File: transform-create-async-groups.mlir

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (272 lines) | stat: -rw-r--r-- 13,995 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// RUN: mlir-opt %s -transform-interpreter -split-input-file --verify-diagnostics | FileCheck %s

// Check that we produce async copies from the vector.transfer_xxx operations.
builtin.module {
  // CHECK-LABEL: @copies_to_asyncs
  func.func @copies_to_asyncs(%a: memref<1024x1024xf32>) {
    %0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
    %c0 = arith.constant 0 : index
    %c4 = arith.constant 4 : index
    %cst_0 = arith.constant 0.000000e+00 : f32
    // Make sure we emit the bypassL1.
    // CHECK: %[[CP0:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 4  {bypassL1} :
    %1 = vector.transfer_read %a[%c0, %c0], %cst_0 {in_bounds = [true]} : memref<1024x1024xf32>, vector<4xf32>
    vector.transfer_write %1, %0[%c0, %c0, %c0] {in_bounds = [true]} : vector<4xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
    // CHECK-NOT: nvgpu.device_async_create_group

    // CHECK: %[[CP1:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 1
    %2 = vector.transfer_read %a[%c0, %c4], %cst_0 {in_bounds = [true]} : memref<1024x1024xf32>, vector<1xf32>
    vector.transfer_write %2, %0[%c0, %c4, %c0] {in_bounds = [true]} : vector<1xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
    // CHECK: %[[G:.*]] = nvgpu.device_async_create_group %[[CP0]], %[[CP1]]
    // CHECK: nvgpu.device_async_wait %[[G]]
    return
  }

  module attributes {transform.with_named_sequence} {
    transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
      %top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
      transform.nvgpu.create_async_groups %top_level_func {bypass_l1} : (!transform.any_op) -> (!transform.any_op)
      transform.yield
    }
  }
}

// -----

// Check that we properly take `bypass_l1 = false` into account.
// I.e., we shouldn't be generating bypassL1 attributes.
builtin.module {
  // CHECK-LABEL: @copies_to_asyncs_no_mma
  func.func @copies_to_asyncs_no_mma(%a: memref<1024x1024xf32>) {
    %0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
    %c0 = arith.constant 0 : index
    %c4 = arith.constant 4 : index
    %cst_0 = arith.constant 0.000000e+00 : f32
    // Make sure we don't emit the bypassL1.
    // CHECK: %[[CP0:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 4 :
    %1 = vector.transfer_read %a[%c0, %c0], %cst_0 {in_bounds = [true]} : memref<1024x1024xf32>, vector<4xf32>
    vector.transfer_write %1, %0[%c0, %c0, %c0] {in_bounds = [true]} : vector<4xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
    // CHECK-NOT: nvgpu.device_async_create_group

    // CHECK: %[[CP1:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 1 :
    %2 = vector.transfer_read %a[%c0, %c4], %cst_0 {in_bounds = [true]} : memref<1024x1024xf32>, vector<1xf32>
    vector.transfer_write %2, %0[%c0, %c4, %c0] {in_bounds = [true]} : vector<1xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>
    // CHECK: %[[G:.*]] = nvgpu.device_async_create_group %[[CP0]], %[[CP1]]
    // CHECK: nvgpu.device_async_wait %[[G]]
    return
  }

  module attributes {transform.with_named_sequence} {
    transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
      %top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
      transform.nvgpu.create_async_groups %top_level_func : (!transform.any_op) -> (!transform.any_op)
      transform.yield
    }
  }
}

// -----

// Check that pattern works with vector.load/vector.store.
builtin.module {
  // CHECK-LABEL: @copies_to_asyncs_load_store
  func.func @copies_to_asyncs_load_store(%a: memref<1024x1024xf32>) {
    %0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
    %c0 = arith.constant 0 : index
    %c4 = arith.constant 4 : index
    %cst_0 = arith.constant 0.000000e+00 : f32
    // CHECK: %[[CP0:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 4 :
    %1 = vector.load %a[%c0, %c0] : memref<1024x1024xf32>, vector<4xf32>
    vector.store %1, %0[%c0, %c0, %c0] : memref<4x32x16xf32, #gpu.address_space<workgroup>>, vector<4xf32>
    // CHECK-NOT: nvgpu.device_async_create_group

