File: Ch4.py

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (323 lines) | stat: -rw-r--r-- 10,557 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \
# RUN:   %PYTHON %s | FileCheck %s

# ===----------------------------------------------------------------------===//
#  Chapter 4 : Multistage GEMM with Tensor Core
# ===----------------------------------------------------------------------===//
#
# This program exemplifies a GEMM operation for `f32+=f16*f16`, utilizing the
# Multistage method with a tile size of 128x128x64. The code completely
# parallelizes the two outermost loops into thread blocks. It launches one Warp
# Groups (128 threads in total) and allocates multiple slots/stage in the
# shared memory. The program consists of three main parts: prologue, mainloop,
# and epilogue. In the prologue, thread0 requests for TMA to load data into
# shared memory slots. The mainloop executes MMA while simultaneously loading
# TMA for the utilized slots. This overlap of TMA and MMA operations enhances
# performance by maximizing computational throughput.
#
# Loops illustration:
#
#  for s in range(num_stages):
#    TMA_128x64_64x128...
#  for ti in range(M//128):  # -> blockIdx.x
#   for tj in range(N//128): # -> blockIdx.y
#    for tk in range(K//64):
#      MMA_128x128x64...
#      TMA_128x64_64x128...
#  Epilogue...
#
# This chapter introduces demonstrates:
#  1. Partition shape based on block IDs
#  2. Prologue
#    2.1 Execute TMA Load for two input matrices for each stage
#  3. Main loop
#    3.1 Wait for completion of TMA load with mbarrier
#    3.2 Performs Tensor Core GEMM 64x128x64 by warpgroup
#    3.3 Load next stage if needed
#  4. Epilogue
#    4.1 Store fragmented registers to shared memory
#    4.2 Store shared memory to global
#
# ===----------------------------------------------------------------------===//


from mlir import ir
from mlir.dialects import gpu, scf, nvgpu, nvvm
from mlir.extras import types as T
from tools.nvdsl import *
import numpy as np


def partition_shape():
    """
    Calculate the partition shape based on the block IDs.

    It partitions the shape like below:
    for(.. i < M ...)   --> blockIdx.x
     for(.. j < N ...)  --> blockIdx.y
      for(.. k < K ...)

    Returns:
        dimX (int): Dimension along the x-axis.
        dimY (int): Dimension along the y-axis.
    """
    bidx = gpu.block_id(gpu.Dimension.x)
    bidy = gpu.block_id(gpu.Dimension.y)
    dimX = bidx * TILE_M
    dimY = bidy * TILE_N
    return dimX, dimY


def tma_load(
    mbar_group: Mbarriers,
    a_tma: TMA,
    b_tma: TMA,
    slot,
    stage,
    num_stages,
    p=None,
):
    """
    TMA loads two input matrices from global memory to shared memory. It performs the following operations:

       - tma.load a_shared_memory[off_x]  at coordinate [x, z]      (Loads 128x64)
       - tma.load b_shared_memory[off_y1] at coordinate [y, x]      (Loads 64x64)
       - tma.load b_shared_memory[off_y2] at coordinate [y + 64, x] (Loads 64x64)

       mbarrier.arrive ta_count = 128x64x2x4
    """
    dimX, dimY = partition_shape()

    tidx = gpu.thread_id(gpu.Dimension.x)
    begin_b = num_stages * get_type_size(a_tma.tma_memref)
    size_tma_a = get_type_size(a_tma.tma_memref)
    size_tma_b = get_type_size(b_tma.tma_memref)
    ta_count = size_tma_a + (size_tma_b * 2)
    tidx = gpu.thread_id(gpu.Dimension.x)

    p = tidx == 0 if p is None else p

    off_a = slot * size_tma_a
    off_b = (slot * size_tma_a) + begin_b
    off_b2 = off_b + size_tma_b
    a_elem_ty = a_tma.tma_memref.element_type
    b_elem_ty = b_tma.tma_memref.element_type
    a = get_dynamic_shared_memory(a_tma.tma_memref.shape, a_elem_ty, off_a)
    b1 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b)
    b2 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b2)

