CHECK-SAME: into %[[ARG3_EMPTY]]
// CHECK: %[[ARG0_EMPTY:.+]] = tensor.empty() : tensor<4x16x200x100x16x32xi32>
// CHECK: %[[PACKED_ARG0:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [1, 3, 2, 0] inner_dims_pos = [3, 1] inner_tiles = [16, 32]
// CHECK-SAME: into %[[ARG0_EMPTY]]
// CHECK: %[[ARG2_EMPTY:.+]] = tensor.empty() : tensor<4x32xi32>
// CHECK: %[[PACKED_ARG2:.+]] = tensor.pack %[[ARG2]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [32]
// CHECK-SAME: into %[[ARG2_EMPTY]]
// CHECK: %[[RES:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP]], #[[$MAP1]], #[[$MAP2]], #[[$MAP3]]]
// CHECK-SAME: ins(%[[PACKED_ARG0]], %[[ARG1]], %[[PACKED_ARG2]]
// CHECK-SAME: outs(%[[PACKED_ARG3]]
// -----
#map0 = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2 * 2 + d4, d3 * 2 + d5)>
#map1 = affine_map<(d0, d1, d2, d3, d4, d5) -> (d4, d5)>
#map2 = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d2, d3)>
func.func @unpack_different_destination_shape(%arg0: tensor<1x1x1080x1920x16xi32>,
%filter: tensor<2x2xi32>) -> tensor<16x540x960xi32>{
%init = tensor.empty() : tensor<16x540x960xi32>
%empty = tensor.empty() : tensor<1x16x1080x1920xi32>
%unpack = tensor.unpack %arg0
inner_dims_pos = [1]
inner_tiles = [16]
into %empty : tensor<1x1x1080x1920x16xi32> -> tensor<1x16x1080x1920xi32>
%pool = linalg.generic {indexing_maps = [#map0, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction"]}
ins(%unpack, %filter : tensor<1x16x1080x1920xi32>, tensor<2x2xi32>)
outs(%init : tensor<16x540x960xi32>) {
^bb0(%in: i32, %in_1: i32, %out: i32):
%max = arith.maxui %in, %in_1 : i32
linalg.yield %max : i32
} -> tensor<16x540x960xi32>
return %pool : tensor<16x540x960xi32>
}
// CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2 * 2 + d4, d3 * 2 + d5, d6)>
// CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5)>
// CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d1, d2, d3, d6)>
// CHECK-LABEL: func.func @unpack_different_destination_shape
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x540x960x16xi32>
// CHECK: %[[PACK_EMPTY:.+]] = tensor.empty() : tensor<1x1x1080x1920x16xi32>
// CHECK: %[[PACK_ARG0:.+]] = tensor.pack
// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [16]
// CHECK-SAME: into %[[PACK_EMPTY]]
// CHECK: %[[POOL:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
// CHECK-SAME: ins(%[[PACK_ARG0]], %[[ARG1]]
// CHECK-SAME: outs(%[[INIT]]
// CHECK: %[[UNPACK_NEW_DEST:.+]] = tensor.empty() : tensor<16x540x960xi32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[POOL]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [16]
// CHECK-SAME: into %[[UNPACK_NEW_DEST]]
// CHECK: return %[[UNPACK]] : tensor<16x540x960xi32>
// -----
func.func @bubble_up_pack_through_collapse(%1: tensor<?x16x4xf32>, %dim : index) -> tensor<?x4x8x1xf32> {
%collapsed = tensor.collapse_shape %1 [[0, 1], [2]] : tensor<?x16x4xf32> into tensor<?x4xf32>
%2 = tensor.empty(%dim) : tensor<?x4x8x1xf32>
%pack = tensor.pack %collapsed outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %2 : tensor<?x4xf32> -> tensor<?x4x8x1xf32>
func.return %pack : tensor<?x4x8x1xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_through_collapse
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x16x4xf32>
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM]]) : tensor<?x2x4x8x1xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [0, 1, 2] inner_dims_pos = [1, 2] inner_tiles = [8, 1] into %[[EMPTY]] : tensor<?x16x4xf32> -> tensor<?x2x4x8x1xf32>
// CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %[[PACK]] {{\[}}[0, 1], [2], [3], [4]] : tensor<?x2x4x8x1xf32> into tensor<?x4x8x1xf32>
// CHECK: return %[[COLLAPSED]] : tensor<?x4x8x1xf32>
// -----
func.func @bubble_up_pack_through_collapse_empty_outer_dims_perm(%1: tensor<?x16x4xf32>, %dim : index) -> tensor<?x4x8x1xf32> {