    // CHECK: %[[CP1:.*]] = nvgpu.device_async_copy {{.*}}, {{.*}}, 1 :
    %2 = vector.load %a[%c0, %c4] : memref<1024x1024xf32>, vector<1xf32>
    vector.store %2, %0[%c0, %c4, %c0] : memref<4x32x16xf32, #gpu.address_space<workgroup>>, vector<1xf32>
    // CHECK: %[[G:.*]] = nvgpu.device_async_create_group %[[CP0]], %[[CP1]]
    // CHECK: nvgpu.device_async_wait %[[G]]
    return
  }

  module attributes {transform.with_named_sequence} {
    transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
      %top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
      transform.nvgpu.create_async_groups %top_level_func : (!transform.any_op) -> (!transform.any_op)
      transform.yield
    }
  }
}

// -----

// Check that pattern skips unaligned and unsupported sizes.
builtin.module {
  // CHECK-LABEL: @copies_to_asyncs_load_store
  func.func @copies_to_asyncs_load_store(%a: memref<1024x1024xf32>, %b: memref<1024x1024xf16>) {
    %alloc = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
    %alloc_1 = memref.alloc() : memref<4x32x16xf16, #gpu.address_space<workgroup>>
    %c0 = arith.constant 0 : index
    %c4 = arith.constant 4 : index
    %cst_0 = arith.constant 0.000000e+00 : f32

    // Requires 1-D vector load
    // CHECK-NOT: nvgpu.device_async_copy
    //     CHECK: vector.load
    //     CHECK: vector.store
    %1 = vector.load %a[%c0, %c4] : memref<1024x1024xf32>, vector<2x2xf32>
    vector.store %1, %alloc[%c0, %c4, %c0] : memref<4x32x16xf32, #gpu.address_space<workgroup>>, vector<2x2xf32>
    // CHECK-NOT: nvgpu.device_async_create_group

    // CHECK-NOT: nvgpu.device_async_copy
    //     CHECK: vector.load
    //     CHECK: vector.store
    %2 = vector.load %b[%c0, %c4] : memref<1024x1024xf16>, vector<1xf16>
    vector.store %2, %alloc_1[%c0, %c4, %c0] : memref<4x32x16xf16, #gpu.address_space<workgroup>>, vector<1xf16>
    // CHECK-NOT: nvgpu.device_async_create_group
    return
  }

  module attributes {transform.with_named_sequence} {
    transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
      %top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
      transform.nvgpu.create_async_groups %top_level_func : (!transform.any_op) -> (!transform.any_op)
      transform.yield
    }
  }
}

// -----

// vector.transfer_read with a mask.
builtin.module {
  // CHECK-LABEL: @read_with_mask(
  // CHECK-SAME: %{{.*}}: memref<1024x1024xf32>, %[[sz:.*]]: index
  func.func @read_with_mask(%a: memref<1024x1024xf32>, %sz: index) {
    %0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
    %c0 = arith.constant 0 : index
    %cst_0 = arith.constant 0.000000e+00 : f32
    // CHECK: nvgpu.device_async_copy {{.*}}, {{.*}}, 4, %[[sz]] {bypassL1} :
    %mask = vector.create_mask %sz : vector<4xi1>
    %1 = vector.transfer_read %a[%c0, %c0], %cst_0, %mask {in_bounds = [true]} : memref<1024x1024xf32>, vector<4xf32>
    vector.transfer_write %1, %0[%c0, %c0, %c0] {in_bounds = [true]} : vector<4xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>

    return
  }

  module attributes {transform.with_named_sequence} {
    transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
      %top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
      transform.nvgpu.create_async_groups %top_level_func {bypass_l1} : (!transform.any_op) -> (!transform.any_op)
      transform.yield
    }
  }
}

