1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
// RUN: mlir-opt \
// RUN: --pass-pipeline="builtin.module(func.func(mesh-spmdization,test-constant-fold))" \
// RUN: --split-input-file \
// RUN: %s | FileCheck %s
// CHECK: #[[$MAP_IDENTITY_1D:.*]] = affine_map<(d0) -> (d0)>
#map_identity_1d = affine_map<(d0) -> (d0)>
mesh.mesh @mesh_1d(shape = 2)
// CHECK-LABEL: func @elementwise_static_1d_mesh_static_1d_tensor
func.func @elementwise_static_1d_mesh_static_1d_tensor(
// CHECK-SAME: %[[IN1:[A-Za-z0-9_]+]]: tensor<1xi8>,
%in1: tensor<2xi8>,
// CHECK-SAME: %[[IN2:[A-Za-z0-9_]+]]: tensor<1xi8>,
%in2: tensor<2xi8>,
// CHECK-SAME: %[[DPS_OUT:[A-Za-z0-9_]+]]: tensor<1xi8>
%dps_out: tensor<2xi8>
// CHECK-SAME: -> tensor<1xi8> {
) -> tensor<2xi8> {
%in1_shared1 = mesh.shard %in1 to <@mesh_1d, [[0]]> : tensor<2xi8>
%in1_shared2 = mesh.shard %in1_shared1 to <@mesh_1d, [[0]]> annotate_for_users: tensor<2xi8>
%in2_shared1 = mesh.shard %in2 to <@mesh_1d, [[0]]> : tensor<2xi8>
%in2_shared2 = mesh.shard %in2_shared1 to <@mesh_1d, [[0]]> annotate_for_users: tensor<2xi8>
%dps_out_shared1 = mesh.shard %dps_out to <@mesh_1d, [[0]]> : tensor<2xi8>
%dps_out_shared2 = mesh.shard %dps_out_shared1 to <@mesh_1d, [[0]]> annotate_for_users: tensor<2xi8>
// CHECK: %[[RES:.*]] = linalg.generic {
// CHECK-SAME: indexing_maps = [#[[$MAP_IDENTITY_1D]], #[[$MAP_IDENTITY_1D]], #[[$MAP_IDENTITY_1D]]],
// CHECK-SAME: iterator_types = ["parallel"]}
// CHECK-SAME: ins(%[[IN1]], %[[IN2]] : tensor<1xi8>, tensor<1xi8>)
// CHECK-SAME: outs(%[[DPS_OUT]] : tensor<1xi8>) {
%res = linalg.generic {
indexing_maps = [#map_identity_1d, #map_identity_1d, #map_identity_1d],
iterator_types = ["parallel"]
} ins(%in1_shared2, %in2_shared2 : tensor<2xi8>, tensor<2xi8>)
outs(%dps_out_shared2 : tensor<2xi8>) {
^bb0(%in1_scalar: i8, %in2_scalar: i8, %out: i8):
%res_scalar = arith.muli %in1_scalar, %in2_scalar : i8
linalg.yield %res_scalar : i8
} -> tensor<2xi8>
%res_shared1 = mesh.shard %res to <@mesh_1d, [[0]]> : tensor<2xi8>
%res_shared2 = mesh.shard %res_shared1 to <@mesh_1d, [[0]]> annotate_for_users: tensor<2xi8>
// CHECK: return %[[RES]] : tensor<1xi8>
return %res_shared2 : tensor<2xi8>
}
// -----
mesh.mesh @mesh_1d(shape = 4)
// CHECK-LABEL: func @matmul_1d_mesh_static_tensors_parallel_iterator_sharding
func.func @matmul_1d_mesh_static_tensors_parallel_iterator_sharding(
// CHECK-SAME: %[[IN1:[A-Za-z0-9_]+]]: tensor<1x3xi8>,
%in1: tensor<4x3xi8>,
// CHECK-SAME: %[[IN2:[A-Za-z0-9_]+]]: tensor<3x8xi8>,
%in2: tensor<3x8xi8>,
// CHECK-SAME: %[[DPS_OUT:[A-Za-z0-9_]+]]: tensor<1x8xi8>
%dps_out: tensor<4x8xi8>
// CHECK-SAME: -> tensor<1x8xi8> {
) -> tensor<4x8xi8> {
%in1_shared1 = mesh.shard %in1 to <@mesh_1d, [[0]]> : tensor<4x3xi8>