%collapsed = tensor.collapse_shape %1 [[0, 1], [2]] : tensor<?x16x4xf32> into tensor<?x4xf32>
%2 = tensor.empty(%dim) : tensor<?x4x8x1xf32>
%pack = tensor.pack %collapsed inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %2 : tensor<?x4xf32> -> tensor<?x4x8x1xf32>
func.return %pack : tensor<?x4x8x1xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_through_collapse_empty_outer_dims_perm
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x16x4xf32>
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM]]) : tensor<?x2x4x8x1xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] inner_dims_pos = [1, 2] inner_tiles = [8, 1] into %[[EMPTY]] : tensor<?x16x4xf32> -> tensor<?x2x4x8x1xf32>
// CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %[[PACK]] {{\[}}[0, 1], [2], [3], [4]] : tensor<?x2x4x8x1xf32> into tensor<?x4x8x1xf32>
// CHECK: return %[[COLLAPSED]] : tensor<?x4x8x1xf32>
// -----
func.func @bubble_up_permuted_pack_through_collapse(%1: tensor<4x192x16x256xf32>) -> tensor<4x32x3072x8x1xf32> {
%collapsed = tensor.collapse_shape %1 [[0], [1, 2], [3]] : tensor<4x192x16x256xf32> into tensor<4x3072x256xf32>
%2 = tensor.empty() : tensor<4x32x3072x8x1xf32>
%pack = tensor.pack %collapsed outer_dims_perm = [0, 2, 1] inner_dims_pos = [2, 1] inner_tiles = [8, 1] into %2 : tensor<4x3072x256xf32> -> tensor<4x32x3072x8x1xf32>
func.return %pack : tensor<4x32x3072x8x1xf32>
}
// CHECK-LABEL: func.func @bubble_up_permuted_pack_through_collapse
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<4x32x192x16x8x1xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3, 2] inner_tiles = [8, 1] into %[[EMPTY]] : tensor<4x192x16x256xf32> -> tensor<4x32x192x16x8x1xf32>
// CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %pack {{\[}}[0], [1], [2, 3], [4], [5]] : tensor<4x32x192x16x8x1xf32> into tensor<4x32x3072x8x1xf32>
// CHECK: return %[[COLLAPSED]] : tensor<4x32x3072x8x1xf32>
// -----
func.func @bubble_up_pack_through_unit_collapse(%1: tensor<1x64x1x4xf32>) -> tensor<8x4x8x1xf32> {
%collapsed = tensor.collapse_shape %1 [[0, 1, 2], [3]] : tensor<1x64x1x4xf32> into tensor<64x4xf32>
%2 = tensor.empty() : tensor<8x4x8x1xf32>
%pack = tensor.pack %collapsed outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %2 : tensor<64x4xf32> -> tensor<8x4x8x1xf32>
func.return %pack : tensor<8x4x8x1xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_through_unit_collapse
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<1x8x1x4x8x1xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [0, 1, 2, 3] inner_dims_pos = [1, 3] inner_tiles = [8, 1] into %[[EMPTY]] : tensor<1x64x1x4xf32> -> tensor<1x8x1x4x8x1xf32>
// CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %[[PACK]] {{\[}}[0, 1, 2], [3], [4], [5]] : tensor<1x8x1x4x8x1xf32> into tensor<8x4x8x1xf32>
// CHECK: return %[[COLLAPSED]] : tensor<8x4x8x1xf32>
// -----
func.func @bubble_up_pack_through_collapse_on_outer_dims(%1: tensor<?x16x4xf32>, %dim : index) -> tensor<?x1x4xf32> {
%collapsed = tensor.collapse_shape %1 [[0, 1], [2]] : tensor<?x16x4xf32> into tensor<?x4xf32>
%2 = tensor.empty(%dim) : tensor<?x1x4xf32>
%pack = tensor.pack %collapsed outer_dims_perm = [0, 1] inner_dims_pos = [1] inner_tiles = [4] into %2 : tensor<?x4xf32> -> tensor<?x1x4xf32>
func.return %pack : tensor<?x1x4xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_through_collapse_on_outer_dims
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x16x4xf32>
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM]]) : tensor<?x16x1x4xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [0, 1, 2] inner_dims_pos = [2] inner_tiles = [4] into %[[EMPTY]] : tensor<?x16x4xf32> -> tensor<?x16x1x4xf32>
// CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %[[PACK]] {{\[}}[0, 1], [2], [3]] : tensor<?x16x1x4xf32> into tensor<?x1x4xf32>
