File: nvdsl.py

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (456 lines) | stat: -rw-r--r-- 16,090 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
from enum import Enum
import functools, sys, ctypes, os, errno
import numpy as np
from functools import partialmethod
from mlir import ir
from mlir.dialects import arith, func, gpu, memref, nvgpu, scf, nvvm
from mlir.extras import types as T
from mlir import runtime as rt
from tools import nvgpucompiler

MLIR_DYNAMIC = -9223372036854775808


def const(value: int, ty=None):
    ty = T.index() if ty is None else ty
    if isinstance(value, ir.Value) and (
        value.type.isinstance(value.type) or T.bool().isinstance(value.type)
    ):
        return value
    return arith.constant(ty, value)


def get_type_size(ty):
    if ir.MemRefType.isinstance(ty):
        size = get_type_size(ty.element_type)
        for sz in ty.shape:
            size *= sz
        return size
    if ir.FloatType.isinstance(ty):
        return ir.FloatType(ty).width // 8
    if ir.IntegerType.isinstance(ty):
        return ir.IntegerType(ty).width // 8
    raise NotImplementedError(ty)


def get_mlir_func_obj_ty(inputArgs):
    args = []
    c_int_p = ctypes.c_int * 1
    c_float_p = ctypes.c_float * 1
    c_bool_p = ctypes.c_bool * 1
    for arg in inputArgs:
        if isinstance(arg, bool):
            args.append(c_bool_p(arg))
        elif isinstance(arg, int):
            args.append(c_int_p(arg))
        elif isinstance(arg, float):
            args.append(c_float_p(arg))
        elif isinstance(arg, np.ndarray):
            args.append(
                ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(arg)))
            )
        else:
            raise NotImplementedError(arg)
    return args


class Mbarriers:
    def __init__(self, number_of_barriers=1):
        self.mbar_ty = ir.Type.parse(
            "!nvgpu.mbarrier.group<memorySpace=#gpu.address_space<workgroup>, num_barriers = "
            + str(number_of_barriers)
            + ">"
        )
        self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)
        self.number_of_barriers = number_of_barriers

    def __getitem__(self, key):
        self.id_op = const(key)
        return self

    def init(self, count: int, predicate=None):
        count_op = const(count)
        if predicate is None:
            nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op)
        else:
            nvgpu.mbarrier_init(
                self.mbar_group_op, count_op, self.id_op, predicate=predicate
            )

    def arrive(self, txcount: int = 0, predicate=None):
        if txcount != 0:
            txcount_op = const(txcount)
            nvgpu.mbarrier_arrive_expect_tx(
                self.mbar_group_op, txcount_op, self.id_op, predicate=predicate
            )
        else:
            nvgpu.mbarrier_arrive(
                ir.Type.parse("!nvgpu.mbarrier.token"), self.mbar_group_op, self.id_op
            )

    def try_wait(self, phase: bool = False, ticks: int = 10000000):
        ticks_op = const(ticks)
        phase_op = const(phase, T.bool())
        nvgpu.MBarrierTryWaitParityOp(
            self.mbar_group_op,
            phase_op,
            ticks_op,
            mbarId=self.id_op,
        )


class TMA:
    """A class that builds a TMA descriptor."""

    def __init__(
        self,
        tma_box_shape,
        memref_ty,
        swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,
        l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
        oob=nvgpu.TensorMapOOBKind.OOB_ZERO,
        interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
    ):
        self.swizzle = swizzle  # mlir.nvgpu.TensorMapSwizzleKind
        self.l2promo = l2promo  # mlir.nvgpu.TensorMapL2PromoKind
        self.oob = oob  # mlir.nvgpu.TensorMapOOBKind
        self.interleave = interleave  # mlir.nvgpu.TensorMapInterleaveKind
        self.tma_box_shape = tma_box_shape
        self.memref_ty = memref_ty  # MemRefType
        self.tma_memref = ir.MemRefType.get(tma_box_shape, memref_ty.element_type)

