File: runtime-verification.mlir

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (43 lines) | stat: -rw-r--r-- 1,518 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// RUN: mlir-opt %s -generate-runtime-verification | FileCheck %s

// Most of the tests for linalg runtime-verification are implemented as integration tests.

#identity = affine_map<(d0) -> (d0)>

// CHECK-LABEL: @static_dims
func.func @static_dims(%arg0: tensor<5xf32>, %arg1: tensor<5xf32>) -> (tensor<5xf32>) {
    // CHECK: %[[TRUE:.*]] = index.bool.constant true
    // CHECK: cf.assert %[[TRUE]]
    %result = tensor.empty() : tensor<5xf32> 
    %0 = linalg.generic {
      indexing_maps = [#identity, #identity, #identity],
      iterator_types = ["parallel"]
    } ins(%arg0, %arg1 : tensor<5xf32>, tensor<5xf32>)
      outs(%result : tensor<5xf32>) {
      ^bb0(%gen_arg1: f32, %gen_arg2: f32, %out: f32) :
        %tmp1 = arith.addf %gen_arg1, %gen_arg2 : f32
        linalg.yield %tmp1 : f32
    } -> tensor<5xf32>
    return %0 : tensor<5xf32>
}

// -----

#map = affine_map<() -> ()>

// CHECK-LABEL: @scalars
func.func @scalars(%arg0: tensor<f32>, %arg1: tensor<f32>) -> (tensor<f32>) {
    // No runtime checks are required if the operands are all scalars
    // CHECK-NOT: cf.assert
    %result = tensor.empty() : tensor<f32> 
    %0 = linalg.generic {
      indexing_maps = [#map, #map, #map],
      iterator_types = []
    } ins(%arg0, %arg1 : tensor<f32>, tensor<f32>)
      outs(%result : tensor<f32>) {
      ^bb0(%gen_arg1: f32, %gen_arg2: f32, %out: f32) :
        %tmp1 = arith.addf %gen_arg1, %gen_arg2 : f32
        linalg.yield %tmp1 : f32
    } -> tensor<f32>
    return %0 : tensor<f32>
}