// CHECK: return %[[COLLAPSED]] : tensor<?x1x4xf32>
// -----
func.func @no_bubble_up_pack_through_non_divisible_collapse(%1: tensor<3072x64x4xf32>) -> tensor<384x32x8x8xf32> {
%collapsed = tensor.collapse_shape %1 [[0], [1, 2]] : tensor<3072x64x4xf32> into tensor<3072x256xf32>
%2 = tensor.empty() : tensor<384x32x8x8xf32>
%pack = tensor.pack %collapsed outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %2 : tensor<3072x256xf32> -> tensor<384x32x8x8xf32>
func.return %pack : tensor<384x32x8x8xf32>
}
// CHECK-LABEL: func.func @no_bubble_up_pack_through_non_divisible_collapse
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %[[ARG0]] {{\[}}[0], [1, 2]] : tensor<3072x64x4xf32> into tensor<3072x256xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[COLLAPSED]]
// CHECK: return %[[PACK]] : tensor<384x32x8x8xf32>
// -----
func.func @bubble_up_pack_outer_expanded_through_expand(%arg0: tensor<32x64xf32>) -> tensor<4x2x64x4xf32> {
%empty = tensor.empty() : tensor<4x2x64x4xf32>
%expanded = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [4, 8, 64] : tensor<32x64xf32> into tensor<4x8x64xf32>
%pack = tensor.pack %expanded inner_dims_pos = [1] inner_tiles = [4] into %empty : tensor<4x8x64xf32> -> tensor<4x2x64x4xf32>
return %pack : tensor<4x2x64x4xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_outer_expanded_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<8x64x4xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [4] into %[[EMPTY]] : tensor<32x64xf32> -> tensor<8x64x4xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[PACK]] {{\[}}[0, 1], [2], [3]]
// CHECK-SAME: output_shape [4, 2, 64, 4] : tensor<8x64x4xf32> into tensor<4x2x64x4xf32>
// CHECK: return %[[EXPANDED]] : tensor<4x2x64x4xf32>
// -----
func.func @bubble_up_pack_inner_expanded_through_expand(%arg0: tensor<32x64xf32>) -> tensor<32x4x4x4xf32> {
%empty = tensor.empty() : tensor<32x4x4x4xf32>
%expanded = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [32, 4, 16] : tensor<32x64xf32> into tensor<32x4x16xf32>
%pack = tensor.pack %expanded inner_dims_pos = [2] inner_tiles = [4] into %empty : tensor<32x4x16xf32> -> tensor<32x4x4x4xf32>
return %pack : tensor<32x4x4x4xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_inner_expanded_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<32x16x4xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [4] into %[[EMPTY]]
// CHECK-SAME: : tensor<32x64xf32> -> tensor<32x16x4xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[PACK]] {{\[}}[0], [1, 2], [3]]
// CHECK-SAME: output_shape [32, 4, 4, 4] : tensor<32x16x4xf32> into tensor<32x4x4x4xf32>
// CHECK: return %[[EXPANDED]] : tensor<32x4x4x4xf32>
// -----
func.func @bubble_up_pack_non_expanded_dims_through_expand(%arg0: tensor<32x64x16xf32>) -> tensor<8x2x32x16x4xf32> {
%empty = tensor.empty() : tensor<8x2x32x16x4xf32>
%expanded = tensor.expand_shape %arg0 [[0], [1, 2], [3]] output_shape [32, 2, 32, 16] : tensor<32x64x16xf32> into tensor<32x2x32x16xf32>
%pack = tensor.pack %expanded inner_dims_pos = [0] inner_tiles = [4] into %empty : tensor<32x2x32x16xf32> -> tensor<8x2x32x16x4xf32>
return %pack : tensor<8x2x32x16x4xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_non_expanded_dims_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<8x64x16x4xf32>
// CHECK: %[[PACK:.+]] = tensor.pack
// CHECK-SAME: %[[ARG0]] inner_dims_pos = [0] inner_tiles = [4] into %[[EMPTY]]
// CHECK-SAME: : tensor<32x64x16xf32> -> tensor<8x64x16x4xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[PACK]] {{\[}}[0], [1, 2], [3], [4]]
// CHECK-SAME: output_shape [8, 2, 32, 16, 4] : tensor<8x64x16x4xf32> into tensor<8x2x32x16x4xf32>
// CHECK: return %[[EXPANDED]] : tensor<8x2x32x16x4xf32>
// -----
