File: vectorization-unsupported.mlir

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (193 lines) | stat: -rw-r--r-- 7,888 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// RUN: mlir-opt %s -transform-interpreter -split-input-file -verify-diagnostics

func.func @conv1d_nwc_wcf_dyn_ch_dim(%input: memref<4x6x?xf32>, %filter: memref<1x?x8xf32>, %output: memref<4x2x8xf32>) {
  // expected-error @+1 {{Attempted to vectorize, but failed}}
  linalg.conv_1d_nwc_wcf
    {dilations = dense<1> : tensor<1xi64>, strides = dense<3> : tensor<1xi64>}
    ins(%input, %filter : memref<4x6x?xf32>, memref<1x?x8xf32>)
    outs(%output : memref<4x2x8xf32>)
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.conv_1d_nwc_wcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %0 : !transform.any_op
    transform.yield
  }
}

// -----

// Masked vectorisation of 1D depthwise CW convs is not yet supported

func.func @depthwise_conv1d_ncw_cw(%input: memref<3x?x4xf32>, %filter: memref<?x1xf32>, %output: memref<3x?x4xf32>) {
  // expected-error @+1 {{Attempted to vectorize, but failed}}
  linalg.depthwise_conv_1d_ncw_cw
    {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
    ins(%input, %filter : memref<3x?x4xf32>, memref<?x1xf32>)
    outs(%output : memref<3x?x4xf32>)
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_ncw_cw"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %0 vector_sizes [3, 4, 5, 1] : !transform.any_op
    transform.yield
  }
}

// -----

func.func @depthwise_conv1d_nwc_wc_dyn_w_dim(%input: memref<3x?x4xf32>, %filter: memref<?x4xf32>, %output: memref<3x?x4xf32>) {
  // expected-error @+1 {{Attempted to vectorize, but failed}}
  linalg.depthwise_conv_1d_nwc_wc
    {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>}
    ins(%input, %filter : memref<3x?x4xf32>, memref<?x4xf32>)
    outs(%output : memref<3x?x4xf32>)
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %0 vector_sizes [3, 2, 4, 2] : !transform.any_op
    transform.yield
  }
}

// -----

func.func @depthwise_conv1d_nwc_wc_dyn_ch_dim(%input: memref<3x5x?xf32>, %filter: memref<2x?xf32>, %output: memref<3x2x?xf32>) {
  // expected-error @+1 {{Attempted to vectorize, but failed}}
  linalg.depthwise_conv_1d_nwc_wc
    ins(%input, %filter : memref<3x5x?xf32>, memref<2x?xf32>)
    outs(%output : memref<3x2x?xf32>)
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %0 : !transform.any_op
    transform.yield
  }
}

// -----

func.func @depthwise_conv1d_nwc_wc_dyn_w_dim(%input: memref<3x?x3xf32>, %filter: memref<2x3xf32>, %output: memref<3x?x3xf32>) {
  // expected-error @+1 {{Attempted to vectorize, but failed}}
  linalg.depthwise_conv_1d_nwc_wc
    ins(%input, %filter : memref<3x?x3xf32>, memref<2x3xf32>)
    outs(%output : memref<3x?x3xf32>)
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %0 : !transform.any_op
    transform.yield
  }
}

// -----

func.func @conv1d_dyn_w_dim(%input: tensor<?xf32>, %filter: tensor<4xf32>, %output: tensor<?xf32>) -> tensor<?xf32> {
  // expected-error @+1 {{Attempted to vectorize, but failed}}
  %0 = linalg.conv_1d ins(%input, %filter : tensor<?xf32>, tensor<4xf32>)
                     outs(%output : tensor<?xf32>) -> tensor<?xf32>
  return %0 : tensor<?xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.conv_1d"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %0 : !transform.any_op
    transform.yield
  }
}

// -----

func.func @test_pack_no_vectorize_dynamic_shape(%arg0: tensor<?xf32>, %arg1: tensor<4x16xf32>) -> tensor<4x16xf32> {
  %pad = arith.constant 0.000000e+00 : f32
  // expected-error @+1 {{Attempted to vectorize, but failed}}
  %pack = tensor.pack %arg0 padding_value(%pad : f32) inner_dims_pos = [0] inner_tiles = [16] into %arg1 : tensor<?xf32> -> tensor<4x16xf32>
  return %pack : tensor<4x16xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["tensor.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %0 : !transform.any_op
    transform.yield
  }
}

// -----

func.func @linalg_reduce_scalable(%input: tensor<?xf32>,
                                  %acc: tensor<f32>) -> tensor<f32> {

  // expected-error @+1 {{Attempted to vectorize, but failed}}
  %0 = linalg.reduce ins(%input : tensor<?xf32>) outs(%acc : tensor<f32>) dimensions = [0]
  (%in: f32, %init: f32) {
    %0 = arith.addf %in, %init : f32
    linalg.yield %0 : f32
  }
  return %0 : tensor<f32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.reduce"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %0 vector_sizes [[4]] : !transform.any_op
    transform.yield
  }
}

// -----

func.func @linalg_generic_scalable_reduction_dim(%input: tensor<?x?xf32>,
                                                 %acc: tensor<?xf32>) -> tensor<?xf32> {

  // expected-error @+1 {{Attempted to vectorize, but failed}}
  %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
                                         affine_map<(d0, d1) -> (d0)>],
                        iterator_types = ["parallel", "reduction"] }
    ins(%input : tensor<?x?xf32>)
    outs(%acc : tensor<?xf32>) {
    ^bb(%in: f32, %out: f32) :
      %0 = arith.addf %in, %out : f32
      linalg.yield %0 : f32
    } -> tensor<?xf32>
  return %0 : tensor<?xf32>
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %0 vector_sizes [1, [4]] : !transform.any_op
    transform.yield
  }
}

// -----

func.func @linalg_matmul_scalable_leading_parallel_dim(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) {
  // expected-error @+1 {{Attempted to vectorize, but failed}}
  linalg.matmul ins(%A, %B: memref<?x?xf32>, memref<?x?xf32>)
            outs(%C: memref<?x?xf32>)
  return
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %matmul vector_sizes [[8], 16, 4] : !transform.any_op
    transform.yield
  }
}