    mbar_group[slot].arrive(ta_count, predicate=p)

    c1 = stage * 64
    a_tma.load(a, mbar_group[slot], coords=[c1, dimX], predicate=p)
    b_tma.load(b1, mbar_group[slot], coords=[dimY, c1], predicate=p)
    b_tma.load(b2, mbar_group[slot], coords=[dimY + 64, c1], predicate=p)


def initialize(a_tma: TMA, b_tma: TMA, num_stages):
    """
    Initialize mbarriers and prefetch TMA descriptors.
    """
    tidx = gpu.thread_id(gpu.Dimension.x)
    mbar_group = Mbarriers(number_of_barriers=num_stages)
    isThread0 = tidx == const(0)
    with ir.InsertionPoint(scf.IfOp(isThread0).then_block):
        for i in scf.for_(0, num_stages, 1):
            mbar_group[i].init(1)
            scf.yield_([])
        a_tma.prefetch()
        b_tma.prefetch()
        scf.yield_([])

    return mbar_group


def prologue(mbar_group: Mbarriers, a_tma: TMA, b_tma: TMA, num_stages):
    """
    Prologue of the GEMM kernel. It loads 2 input matrices for each stage in loop like below:

    for stage in range(NUM_STAGES):
        tma_load x, y, stage

    """
    ns = num_stages if num_stages == 1 else num_stages - 1
    for iv in scf.for_(0, ns, 1):
        tma_load(mbar_group, a_tma, b_tma, iv, iv, num_stages)
        scf.yield_([])


def mainloop(mbar_group: Mbarriers, a_tma: TMA, b_tma: TMA, num_stages):
    """
    Main loop of the Multistage GEMM kernel. It iterates through
    stages and performs matrix multiplication, loading data by TMA to shared memory. It like following

    MatrixAccumulator D
    for k in range(K // TILE_K):

        try_wait(stage, ...)    # Wait TMA load

        Matrix A(stage, ...)    # Find shared memory slot
        Matrix B(stage, ...)    # Find shared memory slot
        D += A @ B              # Multiply and accumulate

        if(needLoad)            # Load next stage if needed
            tma_load(x, y, nextSlot, nextStage)

    """
    ns = num_stages if num_stages == 1 else num_stages - 1

    tidx = gpu.thread_id(gpu.Dimension.x)
    begin_b = num_stages * get_type_size(a_tma.tma_memref)

    size_a = TILE_M * TILE_K * get_type_size(T.f16())

    # Initialize A and B (input matrices) and C (accumulator)
    A = WGMMAMatrix(WGMMAType.Descriptor, [TILE_M, TILE_K], desc=a_tma)
    B = WGMMAMatrix(WGMMAType.Descriptor, [TILE_K, TILE_N], desc=b_tma)
    D = WGMMAMatrix(WGMMAType.Accumulator, shape=[TILE_M, TILE_N], ty=T.f32())

    phase = const(False, ty=T.bool())

    # Main Loop
    for_op = scf.ForOp(const(0), const(K // TILE_K), const(1), [D.acc_op, phase])
    with ir.InsertionPoint(for_op.body):
        phase = for_op.inner_iter_args[1]
        iv = for_op.induction_variable
        stage = iv % num_stages

        # Wait for current stage
        mbar_group[stage].try_wait(phase=phase)

        # Find shared memory slot
        offset_a = stage * size_a
        offset_b = offset_a + begin_b
        a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offset_a)
        b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offset_b)

        # Iterate input matrices, update accumulator
        A.update_smem(a_smem)
        B.update_smem(b_smem)
        D.update_accumulator(for_op.inner_iter_args[0])

        # Matrix Multiply
        D += A @ B

        # Wait Tensor Core for single stage
        if num_stages == 1:
            nvvm.WgmmaWaitGroupSyncOp(0)

        # Load next stage
        pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)
        nextStage = iv + ns
        nextSlot = nextStage % num_stages
        tma_load(mbar_group, a_tma, b_tma, nextSlot, nextStage, num_stages, pred)

        # Switch phase parity for the mbarrier
        newPhase = arith.select(
            stage == (num_stages - 1),
            (phase ^ const(True, ty=T.bool())),
            phase,
        )
        scf.yield_([D.acc_op, newPhase])

    nvvm.WgmmaWaitGroupSyncOp(0)

    D.update_accumulator(for_op.results[0])
    return D


def epilogue(D: WGMMAMatrix, d_dev):
    """
    Epilogue of the GEMM kernel. It stores the fragmented registers to global memory.