func.func @bubble_up_pack_through_expand_dynamic(%arg0: tensor<?x64xf32>) -> tensor<?x4x2x8xf32> {
%c0 = arith.constant 0 : index
%dim = tensor.dim %arg0, %c0 : tensor<?x64xf32>
%empty = tensor.empty(%dim) : tensor<?x4x2x8xf32>
%expanded = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [%dim, 4, 16] : tensor<?x64xf32> into tensor<?x4x16xf32>
%pack = tensor.pack %expanded inner_dims_pos = [2] inner_tiles = [8] into %empty : tensor<?x4x16xf32> -> tensor<?x4x2x8xf32>
return %pack : tensor<?x4x2x8xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_through_expand_dynamic(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM_INPUT:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x64xf32>
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM_INPUT]]) : tensor<?x8x8xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [8] into %[[EMPTY]]
// CHECK-SAME: : tensor<?x64xf32> -> tensor<?x8x8xf32>
// CHECK: %[[DIM_PACK:.+]] = tensor.dim %[[PACK]], %[[C0]] : tensor<?x8x8xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[PACK]] {{\[}}[0], [1, 2], [3]]
// CHECK-SAME: output_shape [%[[DIM_PACK]], 4, 2, 8] : tensor<?x8x8xf32> into tensor<?x4x2x8xf32>
// CHECK: return %[[EXPANDED]] : tensor<?x4x2x8xf32>
// -----
func.func @bubble_up_pack_non_expanded_padding_through_expand(%arg0: tensor<32x60xf32>) -> tensor<4x2x8x4x8xf32> {
%cst = arith.constant 3.000000e+00 : f32
%empty = tensor.empty() : tensor<4x2x8x4x8xf32>
%expanded = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [4, 8, 64] : tensor<32x60xf32> into tensor<4x8x60xf32>
%pack = tensor.pack %expanded padding_value(%cst : f32) inner_dims_pos = [1, 2] inner_tiles = [4, 8] into %empty : tensor<4x8x60xf32> -> tensor<4x2x8x4x8xf32>
return %pack : tensor<4x2x8x4x8xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_non_expanded_padding_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-DAG: %[[CST:.+]] = arith.constant 3.000000e+00 : f32
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<8x8x4x8xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] padding_value(%[[CST]] : f32)
// CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [4, 8] into %[[EMPTY]]
// CHECK-SAME: : tensor<32x60xf32> -> tensor<8x8x4x8xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[PACK]] {{\[}}[0, 1], [2], [3], [4]]
// CHECK-SAME: output_shape [4, 2, 8, 4, 8] : tensor<8x8x4x8xf32> into tensor<4x2x8x4x8xf32>
// CHECK: return %[[EXPANDED]] : tensor<4x2x8x4x8xf32>
// -----
func.func @bubble_up_pack_outer_dims_perm_identity_through_expand(%arg0: tensor<32x64xf32>) -> tensor<4x2x32x4x2xf32> {
%empty = tensor.empty() : tensor<4x2x32x4x2xf32>
%expanded = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [4, 8, 64] : tensor<32x64xf32> into tensor<4x8x64xf32>
%pack = tensor.pack %expanded outer_dims_perm = [0, 1, 2] inner_dims_pos = [1, 2] inner_tiles = [4, 2] into %empty : tensor<4x8x64xf32> -> tensor<4x2x32x4x2xf32>
return %pack : tensor<4x2x32x4x2xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_outer_dims_perm_identity_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<8x32x4x2xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [4, 2] into %[[EMPTY]]
// CHECK-SAME: : tensor<32x64xf32> -> tensor<8x32x4x2xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[PACK]] {{\[}}[0, 1], [2], [3], [4]]
// CHECK-SAME: output_shape [4, 2, 32, 4, 2] : tensor<8x32x4x2xf32> into tensor<4x2x32x4x2xf32>
// CHECK: return %[[EXPANDED]] : tensor<4x2x32x4x2xf32>
// -----
func.func @bubble_up_pack_multiple_dims_through_expand(%arg0: tensor<32x64x16xf32>) -> tensor<8x2x4x8x4x8x2xf32> {
%empty = tensor.empty() : tensor<8x2x4x8x4x8x2xf32>
%expanded = tensor.expand_shape %arg0 [[0], [1, 2], [3]] output_shape [32, 2, 32, 16] : tensor<32x64x16xf32> into tensor<32x2x32x16xf32>
%pack = tensor.pack %expanded inner_dims_pos = [0, 2, 3] inner_tiles = [4, 8, 2] into %empty : tensor<32x2x32x16xf32> -> tensor<8x2x4x8x4x8x2xf32>
