File: minipipeline_vector.mlir

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (43 lines) | stat: -rwxr-xr-x 1,437 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// RUN: mlir-opt %s --sparsification-and-bufferization        | FileCheck %s --check-prefix=CHECK-NOVEC
// RUN: mlir-opt %s --sparsification-and-bufferization="vl=8" | FileCheck %s --check-prefix=CHECK-VEC

// Test to ensure we can pass optimization flags into
// the mini sparsification and bufferization pipeline.

#SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>

#trait_sum_reduction = {
  indexing_maps = [
    affine_map<(i) -> (i)>,  // a
    affine_map<(i) -> ()>    // x (scalar out)
  ],
  iterator_types = ["reduction"],
  doc = "x += SUM_i a(i)"
}

//
// CHECK-NOVEC-LABEL: func.func @sum_reduction
// CHECK-NOVEC:       scf.for
// CHECK-NOVEC:         arith.addf %{{.*}} %{{.*}} : f32
// CHECK-NOVEC:       }
//
// CHECK-VEC-LABEL: func.func @sum_reduction
// CHECK-VEC:       vector.insertelement
// CHECK-VEC:       scf.for
// CHECK-VEC:         vector.create_mask
// CHECK-VEC:         vector.maskedload
// CHECK-VEC:         arith.addf %{{.*}} %{{.*}} : vector<8xf32>
// CHECK-VEC:       }
// CHECK-VEC:       vector.reduction <add>
//
func.func @sum_reduction(%arga: tensor<?xf32, #SV>,
                         %argx: tensor<f32>) -> tensor<f32> {
  %0 = linalg.generic #trait_sum_reduction
    ins(%arga: tensor<?xf32, #SV>)
    outs(%argx: tensor<f32>) {
      ^bb(%a: f32, %x: f32):
        %0 = arith.addf %x, %a : f32
        linalg.yield %0 : f32
  } -> tensor<f32>
  return %0 : tensor<f32>
}