1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \
# RUN: %PYTHON %s | FileCheck %s
# ===----------------------------------------------------------------------===//
# Chapter 5 : Warp Specialized GEMM with Tensor Core
# ===----------------------------------------------------------------------===//
#
# This program demonstrates a GEMM operation for `f32+=f16*f16`, utilizing the
# Warp Specialized method with a tile size of 128x128x64. The code completely
# parallelizes the two outermost loops into thread blocks. It launches two Warp
# Groups (256 threads in total): one for the producer and the other for the consumer.
# Each group takes a different control-flow. The producer thread group is responsible
# for loading data into shared memory, while the consumer group executes the Tensor
# Core GEMM operation and epilogue.
#
# for ti in range(M//128): # -> blockIdx.x
# for tj in range(N//128): # -> blockIdx.y
# with wg_producer:
# for tk in range(K//64):
# TMA_128x64_64x128...
# with wg_consumer:
# for tk in range(K//64):
# MMA_128x128x64...
# Epilogue..
#
# This chapter demonstrates:
# 2 WG (warpgroups)
# Producer:
# 2.1.1 Wait MMA Barrier
# 2.1.1 Load TMA with TMA barrier
# 2.1.1 Arrive TMA barrier with txcount
# Consumer:
# Loop
# Wait TMA barrier
# Performs Tensor Core GEMM 64x128x64 by warpgroup
# Arrive MMA Barrier
# Epilogue
# Store fragmented registers to shared memory
# Store shared memory to global
#
# ===----------------------------------------------------------------------===//
from mlir import ir
from mlir.dialects import gpu, scf, nvgpu, nvvm
from mlir.extras import types as T
from tools.nvdsl import *
import numpy as np
def partition_shape():
"""
Calculate the partition shape based on the block IDs.
It parallelizes the two outermost loops into thread blocks.
for ti in range(M//128): # -> blockIdx.x
for tj in range(N//128): # -> blockIdx.y
D = 0
for tk in range(K//64):
for i in range(128):
for j in range(128):
for k in range(64):
FMA
Returns:
dimX (int): Dimension along the x-axis.
dimY (int): Dimension along the y-axis.
"""
bidx = gpu.block_id(gpu.Dimension.x)
bidy = gpu.block_id(gpu.Dimension.y)
dimX = bidx * TILE_M
dimY = bidy * TILE_N
return dimX, dimY
def tma_load(
mbar_group: Mbarriers,
a_tma: TMA,
b_tma: TMA,
slot,
stage,
num_stages,
p=None,
):
"""
TMA loads two input matrices from global memory to shared memory. It performs the following operations:
- tma.load a_shared_memory[off_x] at coordinate [x, z] (Loads 128x64)
- tma.load b_shared_memory[off_y1] at coordinate [y, x] (Loads 64x64)
- tma.load b_shared_memory[off_y2] at coordinate [y + 64, x] (Loads 64x64)
mbarrier.arrive ta_count = 128x64x2x4
"""
dimX, dimY = partition_shape()
tidx = gpu.thread_id(gpu.Dimension.x)
begin_b = num_stages * get_type_size(a_tma.tma_memref)
size_tma_a = get_type_size(a_tma.tma_memref)
size_tma_b = get_type_size(b_tma.tma_memref)
ta_count = size_tma_a + (size_tma_b * 2)
off_a = slot * size_tma_a
off_b = (slot * size_tma_a) + begin_b
off_b2 = off_b + size_tma_b
a_elem_ty = a_tma.tma_memref.element_type
b_elem_ty = b_tma.tma_memref.element_type
a = get_dynamic_shared_memory(a_tma.tma_memref.shape, a_elem_ty, off_a)
b1 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b)
b2 = get_dynamic_shared_memory(b_tma.tma_memref.shape, b_elem_ty, off_b2)
mbar_group[slot].arrive(ta_count, predicate=p)
p = (tidx % WARP_GROUP_SIZE) == 0
c1 = stage * 64
a_tma.load(a, mbar_group[slot], coords=[c1, dimX], predicate=p)
b_tma.load(b1, mbar_group[slot], coords=[dimY, c1], predicate=p)
b_tma.load(b2, mbar_group[slot], coords=[dimY + 64, c1], predicate=p)
def initialize(a_tma: TMA, b_tma: TMA, num_stages):
"""
Initialize mbarriers and prefetch TMA descriptors.