%in1_shared2 = mesh.shard %in1_shared1 to <@mesh_1d, [[0]]> annotate_for_users: tensor<4x3xi8>
%in2_shared1 = mesh.shard %in2 to <@mesh_1d, [[]]> : tensor<3x8xi8>
%in2_shared2 = mesh.shard %in2_shared1 to <@mesh_1d, [[]]> annotate_for_users: tensor<3x8xi8>
%dps_out_shared1 = mesh.shard %dps_out to <@mesh_1d, [[0]]> : tensor<4x8xi8>
%dps_out_shared2 = mesh.shard %dps_out_shared1 to <@mesh_1d, [[0]]> annotate_for_users: tensor<4x8xi8>
// CHECK: %[[RES:.*]] = linalg.matmul
// CHECK-SAME: ins(%[[IN1]], %[[IN2]] : tensor<1x3xi8>, tensor<3x8xi8>)
// CHECK-SAME: outs(%[[DPS_OUT]] : tensor<1x8xi8>)
// CHECK-SAME: -> tensor<1x8xi8>
%res = linalg.matmul ins(%in1_shared2, %in2_shared2 : tensor<4x3xi8>, tensor<3x8xi8>)
outs(%dps_out_shared2 : tensor<4x8xi8>) -> tensor<4x8xi8>
%res_shared1 = mesh.shard %res to <@mesh_1d, [[0]]> : tensor<4x8xi8>
%res_shared2 = mesh.shard %res_shared1 to <@mesh_1d, [[0]]> annotate_for_users: tensor<4x8xi8>
// CHECK: return %[[RES]] : tensor<1x8xi8>
return %res_shared2 : tensor<4x8xi8>
}
// -----
mesh.mesh @mesh_1d(shape = 3)
// CHECK-LABEL: func @matmul_1d_mesh_static_tensors_reduction_iterator_sharding
func.func @matmul_1d_mesh_static_tensors_reduction_iterator_sharding(
// CHECK-SAME: %[[IN1:[A-Za-z0-9_]+]]: tensor<4x2xi8>,
%in1: tensor<4x6xi8>,
// CHECK-SAME: %[[IN2:[A-Za-z0-9_]+]]: tensor<2x8xi8>,
%in2: tensor<6x8xi8>,
// CHECK-SAME: %[[DPS_OUT:[A-Za-z0-9_]+]]: tensor<4x8xi8>
%dps_out: tensor<4x8xi8>
// CHECK-SAME: -> tensor<4x8xi8> {
) -> tensor<4x8xi8> {
%in1_shared1 = mesh.shard %in1 to <@mesh_1d, [[], [0]]> : tensor<4x6xi8>
%in1_shared2 = mesh.shard %in1_shared1 to <@mesh_1d, [[], [0]]> annotate_for_users: tensor<4x6xi8>
%in2_shared1 = mesh.shard %in2 to <@mesh_1d, [[0]]> : tensor<6x8xi8>
%in2_shared2 = mesh.shard %in2_shared1 to <@mesh_1d, [[0]]> annotate_for_users: tensor<6x8xi8>
%dps_out_shared1 = mesh.shard %dps_out to <@mesh_1d, [[]]> : tensor<4x8xi8>
%dps_out_shared2 = mesh.shard %dps_out_shared1 to <@mesh_1d, [[]]> annotate_for_users: tensor<4x8xi8>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C0_I8:.*]] = arith.constant 0 : i8
// CHECK-DAG: %[[PROCESS_IDX:.*]] = mesh.process_multi_index on @mesh_1d axes = [0] : index
// CHECK-DAG: %[[MESH_SIZE:.*]] = mesh.mesh_shape @mesh_1d axes = [0] : index
// CHECK: %[[DPS_INIT_OPERAND_CONDITION:.*]] = arith.cmpi eq, %[[PROCESS_IDX]], %[[C0]] : index
// CHECK: %[[DPS_INIT_OPERAND:.*]] = scf.if %[[DPS_INIT_OPERAND_CONDITION]] -> (tensor<4x8xi8>) {
// CHECK: scf.yield %[[DPS_OUT]] : tensor<4x8xi8>
// CHECK: } else {
// CHECK-DAG: %[[EMPTY_TENSOR:.*]] = tensor.empty() : tensor<4x8xi8>
// CHECK: %[[NEUTRAL_ELEMENT_FILLED_TENSOR:.*]] = linalg.fill ins(%[[C0_I8]] : i8)
