1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// Test code-gen for `omp.parallel` ops with delayed privatizers (i.e. using
// `omp.private` ops).
// RUN: mlir-translate -mlir-to-llvmir -split-input-file %s | FileCheck %s
llvm.func @parallel_op_1_private(%arg0: !llvm.ptr) {
omp.parallel private(@x.privatizer %arg0 -> %arg2 : !llvm.ptr) {
%0 = llvm.load %arg2 : !llvm.ptr -> f32
omp.terminator
}
llvm.return
}
// CHECK-LABEL: @parallel_op_1_private
// CHECK-SAME: (ptr %[[ORIG:.*]]) {
// CHECK: %[[OMP_PAR_ARG:.*]] = alloca { ptr }, align 8
// CHECK: %[[ORIG_GEP:.*]] = getelementptr { ptr }, ptr %[[OMP_PAR_ARG]], i32 0, i32 0
// CHECK: store ptr %[[ORIG]], ptr %[[ORIG_GEP]], align 8
// CHECK: call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @1, i32 1, ptr @parallel_op_1_private..omp_par, ptr %[[OMP_PAR_ARG]])
// CHECK: }
// CHECK-LABEL: void @parallel_op_1_private..omp_par
// CHECK-SAME: (ptr noalias %{{.*}}, ptr noalias %{{.*}}, ptr %[[ARG:.*]])
// CHECK: %[[ORIG_PTR_PTR:.*]] = getelementptr { ptr }, ptr %[[ARG]], i32 0, i32 0
// CHECK: %[[ORIG_PTR:.*]] = load ptr, ptr %[[ORIG_PTR_PTR]], align 8
// Check that the privatizer alloc region was inlined properly.
// CHECK: %[[PRIV_ALLOC:.*]] = alloca float, align 4
// CHECK: %[[ORIG_VAL:.*]] = load float, ptr %[[ORIG_PTR]], align 4
// CHECK: store float %[[ORIG_VAL]], ptr %[[PRIV_ALLOC]], align 4
// CHECK-NEXT: br
// Check that the privatized value is used (rather than the original one).
// CHECK: load float, ptr %[[PRIV_ALLOC]], align 4
// CHECK: }
llvm.func @parallel_op_2_privates(%arg0: !llvm.ptr, %arg1: !llvm.ptr) {
omp.parallel private(@x.privatizer %arg0 -> %arg2 : !llvm.ptr, @y.privatizer %arg1 -> %arg3 : !llvm.ptr) {
%0 = llvm.load %arg2 : !llvm.ptr -> f32
%1 = llvm.load %arg3 : !llvm.ptr -> i32
omp.terminator
}
llvm.return
}
// CHECK-LABEL: @parallel_op_2_privates
// CHECK-SAME: (ptr %[[ORIG1:.*]], ptr %[[ORIG2:.*]]) {
// CHECK: %[[OMP_PAR_ARG:.*]] = alloca { ptr, ptr }, align 8
// CHECK: %[[ORIG1_GEP:.*]] = getelementptr { ptr, ptr }, ptr %[[OMP_PAR_ARG]], i32 0, i32 0
// CHECK: store ptr %[[ORIG1]], ptr %[[ORIG1_GEP]], align 8
// CHECK: call void (ptr, i32, ptr, ...) @__kmpc_fork_call(ptr @1, i32 1, ptr @parallel_op_2_privates..omp_par, ptr %[[OMP_PAR_ARG]])
// CHECK: }
// CHECK-LABEL: void @parallel_op_2_privates..omp_par
// CHECK-SAME: (ptr noalias %{{.*}}, ptr noalias %{{.*}}, ptr %[[ARG:.*]])
// CHECK: %[[ORIG1_PTR_PTR:.*]] = getelementptr { ptr, ptr }, ptr %[[ARG]], i32 0, i32 0
// CHECK: %[[ORIG1_PTR:.*]] = load ptr, ptr %[[ORIG1_PTR_PTR]], align 8
// CHECK: %[[ORIG2_PTR_PTR:.*]] = getelementptr { ptr, ptr }, ptr %[[ARG]], i32 0, i32 1
// CHECK: %[[ORIG2_PTR:.*]] = load ptr, ptr %[[ORIG2_PTR_PTR]], align 8
// Check that the privatizer alloc region was inlined properly.
// CHECK: %[[PRIV1_ALLOC:.*]] = alloca float, align 4
// CHECK: %[[ORIG1_VAL:.*]] = load float, ptr %[[ORIG1_PTR]], align 4
// CHECK: store float %[[ORIG1_VAL]], ptr %[[PRIV1_ALLOC]], align 4
// CHECK: %[[PRIV2_ALLOC:.*]] = alloca i32, align 4
// CHECK: %[[ORIG2_VAL:.*]] = load i32, ptr %[[ORIG2_PTR]], align 4
// CHECK: store i32 %[[ORIG2_VAL]], ptr %[[PRIV2_ALLOC]], align 4
// CHECK-NEXT: br
// Check that the privatized value is used (rather than the original one).
