1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
from enum import Enum
import functools, sys, ctypes, os, errno
import numpy as np
from functools import partialmethod
from mlir import ir
from mlir.dialects import arith, func, gpu, memref, nvgpu, scf, nvvm
from mlir.extras import types as T
from mlir import runtime as rt
from tools import nvgpucompiler
MLIR_DYNAMIC = -9223372036854775808
def const(value: int, ty=None):
ty = T.index() if ty is None else ty
if isinstance(value, ir.Value) and (
value.type.isinstance(value.type) or T.bool().isinstance(value.type)
):
return value
return arith.constant(ty, value)
def get_type_size(ty):
if ir.MemRefType.isinstance(ty):
size = get_type_size(ty.element_type)
for sz in ty.shape:
size *= sz
return size
if ir.FloatType.isinstance(ty):
return ir.FloatType(ty).width // 8
if ir.IntegerType.isinstance(ty):
return ir.IntegerType(ty).width // 8
raise NotImplementedError(ty)
def get_mlir_func_obj_ty(inputArgs):
args = []
c_int_p = ctypes.c_int * 1
c_float_p = ctypes.c_float * 1
c_bool_p = ctypes.c_bool * 1
for arg in inputArgs:
if isinstance(arg, bool):
args.append(c_bool_p(arg))
elif isinstance(arg, int):
args.append(c_int_p(arg))
elif isinstance(arg, float):
args.append(c_float_p(arg))
elif isinstance(arg, np.ndarray):
args.append(
ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(arg)))
)
else:
raise NotImplementedError(arg)
return args
class Mbarriers:
def __init__(self, number_of_barriers=1):
self.mbar_ty = ir.Type.parse(
"!nvgpu.mbarrier.group<memorySpace=#gpu.address_space<workgroup>, num_barriers = "
+ str(number_of_barriers)
+ ">"
)
self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)
self.number_of_barriers = number_of_barriers
def __getitem__(self, key):
self.id_op = const(key)
return self
def init(self, count: int, predicate=None):
count_op = const(count)
if predicate is None:
nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op)
else:
nvgpu.mbarrier_init(
self.mbar_group_op, count_op, self.id_op, predicate=predicate
)
def arrive(self, txcount: int = 0, predicate=None):
if txcount != 0:
txcount_op = const(txcount)
nvgpu.mbarrier_arrive_expect_tx(
self.mbar_group_op, txcount_op, self.id_op, predicate=predicate
)
else:
nvgpu.mbarrier_arrive(
ir.Type.parse("!nvgpu.mbarrier.token"), self.mbar_group_op, self.id_op
)
def try_wait(self, phase: bool = False, ticks: int = 10000000):
ticks_op = const(ticks)
phase_op = const(phase, T.bool())
nvgpu.MBarrierTryWaitParityOp(
self.mbar_group_op,
phase_op,
ticks_op,
mbarId=self.id_op,
)
class TMA:
"""A class that builds a TMA descriptor."""
def __init__(
self,
tma_box_shape,
memref_ty,
swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,
l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
oob=nvgpu.TensorMapOOBKind.OOB_ZERO,
interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
):
self.swizzle = swizzle # mlir.nvgpu.TensorMapSwizzleKind
self.l2promo = l2promo # mlir.nvgpu.TensorMapL2PromoKind
self.oob = oob # mlir.nvgpu.TensorMapOOBKind
self.interleave = interleave # mlir.nvgpu.TensorMapInterleaveKind
self.tma_box_shape = tma_box_shape
self.memref_ty = memref_ty # MemRefType
self.tma_memref = ir.MemRefType.get(tma_box_shape, memref_ty.element_type)
@property
def tensormap_descriptor_ty(self):
"""Returns a tensormap descriptor type."""