// CHECK-SAME: outs(%[[EMPTY_TENSOR]] : tensor<4x8xi8>) -> tensor<4x8xi8>
// CHECK: scf.yield %[[NEUTRAL_ELEMENT_FILLED_TENSOR]] : tensor<4x8xi8>
// CHECK: }
// CHECK: %[[SHARDED_MATMUL:.*]] = linalg.matmul ins(%[[IN1]], %[[IN2]] : tensor<4x2xi8>, tensor<2x8xi8>)
// CHECK-SAME: outs(%[[DPS_INIT_OPERAND]] : tensor<4x8xi8>) -> tensor<4x8xi8>
// CHECK: %[[ALL_REDUCED:.*]] = mesh.all_reduce %[[SHARDED_MATMUL]] on @mesh_1d mesh_axes = [0] : tensor<4x8xi8> -> tensor<4x8xi8>
%res = linalg.matmul ins(%in1_shared2, %in2_shared2 : tensor<4x6xi8>, tensor<6x8xi8>)
outs(%dps_out_shared2 : tensor<4x8xi8>) -> tensor<4x8xi8>
%res_shared1 = mesh.shard %res to <@mesh_1d, [[]]> : tensor<4x8xi8>
%res_shared2 = mesh.shard %res_shared1 to <@mesh_1d, [[]]> annotate_for_users: tensor<4x8xi8>
// CHECK: return %[[ALL_REDUCED]] : tensor<4x8xi8>
return %res_shared2 : tensor<4x8xi8>
}
// -----
mesh.mesh @mesh_1d(shape = 3)
// CHECK-LABEL: func @matmul_1d_mesh_static_tensors_reduction_iterator_sharding_with_partial_result
func.func @matmul_1d_mesh_static_tensors_reduction_iterator_sharding_with_partial_result(
// CHECK-SAME: %[[IN1:[A-Za-z0-9_]+]]: tensor<4x2xi8>,
%in1: tensor<4x6xi8>,
// CHECK-SAME: %[[IN2:[A-Za-z0-9_]+]]: tensor<2x8xi8>,
%in2: tensor<6x8xi8>,
// CHECK-SAME: %[[DPS_OUT:[A-Za-z0-9_]+]]: tensor<4x8xi8>
%dps_out: tensor<4x8xi8>
// CHECK-SAME: -> tensor<4x8xi8> {
) -> tensor<4x8xi8> {
%in1_shared1 = mesh.shard %in1 to <@mesh_1d, [[], [0]]> : tensor<4x6xi8>
%in1_shared2 = mesh.shard %in1_shared1 to <@mesh_1d, [[], [0]]> annotate_for_users: tensor<4x6xi8>
%in2_shared1 = mesh.shard %in2 to <@mesh_1d, [[0]]> : tensor<6x8xi8>
%in2_shared2 = mesh.shard %in2_shared1 to <@mesh_1d, [[0]]> annotate_for_users: tensor<6x8xi8>
%dps_out_shared1 = mesh.shard %dps_out to <@mesh_1d, [[]]> : tensor<4x8xi8>
%dps_out_shared2 = mesh.shard %dps_out_shared1 to <@mesh_1d, [[]]> annotate_for_users: tensor<4x8xi8>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C0_I8:.*]] = arith.constant 0 : i8
// CHECK-DAG: %[[PROCESS_IDX:.*]] = mesh.process_multi_index on @mesh_1d axes = [0] : index
// CHECK-DAG: %[[MESH_SIZE:.*]] = mesh.mesh_shape @mesh_1d axes = [0] : index
// CHECK: %[[DPS_INIT_OPERAND_CONDITION:.*]] = arith.cmpi eq, %[[PROCESS_IDX]], %[[C0]] : index
// CHECK: %[[DPS_INIT_OPERAND:.*]] = scf.if %[[DPS_INIT_OPERAND_CONDITION]] -> (tensor<4x8xi8>) {
// CHECK: scf.yield %[[DPS_OUT]] : tensor<4x8xi8>
// CHECK: } else {
// CHECK-DAG: %[[EMPTY_TENSOR:.*]] = tensor.empty() : tensor<4x8xi8>
// CHECK: %[[NEUTRAL_ELEMENT_FILLED_TENSOR:.*]] = linalg.fill ins(%[[C0_I8]] : i8)
// CHECK-SAME: outs(%[[EMPTY_TENSOR]] : tensor<4x8xi8>) -> tensor<4x8xi8>