    @property
    def tensormap_descriptor_ty(self):
        """Returns a tensormap descriptor type."""
        tensorMemrefType = ir.MemRefType.get(
            self.tma_box_shape,
            self.memref_ty.element_type,
            memory_space=ir.Attribute.parse("3"),
        )
        return nvgpu.TensorMapDescriptorType.get(
            tensorMemrefType,
            self.swizzle,
            self.l2promo,
            self.oob,
            self.interleave,
        )

    def create_descriptor(self, device_ptr):
        tma_descriptor_ty = self.tensormap_descriptor_ty
        device_unranked_memref = memref.CastOp(
            ir.UnrankedMemRefType.get(
                self.memref_ty.element_type, self.memref_ty.memory_space
            ),
            device_ptr,
        )
        self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(
            tma_descriptor_ty, device_unranked_memref, map(const, self.tma_box_shape)
        )
        return self.tma_descriptor.result

    def prefetch(self, predicate=None):
        nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)

    def load(self, dest, mbarrier: Mbarriers, coords=[0], predicate=None):
        nvgpu.TmaAsyncLoadOp(
            dest,
            mbarrier.mbar_group_op,
            self.tma_descriptor,
            coordinates=map(const, coords),
            mbarId=mbarrier.id_op,
            predicate=predicate,
        )


WARP_GROUP_SIZE = 128  # Number of threads in a warpgroup


class Warpgroup:
    def __init__(self, primary_thread, register_size):
        assert (primary_thread % WARP_GROUP_SIZE) == 0
        tidx = gpu.thread_id(gpu.Dimension.x)
        self.primary_thread = primary_thread
        self.register_size = register_size
        self.is_wg_primary = (tidx % WARP_GROUP_SIZE) == 0
        self.wg_id = tidx / WARP_GROUP_SIZE
        self.is_me = self.wg_id == (primary_thread // WARP_GROUP_SIZE)

    def __enter__(self):
        if_op = scf.IfOp(self.is_me)
        self.ipoint_op = ir.InsertionPoint(if_op.then_block)
        self.ipoint_op.__enter__()
        if self.register_size < 64:
            nvvm.setmaxregister(self.register_size, nvvm.SetMaxRegisterAction.decrease)
        else:
            nvvm.setmaxregister(self.register_size, nvvm.SetMaxRegisterAction.increase)

    def __exit__(self, exc_type, exc_value, traceback):
        scf.yield_([])
        self.ipoint_op.__exit__(exc_type, exc_value, traceback)
        return True


class WGMMAType(Enum):
    Accumulator = 1
    Descriptor = 2


class WGMMAMatrix:
    def __init__(
        self,
        matrix_type: WGMMAType,
        shape: list = None,
        desc: TMA = None,
        smem=None,
        ty=None,
        acc_op=None,
    ):
        if acc_op is None:
            self.M = shape[0]
            self.N = shape[1]
            self.ty = ty
            self.matrix_type = matrix_type
            self.desc = desc
            self.smem = smem
            if matrix_type is WGMMAType.Accumulator:
                self.acc_op = nvgpu.warpgroup_mma_init_accumulator(self.acc_ty)
        elif acc_op:
            self.acc_op = acc_op
            self.matrix_type = WGMMAType.Accumulator

    @property
    def acc_ty(self):
        parse_str = f"!nvgpu.warpgroup.accumulator<fragmented=vector<{self.M}x{self.N}x{self.ty}>>"
        return ir.Type.parse(parse_str)