"""
tidx = gpu.thread_id(gpu.Dimension.x)
mbar_group_tma = Mbarriers(number_of_barriers=num_stages)
mbar_group_mma = Mbarriers(number_of_barriers=num_stages)
isThread0 = tidx == const(0)
with ir.InsertionPoint(scf.IfOp(isThread0).then_block):
for i in scf.for_(0, num_stages, 1):
mbar_group_tma[i].init(1)
mbar_group_mma[i].init(1)
scf.yield_([])
a_tma.prefetch()
b_tma.prefetch()
scf.yield_([])
return mbar_group_tma, mbar_group_mma
def switch_phase(stage, phase, num_stages):
p = stage == (num_stages - 1)
phase = arith.select(
p,
(phase ^ const(True, ty=T.bool())),
phase,
)
return phase
def producer_loop(
mbar_tma: Mbarriers,
mbar_mma: Mbarriers,
a_tma: TMA,
b_tma: TMA,
wg_me: Warpgroup,
num_stages,
):
phase = const(True, ty=T.bool())
for iv, phase in scf.for_(0, (K // TILE_K), 1, [phase]):
stage = iv % num_stages
# Wait MMA to be done
mbar_mma[stage].try_wait(phase)
# New phase for mbarrier
phase = switch_phase(stage, phase, num_stages)
# TMA Load
tma_load(mbar_tma, a_tma, b_tma, stage, iv, num_stages, wg_me.is_wg_primary)
scf.yield_([phase])
def consumer_loop(
mbar_tma: Mbarriers,
mbar_mma: Mbarriers,
a_tma: TMA,
b_tma: TMA,
wg_me: Warpgroup,
num_stages,
):
begin_b = num_stages * get_type_size(a_tma.tma_memref)
size_a = TILE_M * TILE_K * get_type_size(T.f16())
phase = const(False, ty=T.bool())
A = WGMMAMatrix(WGMMAType.Descriptor, [TILE_M, TILE_K], desc=a_tma)
B = WGMMAMatrix(WGMMAType.Descriptor, [TILE_K, TILE_N], desc=b_tma)
D = WGMMAMatrix(WGMMAType.Accumulator, shape=[TILE_M, TILE_N], ty=T.f32())
for_op = scf.ForOp(const(0), const(K // TILE_K), const(1), [D.acc_op, phase])
with ir.InsertionPoint(for_op.body):
phase = for_op.inner_iter_args[1]
iv = for_op.induction_variable
stage = iv % num_stages
# Wait TMA for current stage
mbar_tma[stage].try_wait(phase)
# Find shared memory slot
offset_a = stage * size_a
offset_b = offset_a + begin_b
a_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offset_a)
b_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offset_b)
# Iterate input matrices, update accumulator
A.update_smem(a_smem)
B.update_smem(b_smem)
D.update_accumulator(for_op.inner_iter_args[0])
# Matrix Multiply
D += A @ B
# MMA Barrier Arrive
p_arrive = (iv > 0) & wg_me.is_wg_primary
with ir.InsertionPoint(scf.IfOp(p_arrive).then_block):
barId = arith.select((stage == 0), const(num_stages - 1), (stage - 1))
mbar_mma[barId].arrive()
scf.yield_([])
phase = switch_phase(stage, phase, num_stages)
scf.yield_([D.acc_op, phase])
nvvm.WgmmaWaitGroupSyncOp(0)
D.update_accumulator(for_op.results[0])
return D
def epilogue(D: WGMMAMatrix, d_dev):
"""
Epilogue of the GEMM kernel. It stores the fragmented registers to global memory.
