File: flatten-elementwise.mlir

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (120 lines) | stat: -rw-r--r-- 6,181 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s

// CHECK-LABEL: func.func @fill(
// CHECK-SAME:                  %[[ARG0:.*]]: f32,
// CHECK-SAME:                  %[[ARG1:.*]]: memref<32x7xf32>
// CHECK-NEXT:    %[[FLATTENED:.*]] = memref.collapse_shape %[[ARG1]] {{\[}}[0, 1]]
// CHECK-NEXT:    linalg.fill ins(%[[ARG0]] : f32) outs(%[[FLATTENED]] : memref<224xf32>)
func.func @fill(%cst: f32, %arg: memref<32x7xf32>) {
    linalg.fill ins(%cst: f32) outs(%arg: memref<32x7xf32>)
    return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
    %flattened = transform.structured.flatten_elementwise %0
      : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

// -----

// CHECK-LABEL: func.func @fill_tensor(
// CHECK-SAME:                         %[[ARG0:.*]]: f32,
// CHECK-SAME:                         %[[ARG1:.*]]: tensor<32x7xf32>
// CHECK-NEXT:    %[[FLATTENED:.*]] = tensor.collapse_shape %[[ARG1]] {{\[}}[0, 1]]
// CHECK-NEXT:    %[[FLATTENED_RESULT:.*]] = linalg.fill ins(%[[ARG0]] : f32) outs(%[[FLATTENED]] : tensor<224xf32>)
// CHECK-NEXT:    %[[RESULT:.*]] = tensor.expand_shape %[[FLATTENED_RESULT]] {{\[}}[0, 1]] output_shape [32, 7] : tensor<224xf32> into tensor<32x7xf32>
func.func @fill_tensor(%cst: f32, %arg: tensor<32x7xf32>) -> tensor<32x7xf32> {
    %0 = linalg.fill ins(%cst: f32) outs(%arg: tensor<32x7xf32>) ->  tensor<32x7xf32>
    return %0 :  tensor<32x7xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
    %flattened = transform.structured.flatten_elementwise %0
      : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

// -----

// CHECK-LABEL: func.func @map(
// CHECK-SAME:                 %[[ARG0:[a-zA-Z0-9_]*]]: memref<32x7xf32>
// CHECK-SAME:                 %[[ARG1:[a-zA-Z0-9_]*]]: memref<32x7xf32>
// CHECK-SAME:                 %[[ARG2:[a-zA-Z0-9_]*]]: memref<32x7xf32>
// CHECK-NEXT:    %[[FLATTENED_0:.*]] = memref.collapse_shape %[[ARG0]] {{\[}}[0, 1]]
// CHECK-NEXT:    %[[FLATTENED_1:.*]] = memref.collapse_shape %[[ARG1]] {{\[}}[0, 1]]
// CHECK-NEXT:    %[[FLATTENED_2:.*]] = memref.collapse_shape %[[ARG2]] {{\[}}[0, 1]]
// CHECK-NEXT:    linalg.map { arith.addf } ins(%[[FLATTENED_0]], %[[FLATTENED_1]] : memref<224xf32>, memref<224xf32>) outs(%[[FLATTENED_2]] : memref<224xf32>)
func.func @map(%arg0: memref<32x7xf32>, %arg1: memref<32x7xf32>, %arg2: memref<32x7xf32>) {
    linalg.map {arith.addf} ins(%arg0, %arg1: memref<32x7xf32>, memref<32x7xf32>) outs(%arg2: memref<32x7xf32>)
    return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
    %flattened = transform.structured.flatten_elementwise %0
      : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

// -----

// CHECK-LABEL: func.func @map_already_flat(
// CHECK-SAME:                 %[[ARG0:[a-zA-Z0-9_]*]]: memref<32xf32>
// CHECK-SAME:                 %[[ARG1:[a-zA-Z0-9_]*]]: memref<32xf32>
// CHECK-SAME:                 %[[ARG2:[a-zA-Z0-9_]*]]: memref<32xf32>
// CHECK-NEXT:    linalg.map { arith.addf } ins(%[[ARG0]], %[[ARG1]] : memref<32xf32>, memref<32xf32>) outs(%[[ARG2]] : memref<32xf32>)
func.func @map_already_flat(%arg0: memref<32xf32>, %arg1: memref<32xf32>, %arg2: memref<32xf32>) {
    linalg.map {arith.addf} ins(%arg0, %arg1: memref<32xf32>, memref<32xf32>) outs(%arg2: memref<32xf32>)
    return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
    %flattened = transform.structured.flatten_elementwise %0
      : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}

// -----

// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func.func @generic
// CHECK-SAME:                 %[[ARG0:[a-zA-Z0-9_]*]]: memref<32x7xf32>
// CHECK-SAME:                 %[[ARG1:[a-zA-Z0-9_]*]]: memref<32x7xf32>
// CHECK-SAME:                 %[[ARG2:[a-zA-Z0-9_]*]]: memref<32x7xf32>
// CHECK-NEXT:    %[[FLATTENED_0:.*]] = memref.collapse_shape %[[ARG0]] {{\[}}[0, 1]]
// CHECK-NEXT:    %[[FLATTENED_1:.*]] = memref.collapse_shape %[[ARG1]] {{\[}}[0, 1]]
// CHECK-NEXT:    %[[FLATTENED_2:.*]] = memref.collapse_shape %[[ARG2]] {{\[}}[0, 1]]
// CHECK-NEXT:    linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[FLATTENED_0]], %[[FLATTENED_1]] : memref<224xf32>, memref<224xf32>) outs(%[[FLATTENED_2]] : memref<224xf32>)
// CHECK-NEXT:       ^bb0(%[[A:.*]]: f32, %[[B:.*]]: f32, %[[C:.*]]: f32)
// CHECK-NEXT:         %[[SUM:.*]] = arith.addf %[[A]], %[[B]]
// CHECK-NEXT:         linalg.yield %[[SUM]]
#map = affine_map<(d0, d1) -> (d0, d1)>
func.func @generic( %arg0: memref<32x7xf32>, %arg1: memref<32x7xf32>, %arg2: memref<32x7xf32>) {
    linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1: memref<32x7xf32>, memref<32x7xf32>) outs(%arg2: memref<32x7xf32>) {
        ^bb0(%a: f32, %b: f32, %c: f32):
            %0 = arith.addf %a, %b : f32
            linalg.yield %0 : f32
    }
    return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
    %flattened = transform.structured.flatten_elementwise %0
      : (!transform.any_op) -> !transform.any_op
    transform.yield
  }
}