    @property
    def wgmma_ty(self):
        parse_str = f"!nvgpu.warpgroup.descriptor<tensor=memref<{self.M}x{self.N}x{self.desc.memref_ty.element_type}, #gpu.address_space<workgroup>>>"
        return ir.Type.parse(parse_str)

    def store_accumulator(self, dest):
        assert self.matrix_type == WGMMAType.Accumulator
        nvgpu.warpgroup_mma_store(self.acc_op, dest)

    def update_smem(self, smem):
        self.smem = smem

    def update_accumulator(self, acc_op):
        self.acc_op = acc_op

    def __matmul__(self, rhs):
        lhs = nvgpu.warpgroup_generate_descriptor(
            self.wgmma_ty, self.smem, self.desc.tma_descriptor
        )
        rhs = nvgpu.warpgroup_generate_descriptor(
            rhs.wgmma_ty, rhs.smem, rhs.desc.tma_descriptor
        )
        return [lhs, rhs]

    def __iadd__(self, matmulResult):
        lhs = matmulResult[0]
        rhs = matmulResult[1]
        acc_op = nvgpu.WarpgroupMmaOp(
            self.acc_op.type, lhs, rhs, self.acc_op, transposeB=True
        )
        return WGMMAMatrix(WGMMAType.Accumulator, acc_op=acc_op)


def get_dynamic_shared_memory(shape=None, ty=None, offset: int = 0):
    smem_space_str = "#gpu.address_space<workgroup>"
    smem_space = ir.Attribute.parse(smem_space_str)
    dynamic_smem = gpu.dynamic_shared_memory(
        ir.MemRefType.get((MLIR_DYNAMIC,), T.i8(), memory_space=smem_space)
    )
    if shape is None:
        return dynamic_smem
    memref_ty = ir.MemRefType.get(shape, ty, memory_space=smem_space)
    return memref.view(
        ir.MemRefType.get(
            memref_ty.shape, memref_ty.element_type, memory_space=smem_space
        ),
        dynamic_smem,
        const(offset),
        [],
    )


def get_mlir_ty(arg):
    def get_mlir_ty_from_np(dtype):
        if dtype == np.float16:
            return T.f16()
        if dtype == np.float32:
            return T.f32()
        if dtype == np.float64:
            return T.f64()
        if dtype == np.int32:
            return T.i32()
        if dtype == np.int64:
            return T.i64()
        raise NotImplementedError(dtype)

    if isinstance(arg, bool):
        return T.bool()
    elif isinstance(arg, int):
        return T.index()
    elif isinstance(arg, float):
        return T.f32()
    elif isinstance(arg, np.ndarray):
        descriptor = rt.get_ranked_memref_descriptor(arg)
        dtype = get_mlir_ty_from_np(arg.dtype)
        shape = descriptor.shape
        return memref.MemRefType.get(shape, dtype)
    raise NotImplementedError(arg)


class NVDSL:
    @staticmethod
    def mlir_gpu_launch(grid=(1, 1, 1), block=(1, 1, 1), smem=0):
        def decorator(func):
            @functools.wraps(func)
            def wrapper(*args, **kwargs):
                launch_op = gpu.LaunchOp(
                    None,
                    [],
                    *map(const, grid),
                    *map(const, block),
                    dynamicSharedMemorySize=arith.constant(T.i32(), smem),
                )
                launch_op.body.blocks.append(*([T.index()] * 12))
                with ir.InsertionPoint(launch_op.body.blocks[0]):
                    result = func(*args, **kwargs)
                    gpu.terminator()
                    return result

            return wrapper

        return decorator

    @staticmethod
    def mlir_func(funcBody):
        @functools.wraps(funcBody)
        def wrapper(*args, **kwargs):
            function_name = funcBody.__name__

            def saveIR(module):
                """Save generated IR"""
                if True:  # self.saveIR:
                    # print(mlir_nvgpu_module)
                    original_stdout = sys.stdout
                    with open("nvdsl.mlir", "w") as f:
                        sys.stdout = f
                        print(module)
                        sys.stdout = original_stdout

