File: shape_inference.mlir

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (30 lines) | stat: -rw-r--r-- 1,612 bytes parent folder | download | duplicates (17)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
// RUN: toyc-ch6 %s -emit=mlir -opt 2>&1 | FileCheck %s

// Check the result of inlining+shape inference on an input module.

toy.func private @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> {
  %0 = toy.transpose(%arg0 : tensor<*xf64>) to tensor<*xf64>
  %1 = toy.transpose(%arg1 : tensor<*xf64>) to tensor<*xf64>
  %2 = toy.mul %0, %1 : tensor<*xf64>
  toy.return %2 : tensor<*xf64>
}
toy.func @main() {
  %0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
  %1 = toy.reshape(%0 : tensor<2x3xf64>) to tensor<2x3xf64>
  %2 = toy.constant dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>
  %3 = toy.reshape(%2 : tensor<6xf64>) to tensor<2x3xf64>
  %4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
  %5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
  toy.print %5 : tensor<*xf64>
  toy.return
}

// CHECK-NOT: toy.func @multiply_transpose
// CHECK-NOT: tensor<*xf64>

// CHECK-LABEL: toy.func @main()
// CHECK:         [[VAL_0:%.*]] = toy.constant dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
// CHECK:         [[VAL_1:%.*]] = toy.transpose([[VAL_0]] : tensor<2x3xf64>) to tensor<3x2xf64>
// CHECK:         [[VAL_2:%.*]] = toy.mul [[VAL_1]], [[VAL_1]] : tensor<3x2xf64>
// CHECK:         toy.print [[VAL_2]] : tensor<3x2xf64>
// CHECK:         toy.return