// CHECK: scf.yield %[[NEUTRAL_ELEMENT_FILLED_TENSOR]] : tensor<4x8xi8>
// CHECK: }
// CHECK: %[[SHARDED_MATMUL:.*]] = linalg.matmul ins(%[[IN1]], %[[IN2]] : tensor<4x2xi8>, tensor<2x8xi8>)
// CHECK-SAME: outs(%[[DPS_INIT_OPERAND]] : tensor<4x8xi8>) -> tensor<4x8xi8>
%res = linalg.matmul ins(%in1_shared2, %in2_shared2 : tensor<4x6xi8>, tensor<6x8xi8>)
outs(%dps_out_shared2 : tensor<4x8xi8>) -> tensor<4x8xi8>
%res_shared1 = mesh.shard %res to <@mesh_1d, [[]], partial = sum[0]> : tensor<4x8xi8>
%res_shared2 = mesh.shard %res_shared1 to <@mesh_1d, [[]], partial = sum[0]> annotate_for_users: tensor<4x8xi8>
// CHECK: return %[[SHARDED_MATMUL]] : tensor<4x8xi8>
return %res_shared2 : tensor<4x8xi8>
}
// -----
mesh.mesh @mesh_1d(shape = 4)
// CHECK-LABEL: func @matmul_1d_mesh_static_tensors_parallel_iterator_unsplit_last_axis
func.func @matmul_1d_mesh_static_tensors_parallel_iterator_unsplit_last_axis(
// CHECK-SAME: %[[IN1:[A-Za-z0-9_]+]]: tensor<4x6xi8>,
%in1: tensor<4x6xi8>,
// CHECK-SAME: %[[IN2:[A-Za-z0-9_]+]]: tensor<6x8xi8>,
%in2: tensor<6x8xi8>,
// CHECK-SAME: %[[DPS_OUT:[A-Za-z0-9_]+]]: tensor<4x8xi8>
%dps_out: tensor<4x8xi8>
// CHECK-SAME: -> tensor<4x8xi8> {
) -> tensor<4x8xi8> {
%in1_replicated1 = mesh.shard %in1 to <@mesh_1d, [[], []]> : tensor<4x6xi8>
%in1_replicated2 = mesh.shard %in1_replicated1 to <@mesh_1d, [[], []]> annotate_for_users : tensor<4x6xi8>
// CHECK: %[[ALL_SLICE1:.*]] = mesh.all_slice %[[IN2]] on @mesh_1d mesh_axes = [0] slice_axis = 1
%in2_replicated = mesh.shard %in2 to <@mesh_1d, [[], []]> : tensor<6x8xi8>
%in2_sharded = mesh.shard %in2_replicated to <@mesh_1d, [[], [0]]> annotate_for_users : tensor<6x8xi8>
// CHECK: %[[ALL_SLICE2:.*]] = mesh.all_slice %[[DPS_OUT]] on @mesh_1d mesh_axes = [0] slice_axis = 1
%dps_out_replicated = mesh.shard %dps_out to <@mesh_1d, [[], []]> : tensor<4x8xi8>
%dps_out_sharded = mesh.shard %dps_out_replicated to <@mesh_1d, [[], [0]]> annotate_for_users: tensor<4x8xi8>
// CHECK: %[[MATMUL_RES:.*]] = linalg.matmul
// CHECK-SAME: ins(%[[IN1]], %[[ALL_SLICE1]] : tensor<4x6xi8>, tensor<6x2xi8>)
// CHECK-SAME: outs(%[[ALL_SLICE2]] : tensor<4x2xi8>)
// CHECK-SAME: -> tensor<4x2xi8>
%res = linalg.matmul ins(%in1_replicated2, %in2_sharded : tensor<4x6xi8>, tensor<6x8xi8>)
outs(%dps_out_sharded : tensor<4x8xi8>) -> tensor<4x8xi8>
// CHECK: %[[ALL_GATHER:.*]] = mesh.all_gather %[[MATMUL_RES]] on @mesh_1d mesh_axes = [0] gather_axis = 1 : tensor<4x2xi8> -> tensor<4x8xi8>
%res_sharded = mesh.shard %res to <@mesh_1d, [[], [0]]> : tensor<4x8xi8>
%res_replicated = mesh.shard %res_sharded to <@mesh_1d, [[], []]> annotate_for_users: tensor<4x8xi8>
// CHECK: return %[[ALL_GATHER]] : tensor<4x8xi8>
return %res_replicated : tensor<4x8xi8>
}
|