return %pack : tensor<8x2x4x8x4x8x2xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_multiple_dims_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<8x8x8x4x8x2xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [0, 1, 2] inner_tiles = [4, 8, 2] into %[[EMPTY]]
// CHECK-SAME: : tensor<32x64x16xf32> -> tensor<8x8x8x4x8x2xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[PACK]] {{\[}}[0], [1, 2], [3], [4], [5], [6]]
// CHECK-SAME: output_shape [8, 2, 4, 8, 4, 8, 2] : tensor<8x8x8x4x8x2xf32> into tensor<8x2x4x8x4x8x2xf32>
// CHECK: return %[[EXPANDED]] : tensor<8x2x4x8x4x8x2xf32>
// -----
func.func @bubble_up_pack_inner_dims_reorder_through_expand(%arg0: tensor<32x64xf32>) -> tensor<4x2x4x16x4xf32> {
%empty = tensor.empty() : tensor<4x2x4x16x4xf32>
%expanded = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [4, 8, 64] : tensor<32x64xf32> into tensor<4x8x64xf32>
%pack = tensor.pack %expanded inner_dims_pos = [2, 1] inner_tiles = [16, 4] into %empty : tensor<4x8x64xf32> -> tensor<4x2x4x16x4xf32>
return %pack : tensor<4x2x4x16x4xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_inner_dims_reorder_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<8x4x16x4xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [16, 4] into %[[EMPTY]]
// CHECK-SAME: : tensor<32x64xf32> -> tensor<8x4x16x4xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[PACK]] {{\[}}[0, 1], [2], [3], [4]]
// CHECK-SAME: output_shape [4, 2, 4, 16, 4] : tensor<8x4x16x4xf32> into tensor<4x2x4x16x4xf32>
// CHECK: return %[[EXPANDED]] : tensor<4x2x4x16x4xf32>
// -----
func.func @bubble_up_pack_multiple_different_expanded_dims_through_expand(%arg0: tensor<32x64x16xf32>) -> tensor<4x2x2x8x16x4x4xf32> {
%empty = tensor.empty() : tensor<4x2x2x8x16x4x4xf32>
%expanded = tensor.expand_shape %arg0 [[0, 1], [2, 3], [4]] output_shape [4, 8, 2, 32, 16] : tensor<32x64x16xf32> into tensor<4x8x2x32x16xf32>
%pack = tensor.pack %expanded inner_dims_pos = [1, 3] inner_tiles = [4, 4] into %empty : tensor<4x8x2x32x16xf32> -> tensor<4x2x2x8x16x4x4xf32>
return %pack : tensor<4x2x2x8x16x4x4xf32>
}
// CHECK-LABEL: func.func @bubble_up_pack_multiple_different_expanded_dims_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<8x16x16x4x4xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [4, 4] into %[[EMPTY]]
// CHECK-SAME: : tensor<32x64x16xf32> -> tensor<8x16x16x4x4xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[PACK]] {{\[}}[0, 1], [2, 3], [4], [5], [6]]
// CHECK-SAME: output_shape [4, 2, 2, 8, 16, 4, 4] : tensor<8x16x16x4x4xf32> into tensor<4x2x2x8x16x4x4xf32>
// CHECK: return %[[EXPANDED]] : tensor<4x2x2x8x16x4x4xf32>
// -----
func.func @no_bubble_up_pack_outer_dims_permutation_through_expand(%arg0: tensor<32x64xf32>) -> tensor<32x4x2x4x2xf32> {
%empty = tensor.empty() : tensor<32x4x2x4x2xf32>
%expanded = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [4, 8, 64] : tensor<32x64xf32> into tensor<4x8x64xf32>
%pack = tensor.pack %expanded outer_dims_perm = [2, 0, 1] inner_dims_pos = [1, 2] inner_tiles = [4, 2] into %empty : tensor<4x8x64xf32> -> tensor<32x4x2x4x2xf32>
return %pack : tensor<32x4x2x4x2xf32>
}
// CHECK-LABEL: func.func @no_bubble_up_pack_outer_dims_permutation_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<32x4x2x4x2xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2]]
// CHECK-SAME: output_shape [4, 8, 64] : tensor<32x64xf32> into tensor<4x8x64xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[EXPANDED]]
// CHECK-SAME: outer_dims_perm = [2, 0, 1] inner_dims_pos = [1, 2] inner_tiles = [4, 2] into %[[EMPTY]]
// CHECK-SAME: : tensor<4x8x64xf32> -> tensor<32x4x2x4x2xf32>
// CHECK: return %[[PACK]] : tensor<32x4x2x4x2xf32>
// -----
