File: ops.py

package info (click to toggle)
swiftlang 6.1.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,791,604 kB
  • sloc: cpp: 9,901,740; ansic: 2,201,431; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (238 lines) | stat: -rw-r--r-- 10,167 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# RUN: %PYTHON %s | FileCheck %s

from mlir.dialects import arith, builtin, func, linalg, tensor
from mlir.dialects.linalg.opdsl.lang import *
from mlir.ir import *


def run(f):
    print("\nTEST:", f.__name__)
    f()
    return f


# CHECK-LABEL: TEST: testFill
@run
def testFill():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f32 = F32Type.get()
        with InsertionPoint(module.body):
            # CHECK-LABEL: func @fill_tensor
            #  CHECK-SAME:   %[[OUT:[0-9a-z]+]]: tensor<12x?xf32>
            #  CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
            #  CHECK-NEXT: %[[RES:.*]] = linalg.fill ins(%[[CST]] : f32) outs(%[[OUT]] : tensor<12x?xf32>) -> tensor<12x?xf32>
            #  CHECK-NEXT: return %[[RES]] : tensor<12x?xf32>
            @func.FuncOp.from_py_func(
                RankedTensorType.get((12, ShapedType.get_dynamic_size()), f32)
            )
            def fill_tensor(out):
                zero = arith.ConstantOp(
                    value=FloatAttr.get(f32, 0.0), result=f32
                ).result
                return linalg.fill(zero, outs=[out])

            # CHECK-LABEL: func @fill_buffer
            #  CHECK-SAME:   %[[OUT:[0-9a-z]+]]: memref<12x?xf32>
            #  CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
            #  CHECK-NEXT: linalg.fill ins(%[[CST]] : f32) outs(%[[OUT]] : memref<12x?xf32>)
            #  CHECK-NEXT: return
            @func.FuncOp.from_py_func(
                MemRefType.get((12, ShapedType.get_dynamic_size()), f32)
            )
            def fill_buffer(out):
                zero = arith.ConstantOp(
                    value=FloatAttr.get(f32, 0.0), result=f32
                ).result
                linalg.fill(zero, outs=[out])

    print(module)


# CHECK-LABEL: TEST: testNamedStructuredOpCustomForm
@run
def testNamedStructuredOpCustomForm():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f32 = F32Type.get()
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(
                RankedTensorType.get((4, 8), f32), RankedTensorType.get((4, 8), f32)
            )
            def named_form(lhs, rhs):
                init_result = tensor.EmptyOp([4, 8], f32)
                # Check for the named form with custom format
                #      CHECK: linalg.elemwise_unary
                # CHECK-SAME:    cast = #linalg.type_fn<cast_signed>
                # CHECK-SAME:    fun = #linalg.unary_fn<exp>
                # CHECK-SAME:    ins(%{{.*}} : tensor<4x8xf32>) outs(%{{.*}} : tensor<4x8xf32>)
                unary_result = linalg.elemwise_unary(lhs, outs=[init_result.result])
                #      CHECK: linalg.elemwise_binary
                # CHECK-SAME:    cast = #linalg.type_fn<cast_unsigned>
                # CHECK-SAME:    fun = #linalg.binary_fn<mul>
                # CHECK-SAME:    ins(%{{.*}}, %{{.*}} : tensor<4x8xf32>, tensor<4x8xf32>) outs(%{{.*}} : tensor<4x8xf32>)
                #      CHECK: return
                binary_result = linalg.elemwise_binary(
                    lhs,
                    rhs,
                    outs=[init_result.result],
                    fun=BinaryFn.mul,
                    cast=TypeFn.cast_unsigned,
                )
                return unary_result, binary_result

    print(module)


# CHECK-LABEL: TEST: testNamedStructuredOpGenericForm
@run
def testNamedStructuredOpGenericForm():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f32 = F32Type.get()
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(
                RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
            )
            def named_form(lhs, rhs):
                init_result = tensor.EmptyOp([4, 8], f32)
                #      CHECK: "linalg.matmul"(%{{.*}})
                # CHECK-SAME:    cast = #linalg.type_fn<cast_signed>
                # CHECK-SAME:    operandSegmentSizes = array<i32: 2, 1>
                # CHECK-NEXT:  ^bb0(%{{.*}}: f32, %{{.*}}: f32, %{{.*}}: f32):
                # CHECK-NEXT:    arith.mulf{{.*}} (f32, f32) -> f32
                # CHECK-NEXT:    arith.addf{{.*}} (f32, f32) -> f32
                # CHECK-NEXT:    linalg.yield{{.*}} (f32) -> ()
                # CHECK-NEXT: (tensor<4x16xf32>, tensor<16x8xf32>, tensor<4x8xf32>) -> tensor<4x8xf32>
                return linalg.matmul(lhs, rhs, outs=[init_result.result])

    module.operation.print(print_generic_op_form=True)