tensorMemrefType = ir.MemRefType.get(
self.tma_box_shape,
self.memref_ty.element_type,
memory_space=ir.Attribute.parse("3"),
)
return nvgpu.TensorMapDescriptorType.get(
tensorMemrefType,
self.swizzle,
self.l2promo,
self.oob,
self.interleave,
)
def create_descriptor(self, device_ptr):
tma_descriptor_ty = self.tensormap_descriptor_ty
device_unranked_memref = memref.CastOp(
ir.UnrankedMemRefType.get(
self.memref_ty.element_type, self.memref_ty.memory_space
),
device_ptr,
)
self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(
tma_descriptor_ty, device_unranked_memref, map(const, self.tma_box_shape)
)
return self.tma_descriptor.result
def prefetch(self, predicate=None):
nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)
def load(self, dest, mbarrier: Mbarriers, coords=[0], predicate=None):
nvgpu.TmaAsyncLoadOp(
dest,
mbarrier.mbar_group_op,
self.tma_descriptor,
coordinates=map(const, coords),
mbarId=mbarrier.id_op,
predicate=predicate,
)
WARP_GROUP_SIZE = 128 # Number of threads in a warpgroup
class Warpgroup:
def __init__(self, primary_thread, register_size):
assert (primary_thread % WARP_GROUP_SIZE) == 0
tidx = gpu.thread_id(gpu.Dimension.x)
self.primary_thread = primary_thread
self.register_size = register_size
self.is_wg_primary = (tidx % WARP_GROUP_SIZE) == 0
self.wg_id = tidx / WARP_GROUP_SIZE
self.is_me = self.wg_id == (primary_thread // WARP_GROUP_SIZE)
def __enter__(self):
if_op = scf.IfOp(self.is_me)
self.ipoint_op = ir.InsertionPoint(if_op.then_block)
self.ipoint_op.__enter__()
if self.register_size < 64:
nvvm.setmaxregister(self.register_size, nvvm.SetMaxRegisterAction.decrease)
else:
nvvm.setmaxregister(self.register_size, nvvm.SetMaxRegisterAction.increase)
def __exit__(self, exc_type, exc_value, traceback):
scf.yield_([])
self.ipoint_op.__exit__(exc_type, exc_value, traceback)
return True
class WGMMAType(Enum):
Accumulator = 1
Descriptor = 2
class WGMMAMatrix:
def __init__(
self,
matrix_type: WGMMAType,
shape: list = None,
desc: TMA = None,
smem=None,
ty=None,
acc_op=None,
):
if acc_op is None:
self.M = shape[0]
self.N = shape[1]
self.ty = ty
self.matrix_type = matrix_type
self.desc = desc
self.smem = smem
if matrix_type is WGMMAType.Accumulator:
self.acc_op = nvgpu.warpgroup_mma_init_accumulator(self.acc_ty)
elif acc_op:
self.acc_op = acc_op
self.matrix_type = WGMMAType.Accumulator
@property
def acc_ty(self):
parse_str = f"!nvgpu.warpgroup.accumulator<fragmented=vector<{self.M}x{self.N}x{self.ty}>>"
return ir.Type.parse(parse_str)
@property
def wgmma_ty(self):
parse_str = f"!nvgpu.warpgroup.descriptor<tensor=memref<{self.M}x{self.N}x{self.desc.memref_ty.element_type}, #gpu.address_space<workgroup>>>"
return ir.Type.parse(parse_str)
def store_accumulator(self, dest):
assert self.matrix_type == WGMMAType.Accumulator
nvgpu.warpgroup_mma_store(self.acc_op, dest)
def update_smem(self, smem):
self.smem = smem
def update_accumulator(self, acc_op):
self.acc_op = acc_op
def __matmul__(self, rhs):
lhs = nvgpu.warpgroup_generate_descriptor(
self.wgmma_ty, self.smem, self.desc.tma_descriptor
)
rhs = nvgpu.warpgroup_generate_descriptor(
rhs.wgmma_ty, rhs.smem, rhs.desc.tma_descriptor
)
return [lhs, rhs]
def __iadd__(self, matmulResult):
lhs = matmulResult[0]
rhs = matmulResult[1]
acc_op = nvgpu.WarpgroupMmaOp(
self.acc_op.type, lhs, rhs, self.acc_op, transposeB=True
)
return WGMMAMatrix(WGMMAType.Accumulator, acc_op=acc_op)
def get_dynamic_shared_memory(shape=None, ty=None, offset: int = 0):
smem_space_str = "#gpu.address_space<workgroup>"
smem_space = ir.Attribute.parse(smem_space_str)
dynamic_smem = gpu.dynamic_shared_memory(
ir.MemRefType.get((MLIR_DYNAMIC,), T.i8(), memory_space=smem_space)
)
if shape is None:
return dynamic_smem
memref_ty = ir.MemRefType.get(shape, ty, memory_space=smem_space)
return memref.view(
ir.MemRefType.get(
memref_ty.shape, memref_ty.element_type, memory_space=smem_space
),
dynamic_smem,
const(offset),
[],
)
def get_mlir_ty(arg):
def get_mlir_ty_from_np(dtype):
if dtype == np.float16:
return T.f16()
if dtype == np.float32:
return T.f32()
if dtype == np.float64:
return T.f64()
if dtype == np.int32:
return T.i32()
if dtype == np.int64:
return T.i64()
raise NotImplementedError(dtype)
if isinstance(arg, bool):
return T.bool()
elif isinstance(arg, int):
return T.index()
elif isinstance(arg, float):
return T.f32()
elif isinstance(arg, np.ndarray):
descriptor = rt.get_ranked_memref_descriptor(arg)
dtype = get_mlir_ty_from_np(arg.dtype)
shape = descriptor.shape
return memref.MemRefType.get(shape, dtype)
raise NotImplementedError(arg)
class NVDSL:
@staticmethod
def mlir_gpu_launch(grid=(1, 1, 1), block=(1, 1, 1), smem=0):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
launch_op = gpu.LaunchOp(
None,
[],
*map(const, grid),
*map(const, block),
dynamicSharedMemorySize=arith.constant(T.i32(), smem),
)
launch_op.body.blocks.append(*([T.index()] * 12))
with ir.InsertionPoint(launch_op.body.blocks[0]):
result = func(*args, **kwargs)
gpu.terminator()
return result
return wrapper
return decorator
@staticmethod
def mlir_func(funcBody):
@functools.wraps(funcBody)
def wrapper(*args, **kwargs):
function_name = funcBody.__name__
def saveIR(module):
"""Save generated IR"""
if True: # self.saveIR:
# print(mlir_nvgpu_module)
original_stdout = sys.stdout
with open("nvdsl.mlir", "w") as f:
sys.stdout = f
print(module)
sys.stdout = original_stdout
def _binary_op(lhs, rhs, op: str, predAtt="") -> "ArithValue":
"""Generate MLIR's Arith dialects binary operations."""