func.func @no_bubble_up_pack_multiple_same_expanded_dim_through_expand(%arg0: tensor<32x64xf32>) -> tensor<2x2x64x2x4xf32> {
%empty = tensor.empty() : tensor<2x2x64x2x4xf32>
%expanded = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [4, 8, 64] : tensor<32x64xf32> into tensor<4x8x64xf32>
%pack = tensor.pack %expanded inner_dims_pos = [0, 1] inner_tiles = [2, 4] into %empty : tensor<4x8x64xf32> -> tensor<2x2x64x2x4xf32>
return %pack : tensor<2x2x64x2x4xf32>
}
// CHECK-LABEL: func.func @no_bubble_up_pack_multiple_same_expanded_dim_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<2x2x64x2x4xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2]]
// CHECK-SAME: output_shape [4, 8, 64] : tensor<32x64xf32> into tensor<4x8x64xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[EXPANDED]]
// CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [2, 4] into %[[EMPTY]]
// CHECK-SAME: : tensor<4x8x64xf32> -> tensor<2x2x64x2x4xf32>
// CHECK: return %[[PACK]] : tensor<2x2x64x2x4xf32>
// -----
func.func @no_bubble_up_pack_non_innermost_expanded_dim_through_expand(%arg0: tensor<32x64xf32>) -> tensor<2x8x64x2xf32> {
%empty = tensor.empty() : tensor<2x8x64x2xf32>
%expanded = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [4, 8, 64] : tensor<32x64xf32> into tensor<4x8x64xf32>
%pack = tensor.pack %expanded inner_dims_pos = [0] inner_tiles = [2] into %empty : tensor<4x8x64xf32> -> tensor<2x8x64x2xf32>
return %pack : tensor<2x8x64x2xf32>
}
// CHECK-LABEL: func.func @no_bubble_up_pack_non_innermost_expanded_dim_through_expand(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<2x8x64x2xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2]]
// CHECK-SAME: output_shape [4, 8, 64] : tensor<32x64xf32> into tensor<4x8x64xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[EXPANDED]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [2] into %[[EMPTY]]
// CHECK-SAME: : tensor<4x8x64xf32> -> tensor<2x8x64x2xf32>
// CHECK: return %[[PACK]] : tensor<2x8x64x2xf32>
// -----
func.func @no_bubble_up_pack_expanded_padding_through_expand_cannot_reassociate(%arg0: tensor<30x60xf32>) -> tensor<3x2x60x8xf32> {
%cst = arith.constant 3.000000e+00 : f32
%empty = tensor.empty() : tensor<3x2x60x8xf32>
%expanded = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [3, 10, 60] : tensor<30x60xf32> into tensor<3x10x60xf32>
%pack = tensor.pack %expanded padding_value(%cst : f32) inner_dims_pos = [1] inner_tiles = [8] into %empty : tensor<3x10x60xf32> -> tensor<3x2x60x8xf32>
return %pack : tensor<3x2x60x8xf32>
}
// CHECK-LABEL: func.func @no_bubble_up_pack_expanded_padding_through_expand_cannot_reassociate(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-DAG: %[[CST:.+]] = arith.constant 3.000000e+00 : f32
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<3x2x60x8xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2]]
// CHECK-SAME: output_shape [3, 10, 60] : tensor<30x60xf32> into tensor<3x10x60xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[EXPANDED]] padding_value(%[[CST]] : f32)
// CHECK-SAME: inner_dims_pos = [1] inner_tiles = [8] into %[[EMPTY]]
// CHECK-SAME: : tensor<3x10x60xf32> -> tensor<3x2x60x8xf32>
// CHECK: return %[[PACK]] : tensor<3x2x60x8xf32>
// -----
func.func @no_bubble_up_pack_extending_dimension_through_expand_cannot_reassociate(%arg0: tensor<32x64xf32>) -> tensor<8x4x16x8xf32> {
%empty = tensor.empty() : tensor<8x4x16x8xf32>
%expanded = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [32, 4, 16] : tensor<32x64xf32> into tensor<32x4x16xf32>
%pack = tensor.pack %expanded inner_dims_pos = [0] inner_tiles = [8] into %empty : tensor<32x4x16xf32> -> tensor<8x4x16x8xf32>
return %pack : tensor<8x4x16x8xf32>
}
// CHECK-LABEL: func.func @no_bubble_up_pack_extending_dimension_through_expand_cannot_reassociate(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<8x4x16x8xf32>