// CHECK: load float, ptr %[[PRIV1_ALLOC]], align 4
// CHECK: load i32, ptr %[[PRIV2_ALLOC]], align 4
// CHECK: }
omp.private {type = private} @x.privatizer : !llvm.ptr alloc {
^bb0(%arg0: !llvm.ptr):
%c1 = llvm.mlir.constant(1 : i32) : i32
%0 = llvm.alloca %c1 x f32 : (i32) -> !llvm.ptr
%1 = llvm.load %arg0 : !llvm.ptr -> f32
llvm.store %1, %0 : f32, !llvm.ptr
omp.yield(%0 : !llvm.ptr)
}
omp.private {type = private} @y.privatizer : !llvm.ptr alloc {
^bb0(%arg0: !llvm.ptr):
%c1 = llvm.mlir.constant(1 : i32) : i32
%0 = llvm.alloca %c1 x i32 : (i32) -> !llvm.ptr
%1 = llvm.load %arg0 : !llvm.ptr -> i32
llvm.store %1, %0 : i32, !llvm.ptr
omp.yield(%0 : !llvm.ptr)
}
// -----
llvm.func @parallel_op_private_multi_block(%arg0: !llvm.ptr) {
omp.parallel private(@multi_block.privatizer %arg0 -> %arg2 : !llvm.ptr) {
%0 = llvm.load %arg2 : !llvm.ptr -> f32
omp.terminator
}
llvm.return
}
// CHECK-LABEL: define internal void @parallel_op_private_multi_block..omp_par
// CHECK: omp.par.entry:
// CHECK: %[[ORIG_PTR_PTR:.*]] = getelementptr { ptr }, ptr %{{.*}}, i32 0, i32 0
// CHECK: %[[ORIG_PTR:.*]] = load ptr, ptr %[[ORIG_PTR_PTR]], align 8
// CHECK: br label %[[PRIV_BB1:.*]]
// Check contents of the first block in the `alloc` region.
// CHECK: [[PRIV_BB1]]:
// CHECK-NEXT: %[[PRIV_ALLOC:.*]] = alloca float, align 4
// CHECK-NEXT: br label %[[PRIV_BB2:.*]]
// Check contents of the second block in the `alloc` region.
// CHECK: [[PRIV_BB2]]:
// CHECK-NEXT: %[[ORIG_PTR2:.*]] = phi ptr [ %[[ORIG_PTR]], %[[PRIV_BB1]] ]
// CHECK-NEXT: %[[PRIV_ALLOC2:.*]] = phi ptr [ %[[PRIV_ALLOC]], %[[PRIV_BB1]] ]
// CHECK-NEXT: %[[ORIG_VAL:.*]] = load float, ptr %[[ORIG_PTR2]], align 4
// CHECK-NEXT: store float %[[ORIG_VAL]], ptr %[[PRIV_ALLOC2]], align 4
// CHECK-NEXT: br label %[[PRIV_CONT:.*]]
// Check that the privatizer's continuation block yileds the private clone's
// address.
// CHECK: [[PRIV_CONT]]:
// CHECK-NEXT: %[[PRIV_ALLOC3:.*]] = phi ptr [ %[[PRIV_ALLOC2]], %[[PRIV_BB2]] ]
// CHECK-NEXT: br label %[[PAR_REG:.*]]
// Check that the body of the parallel region loads from the private clone.
// CHECK: [[PAR_REG]]:
// CHECK: %{{.*}} = load float, ptr %[[PRIV_ALLOC3]], align 4
omp.private {type = private} @multi_block.privatizer : !llvm.ptr alloc {
^bb0(%arg0: !llvm.ptr):
%c1 = llvm.mlir.constant(1 : i32) : i32
%0 = llvm.alloca %c1 x f32 : (i32) -> !llvm.ptr
llvm.br ^bb1(%arg0, %0 : !llvm.ptr, !llvm.ptr)
^bb1(%arg1: !llvm.ptr, %arg2: !llvm.ptr):
%1 = llvm.load %arg1 : !llvm.ptr -> f32
llvm.store %1, %arg2 : f32, !llvm.ptr
omp.yield(%arg2 : !llvm.ptr)
}
// Tests fix for Fujitsu test suite test: 0007_0019.f90: the
// `llvm.mlir.addressof` op needs access to the parent module when lowering
// from the LLVM dialect to LLVM IR. If such op is used inside an `omp.private`
// op instance that was not created/cloned inside the module, we would get a
// seg fault due to trying to access a null pointer.