rhs = const(rhs)
if arith._is_float_type(lhs.type) and arith._is_float_type(rhs.type):
op += "F"
if op.startswith("Cmp"):
predicateAttr = getattr(arith, f"CmpFPredicate").__dict__[
predAtt
]
elif arith._is_integer_like_type(
lhs.type
) and arith._is_integer_like_type(lhs.type):
if op == "Div" or op == "Rem":
op += "U"
op += "I"
if op.startswith("Cmp"):
predicateAttr = getattr(arith, f"CmpIPredicate").__dict__[
predAtt
]
else:
raise NotImplementedError(
f"Unsupported '{op}' operands: {lhs}, {rhs}"
)
if op.startswith("Cmp"):
op = getattr(arith, f"{op}Op")
return op(predicateAttr, lhs, rhs).result
else:
op = getattr(arith, f"{op}Op")
return op(lhs, rhs).result
@ir.register_value_caster(ir.IndexType.static_typeid)
@ir.register_value_caster(ir.F32Type.static_typeid)
@ir.register_value_caster(ir.F16Type.static_typeid)
@ir.register_value_caster(ir.F64Type.static_typeid)
@ir.register_value_caster(ir.IntegerType.static_typeid)
class ArithValue(ir.Value):
"""Overloads operators for MLIR's Arith dialects binary operations."""
def __init__(self, v):
super().__init__(v)
__add__ = partialmethod(_binary_op, op="Add")
__sub__ = partialmethod(_binary_op, op="Sub")
__mul__ = partialmethod(_binary_op, op="Mul")
__truediv__ = partialmethod(_binary_op, op="Div")
__mod__ = partialmethod(_binary_op, op="Rem")
__xor__ = partialmethod(_binary_op, op="XOr")
__lt__ = partialmethod(_binary_op, op="Cmp", predAtt="ult")
__le__ = partialmethod(_binary_op, op="Cmp", predAtt="ule")
__eq__ = partialmethod(_binary_op, op="Cmp", predAtt="eq")
__ne__ = partialmethod(_binary_op, op="Cmp", predAtt="ne")
__gt__ = partialmethod(_binary_op, op="Cmp", predAtt="ugt")
__ge__ = partialmethod(_binary_op, op="Cmp", predAtt="uge")
__and__ = partialmethod(_binary_op, op="And")
__or__ = partialmethod(_binary_op, op="Or")
def __str__(self):
return (
super()
.__str__()
.replace(ir.Value.__name__, ArithValue.__name__)
)
# Generate MLIR Context and start generating IR
with ir.Context(), ir.Location.unknown():
types = []
for arg in args:
types.append(get_mlir_ty(arg))
# Build IR
module = ir.Module.create()
with ir.InsertionPoint(module.body):
fop = func.FuncOp(function_name, (types, []))
fop.attributes["llvm.emit_c_interface"] = ir.UnitAttr.get()
with ir.InsertionPoint(fop.add_entry_block()):
fargs = []
for i, a in enumerate(types):
fargs.append(fop.arguments[i])
# Call user function body
result = funcBody(*fargs, **kwargs)
func.ReturnOp([])
# Save IR in a file
# saveIR(module)
# Verify the module
module.operation.verify()
# Compile and JIT MLIR module
options = f"cubin-chip=sm_90a cubin-features=+ptx80 opt-level=3"
support_lib = os.getenv("SUPPORT_LIB")
if not os.path.exists(support_lib):
raise FileNotFoundError(
errno.ENOENT, os.strerror(errno.ENOENT), support_lib
)
compiler = nvgpucompiler.NvgpuCompiler(
options, opt_level=3, shared_libs=[support_lib]
)
engine = compiler.compile_and_jit(module)
# Convert input arguments to MLIR arguments
newArgs = get_mlir_func_obj_ty(args)
# Run the compiled program
engine.invoke(function_name, *newArgs)
return result
return wrapper
|