            def _binary_op(lhs, rhs, op: str, predAtt="") -> "ArithValue":
                """Generate MLIR's Arith dialects binary operations."""
                rhs = const(rhs)
                if arith._is_float_type(lhs.type) and arith._is_float_type(rhs.type):
                    op += "F"
                    if op.startswith("Cmp"):
                        predicateAttr = getattr(arith, f"CmpFPredicate").__dict__[
                            predAtt
                        ]
                elif arith._is_integer_like_type(
                    lhs.type
                ) and arith._is_integer_like_type(lhs.type):
                    if op == "Div" or op == "Rem":
                        op += "U"
                    op += "I"
                    if op.startswith("Cmp"):
                        predicateAttr = getattr(arith, f"CmpIPredicate").__dict__[
                            predAtt
                        ]
                else:
                    raise NotImplementedError(
                        f"Unsupported '{op}' operands: {lhs}, {rhs}"
                    )

                if op.startswith("Cmp"):
                    op = getattr(arith, f"{op}Op")

                    return op(predicateAttr, lhs, rhs).result
                else:
                    op = getattr(arith, f"{op}Op")
                    return op(lhs, rhs).result

            @ir.register_value_caster(ir.IndexType.static_typeid)
            @ir.register_value_caster(ir.F32Type.static_typeid)
            @ir.register_value_caster(ir.F16Type.static_typeid)
            @ir.register_value_caster(ir.F64Type.static_typeid)
            @ir.register_value_caster(ir.IntegerType.static_typeid)
            class ArithValue(ir.Value):
                """Overloads operators for MLIR's Arith dialects binary operations."""

                def __init__(self, v):
                    super().__init__(v)

                __add__ = partialmethod(_binary_op, op="Add")
                __sub__ = partialmethod(_binary_op, op="Sub")
                __mul__ = partialmethod(_binary_op, op="Mul")
                __truediv__ = partialmethod(_binary_op, op="Div")
                __mod__ = partialmethod(_binary_op, op="Rem")
                __xor__ = partialmethod(_binary_op, op="XOr")
                __lt__ = partialmethod(_binary_op, op="Cmp", predAtt="ult")
                __le__ = partialmethod(_binary_op, op="Cmp", predAtt="ule")
                __eq__ = partialmethod(_binary_op, op="Cmp", predAtt="eq")
                __ne__ = partialmethod(_binary_op, op="Cmp", predAtt="ne")
                __gt__ = partialmethod(_binary_op, op="Cmp", predAtt="ugt")
                __ge__ = partialmethod(_binary_op, op="Cmp", predAtt="uge")
                __and__ = partialmethod(_binary_op, op="And")
                __or__ = partialmethod(_binary_op, op="Or")

                def __str__(self):
                    return (
                        super()
                        .__str__()
                        .replace(ir.Value.__name__, ArithValue.__name__)
                    )

            # Generate MLIR Context and start generating IR
            with ir.Context(), ir.Location.unknown():
                types = []
                for arg in args:
                    types.append(get_mlir_ty(arg))

                # Build IR
                module = ir.Module.create()
                with ir.InsertionPoint(module.body):
                    fop = func.FuncOp(function_name, (types, []))
                    fop.attributes["llvm.emit_c_interface"] = ir.UnitAttr.get()
                    with ir.InsertionPoint(fop.add_entry_block()):
                        fargs = []
                        for i, a in enumerate(types):
                            fargs.append(fop.arguments[i])

                        # Call user function body
                        result = funcBody(*fargs, **kwargs)
                        func.ReturnOp([])

                # Save IR in a file
                # saveIR(module)

                # Verify the module
                module.operation.verify()

                # Compile and JIT MLIR module
                options = f"cubin-chip=sm_90a cubin-features=+ptx80 opt-level=3"
                support_lib = os.getenv("SUPPORT_LIB")
                if not os.path.exists(support_lib):
                    raise FileNotFoundError(
                        errno.ENOENT, os.strerror(errno.ENOENT), support_lib
                    )
                compiler = nvgpucompiler.NvgpuCompiler(
                    options, opt_level=3, shared_libs=[support_lib]
                )
                engine = compiler.compile_and_jit(module)

            # Convert input arguments to MLIR arguments
            newArgs = get_mlir_func_obj_ty(args)

            # Run the compiled program
            engine.invoke(function_name, *newArgs)

            return result

        return wrapper