// -----

// 2D vector.transfer_read with a mask.
builtin.module {
  // CHECK-LABEL: @read_2d_with_mask(
  //  CHECK-SAME:     %[[sz0:.*]]: index, %[[sz1:.*]]: index, %[[a:.*]]: memref<1024x1024xf32>
  func.func @read_2d_with_mask(%sz0: index, %sz1: index, %a: memref<1024x1024xf32>) {
    // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
    // CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index
    // CHECK-DAG: %[[c2:.*]] = arith.constant 2 : index
    %0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
    %c0 = arith.constant 0 : index
    %cst_0 = arith.constant 0.000000e+00 : f32

    // CHECK: %[[cmpi0:.*]] = arith.cmpi slt, %[[c0]], %[[sz0]]
    // CHECK: %[[s0:.*]] = arith.select %[[cmpi0]], %[[sz1]], %[[c0]]
    // CHECK: nvgpu.device_async_copy %[[a]][%[[c0]], %[[c0]]], {{.*}}, 4, %[[s0]] {bypassL1}

    // CHECK: %[[cmpi1:.*]] = arith.cmpi slt, %[[c1]], %[[sz0]]
    // CHECK: %[[s1:.*]] = arith.select %[[cmpi1]], %[[sz1]], %[[c0]]
    // CHECK: nvgpu.device_async_copy %[[a]][%[[c1]], %[[c0]]], {{.*}}, 4, %[[s1]] {bypassL1}

    // CHECK: %[[cmpi2:.*]] = arith.cmpi slt, %[[c2]], %[[sz0]]
    // CHECK: %[[s2:.*]] = arith.select %[[cmpi2]], %[[sz1]], %[[c0]]
    // CHECK: nvgpu.device_async_copy %[[a]][%[[c2]], %[[c0]]], {{.*}}, 4, %[[s2]] {bypassL1}
    %mask = vector.create_mask %sz0, %sz1 : vector<3x4xi1>
    %1 = vector.transfer_read %a[%c0, %c0], %cst_0, %mask {in_bounds = [true, true]} : memref<1024x1024xf32>, vector<3x4xf32>
    vector.transfer_write %1, %0[%c0, %c0, %c0] {in_bounds = [true, true]} : vector<3x4xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>

    return
  }

  module attributes {transform.with_named_sequence} {
    transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
      %top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
      transform.apply_patterns to %top_level_func {
        transform.apply_patterns.vector.transfer_to_scf max_transfer_rank = 1 full_unroll = true
      } : !transform.any_op
      transform.nvgpu.create_async_groups %top_level_func {bypass_l1} : (!transform.any_op) -> (!transform.any_op)
      %top_level_func_2 = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
      transform.apply_cse to %top_level_func_2 : !transform.any_op
      transform.yield
    }
  }
}

// -----

// 3D vector.transfer_read with a mask.
builtin.module {
  // CHECK-LABEL: @read_3d_with_mask(
  //  CHECK-SAME:     %[[sz0:.*]]: index, %[[sz1:.*]]: index, %[[sz2:.*]]: index, %[[a:.*]]: memref<1024x1024x1024xf32>
  func.func @read_3d_with_mask(%sz0: index, %sz1: index, %sz2: index, %a: memref<1024x1024x1024xf32>) {
    // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
    // CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index
    // CHECK-DAG: %[[c2:.*]] = arith.constant 2 : index
    %0 = memref.alloc() : memref<4x32x16xf32, #gpu.address_space<workgroup>>
    %c0 = arith.constant 0 : index
    %cst_0 = arith.constant 0.000000e+00 : f32

    // CHECK: %[[cmpi0:.*]] = arith.cmpi slt, %[[c0]], %[[sz0]]
    // CHECK: %[[cmpi1:.*]] = arith.cmpi slt, %[[c0]], %[[sz1]]
    // CHECK: %[[cond0:.*]] = arith.andi %[[cmpi1]], %[[cmpi0]]
    // CHECK: %[[s0:.*]] = arith.select %[[cond0]], %[[sz2]], %[[c0]]
    // CHECK: nvgpu.device_async_copy %[[a]][%[[c0]], %[[c0]], %[[c0]]], {{.*}}, 4, %[[s0]] {bypassL1}