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0], [1, 2]]
// CHECK-SAME: output_shape [32, 4, 16] : tensor<32x64xf32> into tensor<32x4x16xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[EXPANDED]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [8] into %[[EMPTY]]
// CHECK-SAME: : tensor<32x4x16xf32> -> tensor<8x4x16x8xf32>
// CHECK: return %[[PACK]] : tensor<8x4x16x8xf32>
// -----
func.func @push_down_unpack_through_expand(%5: tensor<?x32x8x8xf32>, %dim: index, %sz0: index) -> tensor<?x256x256xf32> {
%6 = tensor.empty(%dim) : tensor<?x256xf32>
%unpack = tensor.unpack %5 outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %6 : tensor<?x32x8x8xf32> -> tensor<?x256xf32>
%expanded = tensor.expand_shape %unpack [[0, 1], [2]] output_shape [%sz0, 256, 256] : tensor<?x256xf32> into tensor<?x256x256xf32>
func.return %expanded : tensor<?x256x256xf32>
}
// CHECK-LABEL: func.func @push_down_unpack_through_expand
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[C32:.+]] = arith.constant 32 : index
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM0:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x32x8x8xf32>
// CHECK: %[[SZ0:.+]] = arith.divui %[[DIM0]], %[[C32]] : index
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2], [3], [4]] output_shape [%[[SZ0]], 32, 32, 8, 8] : tensor<?x32x8x8xf32> into tensor<?x32x32x8x8xf32>
// CHECK: %[[DIM:.+]] = tensor.dim %[[EXPANDED]], %[[C0]] : tensor<?x32x32x8x8xf32>
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM]]) : tensor<?x256x256xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[EXPANDED:.+]] outer_dims_perm = [0, 1, 2] inner_dims_pos = [1, 2] inner_tiles = [8, 8] into %[[EMPTY]] : tensor<?x32x32x8x8xf32> -> tensor<?x256x256xf32>
// CHECK: return %[[UNPACK]] : tensor<?x256x256xf32>
// -----
func.func @push_down_unpack_through_expand_empty_outer_dims_perm(%5: tensor<?x32x8x8xf32>, %dim: index, %sz0: index) -> tensor<?x256x256xf32> {
%6 = tensor.empty(%dim) : tensor<?x256xf32>
%unpack = tensor.unpack %5 inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %6 : tensor<?x32x8x8xf32> -> tensor<?x256xf32>
%expanded = tensor.expand_shape %unpack [[0, 1], [2]] output_shape [%sz0, 256, 256] : tensor<?x256xf32> into tensor<?x256x256xf32>
func.return %expanded : tensor<?x256x256xf32>
}
// CHECK-LABEL: func.func @push_down_unpack_through_expand_empty_outer_dims_perm
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[C32:.+]] = arith.constant 32 : index
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM0:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x32x8x8xf32>
// CHECK: %[[SZ0:.+]] = arith.divui %[[DIM0]], %[[C32]] : index
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2], [3], [4]] output_shape [%[[SZ0]], 32, 32, 8, 8] : tensor<?x32x8x8xf32> into tensor<?x32x32x8x8xf32>
// CHECK: %[[DIM:.+]] = tensor.dim %[[EXPANDED]], %[[C0]] : tensor<?x32x32x8x8xf32>
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM]]) : tensor<?x256x256xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[EXPANDED:.+]] inner_dims_pos = [1, 2] inner_tiles = [8, 8] into %[[EMPTY]] : tensor<?x32x32x8x8xf32> -> tensor<?x256x256xf32>
// CHECK: return %[[UNPACK]] : tensor<?x256x256xf32>
// -----
func.func @push_down_permuted_unpack_through_expand(%5: tensor<4x32x384x8x8xf32>) -> tensor<4x12x256x256xf32> {
%6 = tensor.empty() : tensor<4x3072x256xf32>
%unpack = tensor.unpack %5 outer_dims_perm = [0, 2, 1] inner_dims_pos = [2, 1] inner_tiles = [8, 8] into %6 : tensor<4x32x384x8x8xf32> -> tensor<4x3072x256xf32>
%expanded = tensor.expand_shape %unpack [[0], [1, 2], [3]] output_shape [4, 12, 256, 256] : tensor<4x3072x256xf32> into tensor<4x12x256x256xf32>
func.return %expanded : tensor<4x12x256x256xf32>
}
// CHECK-LABEL: @push_down_permuted_unpack_through_expand