MatrixAccumulator D # Fragmented results
store D -> Shared Memory # Store Shared Memory
Shared Memory -> Z[dimX][dimY] # Store Shared Memory to Global Memory
"""
tidx = gpu.thread_id(gpu.Dimension.x)
dimX, dimY = partition_shape()
# s = tidx - WARP_GROUP_SIZE
# debug_print("[Epilogue] store to global memory @ s={}", s)
d_smem = get_dynamic_shared_memory([TILE_M, TILE_N], T.f32())
d_gmem = memref.subview(d_dev, [dimX, dimY], [TILE_M, TILE_N], [1, 1])
# Store (registers -> shared memory)
D.store_accumulator(d_smem)
gpu.barrier()
# Store (shared memory --> global memory)
for i in scf.for_(0, TILE_M, 1):
val = memref.load(d_smem, [i, tidx])
memref.store(val, d_gmem, [i, tidx])
scf.yield_([])
@NVDSL.mlir_func
def gemm_warp_specialized(a, b, d, num_stages):
token_ty = gpu.AsyncTokenType.get()
t1 = gpu.wait(token_ty, [])
a_dev, t2 = gpu.alloc(a.type, token_ty, [t1], [], [])
b_dev, t3 = gpu.alloc(b.type, token_ty, [t2], [], [])
d_dev, t4 = gpu.alloc(d.type, token_ty, [t3], [], [])
t5 = gpu.memcpy(token_ty, [t4], a_dev, a)
t6 = gpu.memcpy(token_ty, [t5], b_dev, b)
t7 = gpu.wait(token_ty, [t6])
sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B
a_tma = TMA([128, 64], a.type, swizzle=sw)
b_tma = TMA([64, 64], b.type, swizzle=sw)
a_tma.create_descriptor(a_dev)
b_tma.create_descriptor(b_dev)
grid = [(M // TILE_M), (N // TILE_N), 1]
block = [256, 1, 1]
size_a = get_type_size(a.type.element_type) * TILE_M * TILE_K
size_b = get_type_size(b.type.element_type) * TILE_N * TILE_K
smem_size_in_bytes = (size_a + size_b) * num_stages
@NVDSL.mlir_gpu_launch(grid=grid, block=block, smem=smem_size_in_bytes)
def gemm_warp_specialized_kernel():
# Init Warpgroups
wg_producer = Warpgroup(primary_thread=128, register_size=40)
wg_consumer = Warpgroup(primary_thread=0, register_size=232)
# Initialize mbarriers and prefetch TMA descriptors
mbar_mma, mbar_tma = initialize(a_tma, b_tma, num_stages)
# Producer performs TMA
with wg_producer:
producer_loop(mbar_tma, mbar_mma, a_tma, b_tma, wg_producer, num_stages)
# Consumer performs MMA/Tensor Core
with wg_consumer:
D = consumer_loop(mbar_tma, mbar_mma, a_tma, b_tma, wg_consumer, num_stages)
epilogue(D, d_dev)
gemm_warp_specialized_kernel()
t8 = gpu.memcpy(token_ty, [t7], d, d_dev)
gpu.wait(None, [t8])
# Python pass arguments to MLIR
N = 256
M = 512
K = 1024
TILE_M = 128
TILE_N = 128
TILE_K = 64
a = np.random.randn(M, K).astype(np.float16)
b = np.random.randn(K, N).astype(np.float16)
d = np.zeros((M, N), np.float32)
gemm_warp_specialized(a, b, d, num_stages=7)
# Verify MLIR with reference computation
ref_d = a.astype(np.float16) @ b.astype(np.float16)
np.testing.assert_allclose(d, ref_d, rtol=5e-03, atol=1e-01)
print("PASS")
# CHECK-NOT: Mismatched elements
|