    // CHECK: %[[cmpi2:.*]] = arith.cmpi slt, %[[c1]], %[[sz1]]
    // CHECK: %[[cond1:.*]] = arith.andi %[[cmpi2]], %[[cmpi0]]
    // CHECK: %[[s1:.*]] = arith.select %[[cond1]], %[[sz2]], %[[c0]]
    // CHECK: nvgpu.device_async_copy %[[a]][%[[c0]], %[[c1]], %[[c0]]], {{.*}}, 4, %[[s1]] {bypassL1}

    // CHECK: %[[cmpi3:.*]] = arith.cmpi slt, %[[c2]], %[[sz1]]
    // CHECK: %[[cond2:.*]] = arith.andi %[[cmpi3]], %[[cmpi0]]
    // CHECK: %[[s2:.*]] = arith.select %[[cond2]], %[[sz2]], %[[c0]]
    // CHECK: nvgpu.device_async_copy %[[a]][%[[c0]], %[[c2]], %[[c0]]], {{.*}}, 4, %[[s2]] {bypassL1}

    // CHECK: %[[cmpi4:.*]] = arith.cmpi slt, %[[c1]], %[[sz0]]
    // CHECK: %[[cond3:.*]] = arith.andi %[[cmpi1]], %[[cmpi4]]
    // CHECK: %[[s3:.*]] = arith.select %[[cond3]], %[[sz2]], %[[c0]]
    // CHECK: nvgpu.device_async_copy %[[a]][%[[c1]], %[[c0]], %[[c0]]], {{.*}}, 4, %[[s3]] {bypassL1}

    // CHECK: %[[cond4:.*]] = arith.andi %[[cmpi2]], %[[cmpi4]]
    // CHECK: %[[s4:.*]] = arith.select %[[cond4]], %[[sz2]], %[[c0]]
    // CHECK: nvgpu.device_async_copy %[[a]][%[[c1]], %[[c1]], %[[c0]]], {{.*}}, 4, %[[s4]] {bypassL1}

    // CHECK: %[[cond5:.*]] = arith.andi %[[cmpi3]], %[[cmpi4]]
    // CHECK: %[[s5:.*]] = arith.select %[[cond5]], %[[sz2]], %[[c0]]
    // CHECK: nvgpu.device_async_copy %[[a]][%[[c1]], %[[c2]], %[[c0]]], {{.*}}, 4, %[[s5]] {bypassL1}
    %mask = vector.create_mask %sz0, %sz1, %sz2 : vector<2x3x4xi1>
    %1 = vector.transfer_read %a[%c0, %c0, %c0], %cst_0, %mask {in_bounds = [true, true, true]} : memref<1024x1024x1024xf32>, vector<2x3x4xf32>
    vector.transfer_write %1, %0[%c0, %c0, %c0] {in_bounds = [true, true, true]} : vector<2x3x4xf32>, memref<4x32x16xf32, #gpu.address_space<workgroup>>

    return
  }

  module attributes {transform.with_named_sequence} {
    transform.named_sequence @__transform_main(%variant_op: !transform.any_op {transform.readonly}) {
      %top_level_func = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
      transform.apply_patterns to %top_level_func {
        transform.apply_patterns.vector.transfer_to_scf max_transfer_rank = 1 full_unroll = true
      } : !transform.any_op
      transform.nvgpu.create_async_groups %top_level_func {bypass_l1} : (!transform.any_op) -> (!transform.any_op)
      %top_level_func_2 = transform.structured.match ops{["func.func"]} in %variant_op : (!transform.any_op) -> !transform.any_op
      transform.apply_cse to %top_level_func_2 : !transform.any_op
      transform.yield
    }
  }
}