File: shape_maps_iteration.py

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (72 lines) | stat: -rw-r--r-- 2,552 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# RUN: %PYTHON -m mlir.dialects.linalg.opdsl.dump_oplib --file %s | FileCheck %s

from mlir.dialects.linalg.opdsl.lang import *


# Verify that simple case with iteration order defined lexically and reduction
# dims auto discovered emits the right shape, indexing maps and iterator types.
# CHECK: ---
# CHECK-LABEL: matmul
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
# CHECK: static_indexing_maps:
# CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
# CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)>
# CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
# CHECK: iterator_types:
# CHECK-NEXT: - parallel
# CHECK-NEXT: - parallel
# CHECK-NEXT: - reduction
@linalg_structured_op
def matmul(
    A=TensorDef(T, S.M, S.K),
    B=TensorDef(T, S.K, S.N),
    C=TensorDef(U, S.M, S.N, output=True),
):
    domain(D.m, D.n, D.k)
    C[D.m, D.n] += TypeFn.cast_signed(U, A[D.m, D.k]) * TypeFn.cast_signed(
        U, B[D.k, D.n]
    )


# Verifies that assignment to a scalar (represented as [None]) is represented
# correctly.
# CHECK: ---
# CHECK-LABEL: dot
# CHECK: shape_map: affine_map<()[s0] -> (s0)>
# CHECK: shape_map: affine_map<()[s0] -> (s0)>
# CHECK: shape_map: affine_map<()[s0] -> ()>
# CHECK: static_indexing_maps:
# CHECK-NEXT: - affine_map<(d0)[s0] -> (d0)>
# CHECK-NEXT: - affine_map<(d0)[s0] -> (d0)>
# CHECK-NEXT: - affine_map<(d0)[s0] -> ()>
# CHECK: iterator_types:
# CHECK-NEXT: - reduction
@linalg_structured_op
def dot(A=TensorDef(T, S.M), B=TensorDef(T, S.M), C=TensorDef(U, output=True)):
    C[None] += TypeFn.cast_signed(U, A[D.m]) * TypeFn.cast_signed(U, B[D.m])


# Verifies that the index_dims of shape-only operands translate to correct
# indexing maps.
# CHECK: ---
# CHECK-LABEL: pool
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0)>
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s1)>
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s2)>
# CHECK: static_indexing_maps:
# CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d0 * 2 + d1)>
# CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d1)>
# CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d0)>
# CHECK: iterator_types:
# CHECK-NEXT: - parallel
# CHECK-NEXT: - reduction
@linalg_structured_op
def pool(
    I=TensorDef(T, S.I),
    K=TensorDef(T, S.K, index_dims=[D.k]),
    O=TensorDef(U, S.O, output=True),
):
    domain(D.o, D.k)
    O[D.o] += TypeFn.cast_signed(U, I[D.o * 2 + D.k])