// CHECK-LABEL: define internal void @lower_region_with_addressof..omp_par
// CHECK: omp.par.region:
// CHECK: br label %[[PAR_REG_BEG:.*]]
// CHECK: [[PAR_REG_BEG]]:
// CHECK: %[[PRIVATIZER_GEP:.*]] = getelementptr double, ptr @_QQfoo, i64 111
// CHECK: call void @bar(ptr %[[PRIVATIZER_GEP]])
// CHECK: call void @bar(ptr getelementptr (double, ptr @_QQfoo, i64 222))
llvm.func @lower_region_with_addressof() {
%0 = llvm.mlir.constant(1 : i64) : i64
%1 = llvm.alloca %0 x f64 {bindc_name = "u1"} : (i64) -> !llvm.ptr
omp.parallel private(@_QFlower_region_with_addressof_privatizer %1 -> %arg0 : !llvm.ptr) {
%c0 = llvm.mlir.constant(111 : i64) : i64
%2 = llvm.getelementptr %arg0[%c0] : (!llvm.ptr, i64) -> !llvm.ptr, f64
llvm.call @bar(%2) : (!llvm.ptr) -> ()
%c1 = llvm.mlir.constant(222 : i64) : i64
%3 = llvm.mlir.addressof @_QQfoo: !llvm.ptr
%4 = llvm.getelementptr %3[%c1] : (!llvm.ptr, i64) -> !llvm.ptr, f64
llvm.call @bar(%4) : (!llvm.ptr) -> ()
omp.terminator
}
llvm.return
}
omp.private {type = private} @_QFlower_region_with_addressof_privatizer : !llvm.ptr alloc {
^bb0(%arg0: !llvm.ptr):
%0 = llvm.mlir.addressof @_QQfoo: !llvm.ptr
omp.yield(%0 : !llvm.ptr)
}
llvm.mlir.global linkonce constant @_QQfoo() {addr_space = 0 : i32} : !llvm.array<3 x i8> {
%0 = llvm.mlir.constant("foo") : !llvm.array<3 x i8>
llvm.return %0 : !llvm.array<3 x i8>
}
llvm.func @bar(!llvm.ptr)
// Tests fix for Fujitsu test suite test: 0275_0032.f90. The MLIR to LLVM
// translation logic assumed that reduction arguments to an `omp.parallel`
// op are always the last set of arguments to the op. However, this is a
// wrong assumption since private args come afterward. This tests the fix
// that we access the different sets of args properly.
// CHECK-LABEL: define internal void @private_and_reduction_..omp_par
// CHECK-DAG: %[[PRV_ALLOC:.*]] = alloca float, i64 1, align 4
// CHECK-DAG: %[[RED_ALLOC:.*]] = alloca { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, i64 1, align 8
// CHECK: omp.par.region:
// CHECK: br label %[[PAR_REG_BEG:.*]]
// CHECK: [[PAR_REG_BEG]]:
// CHECK-NEXT: %{{.*}} = load { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, ptr %[[RED_ALLOC]], align 8
// CHECK-NEXT: store float 8.000000e+00, ptr %[[PRV_ALLOC]], align 4
llvm.func @private_and_reduction_() attributes {fir.internal_name = "_QPprivate_and_reduction", frame_pointer = #llvm.framePointerKind<all>, target_cpu = "x86-64"} {
%0 = llvm.mlir.constant(1 : i64) : i64
%1 = llvm.alloca %0 x !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)> : (i64) -> !llvm.ptr
%2 = llvm.alloca %0 x f32 {bindc_name = "to_priv"} : (i64) -> !llvm.ptr
omp.parallel reduction(byref @reducer.part %1 -> %arg0 : !llvm.ptr) private(@privatizer.part %2 -> %arg1 : !llvm.ptr) {
%3 = llvm.load %arg0 : !llvm.ptr -> !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
%4 = llvm.mlir.constant(8.000000e+00 : f32) : f32
llvm.store %4, %arg1 : f32, !llvm.ptr
omp.terminator
}
llvm.return
}
omp.private {type = private} @privatizer.part : !llvm.ptr alloc {
^bb0(%arg0: !llvm.ptr):
%0 = llvm.mlir.constant(1 : i64) : i64
%1 = llvm.alloca %0 x f32 {bindc_name = "to_priv", pinned} : (i64) -> !llvm.ptr
omp.yield(%1 : !llvm.ptr)
}
omp.declare_reduction @reducer.part : !llvm.ptr init {
^bb0(%arg0: !llvm.ptr):
%0 = llvm.mlir.constant(1 : i64) : i64
%1 = llvm.alloca %0 x !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)> : (i64) -> !llvm.ptr
omp.yield(%1 : !llvm.ptr)
} combiner {
^bb0(%arg0: !llvm.ptr, %arg1: !llvm.ptr):
omp.yield(%arg0 : !llvm.ptr)
} cleanup {
^bb0(%arg0: !llvm.ptr):
omp.yield
}
|