    MatrixAccumulator D               # Fragmented results
    store D -> Shared Memory          # Store Shared Memory
    Shared Memory -> Z[dimX][dimY]    # Store Shared Memory to Global Memory

    """
    tidx = gpu.thread_id(gpu.Dimension.x)
    dimX, dimY = partition_shape()

    d_smem = get_dynamic_shared_memory([TILE_M, TILE_N], T.f32())
    d_gmem = memref.subview(d_dev, [dimX, dimY], [TILE_M, TILE_N], [1, 1])

    # Store (registers -> shared memory)
    D.store_accumulator(d_smem)
    gpu.barrier()

    # Store (shared memory --> global memory)
    for i in scf.for_(0, TILE_M, 1):
        val = memref.load(d_smem, [i, tidx])
        memref.store(val, d_gmem, [i, tidx])
        scf.yield_([])


# The decorator generates
#   a -> memref<MxKxf16>
#   b -> memref<NxKf16>
#   d -> memref<MxNxf32>
@NVDSL.mlir_func
def gemm_multistage(a, b, d, num_stages):
    token_ty = gpu.AsyncTokenType.get()
    t1 = gpu.wait(token_ty, [])
    a_dev, t2 = gpu.alloc(a.type, token_ty, [t1], [], [])
    b_dev, t3 = gpu.alloc(b.type, token_ty, [t2], [], [])
    d_dev, t4 = gpu.alloc(d.type, token_ty, [t3], [], [])
    t5 = gpu.memcpy(token_ty, [t4], a_dev, a)
    t6 = gpu.memcpy(token_ty, [t5], b_dev, b)
    t7 = gpu.wait(token_ty, [t6])

    sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B
    a_tma = TMA([128, 64], a.type, swizzle=sw)
    b_tma = TMA([64, 64], b.type, swizzle=sw)
    a_tma.create_descriptor(a_dev)
    b_tma.create_descriptor(b_dev)

    grid = [(M // TILE_M), (N // TILE_N), 1]
    block = [128, 1, 1]

    size_a = get_type_size(a.type.element_type) * TILE_M * TILE_K
    size_b = get_type_size(b.type.element_type) * TILE_N * TILE_K
    smem_size_in_bytes = (size_a + size_b) * num_stages

    @NVDSL.mlir_gpu_launch(grid=grid, block=block, smem=smem_size_in_bytes)
    def gemm_multistage_kernel():
        # Initialize mbarriers and prefetch TMA descriptors
        mbar_group = initialize(a_tma, b_tma, num_stages)

        # Fill the pipeline stages
        prologue(mbar_group, a_tma, b_tma, num_stages)

        # Main loop
        D = mainloop(mbar_group, a_tma, b_tma, num_stages)

        # Store registers to global memory
        epilogue(D, d_dev)

    gemm_multistage_kernel()

    t8 = gpu.memcpy(token_ty, [t7], d, d_dev)
    gpu.wait(None, [t8])


# Python pass arguments to MLIR
N = 256
M = 512
K = 1024
TILE_M = 128
TILE_N = 128
TILE_K = 64
a = np.random.randn(M, K).astype(np.float16)
b = np.random.randn(K, N).astype(np.float16)
d = np.zeros((M, N), np.float32)

gemm_multistage(a, b, d, num_stages=7)


# Verify MLIR with reference computation
ref_d = a.astype(np.float16) @ b.astype(np.float16)
np.testing.assert_allclose(d, ref_d, rtol=5e-03, atol=1e-01)


print("PASS")
# CHECK-NOT: Mismatched elements