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0], [1], [2, 3], [4], [5]] output_shape [4, 32, 12, 32, 8, 8] : tensor<4x32x384x8x8xf32> into tensor<4x32x12x32x8x8xf32>
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<4x12x256x256xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[EXPANDED]] outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3, 2] inner_tiles = [8, 8] into %[[EMPTY]] : tensor<4x32x12x32x8x8xf32> -> tensor<4x12x256x256xf32>
// CHECK: return %[[UNPACK]] : tensor<4x12x256x256xf32>
// -----
func.func @push_down_unpack_through_unit_expand(%5: tensor<6x32x8x8xf32>) -> tensor<3x16x1x256xf32> {
%6 = tensor.empty() : tensor<48x256xf32>
%unpack = tensor.unpack %5 outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %6 : tensor<6x32x8x8xf32> -> tensor<48x256xf32>
%expanded = tensor.expand_shape %unpack [[0, 1, 2], [3]] output_shape [3, 16, 1, 256] : tensor<48x256xf32> into tensor<3x16x1x256xf32>
func.return %expanded : tensor<3x16x1x256xf32>
}
// CHECK-LABEL: func.func @push_down_unpack_through_unit_expand
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1, 2], [3], [4], [5]] output_shape [3, 2, 1, 32, 8, 8] : tensor<6x32x8x8xf32> into tensor<3x2x1x32x8x8xf32>
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<3x16x1x256xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[EXPANDED]] outer_dims_perm = [0, 1, 2, 3] inner_dims_pos = [1, 3] inner_tiles = [8, 8] into %[[EMPTY]] : tensor<3x2x1x32x8x8xf32> -> tensor<3x16x1x256xf32>
// CHECK: return %[[UNPACK]] : tensor<3x16x1x256xf32>
// -----
func.func @push_down_unpack_through_expand_on_outer_dims(%5: tensor<?x32x8xf32>, %dim: index, %sz0: index) -> tensor<?x256x256xf32> {
%6 = tensor.empty(%dim) : tensor<?x256xf32>
%unpack = tensor.unpack %5 outer_dims_perm = [0, 1] inner_dims_pos = [1] inner_tiles = [8] into %6 : tensor<?x32x8xf32> -> tensor<?x256xf32>
%expanded = tensor.expand_shape %unpack [[0, 1], [2]] output_shape [%sz0, 256, 256] : tensor<?x256xf32> into tensor<?x256x256xf32>
func.return %expanded : tensor<?x256x256xf32>
}
// CHECK-LABEL: func.func @push_down_unpack_through_expand_on_outer_dims
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
// CHECK: %[[C256:.+]] = arith.constant 256 : index
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM0:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x32x8xf32>
// CHECK: %[[SZ0:.+]] = arith.divui %[[DIM0]], %[[C256]] : index
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2], [3]] output_shape [%[[SZ0]], 256, 32, 8] : tensor<?x32x8xf32> into tensor<?x256x32x8xf32>
// CHECK: %[[DIM:.+]] = tensor.dim %[[EXPANDED]], %[[C0]] : tensor<?x256x32x8xf32>
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM]]) : tensor<?x256x256xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[EXPANDED:.+]] outer_dims_perm = [0, 1, 2] inner_dims_pos = [2] inner_tiles = [8] into %[[EMPTY]] : tensor<?x256x32x8xf32> -> tensor<?x256x256xf32>
// CHECK: return %[[UNPACK]] : tensor<?x256x256xf32>
// -----
func.func @no_push_down_unpack_through_non_divisible_expand(%5: tensor<384x32x8x8xf32>) -> tensor<256x12x256xf32> {
%6 = tensor.empty() : tensor<3072x256xf32>
%unpack = tensor.unpack %5 outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %6 : tensor<384x32x8x8xf32> -> tensor<3072x256xf32>
%expanded = tensor.expand_shape %unpack [[0, 1], [2]] output_shape [256, 12, 256] : tensor<3072x256xf32> into tensor<256x12x256xf32>
func.return %expanded : tensor<256x12x256xf32>
}
// CHECK-LABEL: func.func @no_push_down_unpack_through_non_divisible_expand
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[ARG0]]
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[UNPACK]] {{\[}}[0, 1], [2]] output_shape [256, 12, 256] : tensor<3072x256xf32> into tensor<256x12x256xf32>
// CHECK: return %[[EXPANDED]] : tensor<256x12x256xf32>
|