# CHECK-LABEL: TEST: testNamedStructuredAsGenericOp
@run
def testNamedStructuredAsGenericOp():
    with Context() as ctx, Location.unknown():
        module = Module.create()
        f32 = F32Type.get()
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(
                RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
            )
            def generic_form(lhs, rhs):
                init_result = tensor.EmptyOp([4, 8], f32)
                # CHECK: linalg.generic
                return linalg.matmul(
                    lhs, rhs, outs=[init_result.result], emit_generic=True
                )

    print(module)


# CHECK-LABEL: TEST: testOpResultFromOtherOp
@run
def testOpResultFromOtherOp():
    with Context(), Location.unknown():
        module = Module.create()
        f32 = F32Type.get()
        with InsertionPoint(module.body):

            @func.FuncOp.from_py_func(
                RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
            )
            def pass_an_op_directly(arg0, arg1):
                one = arith.ConstantOp(F32Type.get(), 1.0)
                # CHECK: %[[LHS:.*]] = linalg.fill
                lhs = linalg.fill(one, outs=[arg0])
                # CHECK: %[[RHS:.*]] = linalg.fill
                rhs = linalg.fill(one, outs=[arg1])
                # CHECK: %[[INIT:.*]] = tensor.empty
                init = tensor.EmptyOp([4, 8], f32)
                # CHECK: linalg.matmul
                # CHECK: ins(%[[LHS]], %[[RHS]]
                # CHECK: outs(%[[INIT]]
                return linalg.matmul(lhs, rhs, outs=init)

    print(module)


# CHECK-LABEL: TEST: testIdentityRegionOps
@run
def testIdentityRegionOps():
    with Context(), Location.unknown():
        module = Module.create()
        f32 = F32Type.get()
        with InsertionPoint(module.body):
            # CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<1x13xf32>
            # CHECK: %[[VAL_1:.*]] = tensor.empty() : tensor<13x1xf32>
            op1 = tensor.EmptyOp([1, 13], f32)
            op2 = tensor.EmptyOp([13, 1], f32)
            # CHECK: %[[VAL_2:.*]] = linalg.transpose ins(%[[VAL_0]] : tensor<1x13xf32>) outs(%[[VAL_1]] : tensor<13x1xf32>) permutation = [1, 0]
            op3 = linalg.TransposeOp(
                result=[RankedTensorType.get((13, 1), f32)],
                input=op1,
                init=op2,
                permutation=[1, 0],
            )
            linalg.fill_builtin_region(op3.operation)

            # CHECK: %[[VAL_3:.*]] = linalg.transpose ins(%[[VAL_1]] : tensor<13x1xf32>) outs(%[[VAL_0]] : tensor<1x13xf32>) permutation = [1, 0]
            op4 = linalg.transpose(op2, outs=[op1], permutation=[1, 0])

            # CHECK:         func.func @transpose_op(%[[VAL_4:.*]]: memref<1x13xf32>, %[[VAL_5:.*]]: memref<13x1xf32>)
            @func.FuncOp.from_py_func(
                MemRefType.get((1, 13), f32),
                MemRefType.get((13, 1), f32),
            )
            def transpose_op(op1, op2):
                # CHECK: linalg.transpose ins(%[[VAL_4]] : memref<1x13xf32>) outs(%[[VAL_5]] : memref<13x1xf32>) permutation = [1, 0]
                op3 = linalg.TransposeOp(
                    result=[],
                    input=op1,
                    init=op2,
                    permutation=[1, 0],
                )
                linalg.fill_builtin_region(op3.operation)
                # CHECK: linalg.transpose ins(%[[VAL_5]] : memref<13x1xf32>) outs(%[[VAL_4]] : memref<1x13xf32>) permutation = [1, 0]
                op4 = linalg.transpose(op2, outs=[op1], permutation=[1, 0])

            # CHECK: %[[VAL_6:.*]] = tensor.empty() : tensor<16xf32>
            # CHECK: %[[VAL_7:.*]] = tensor.empty() : tensor<16x64xf32>
            op1 = tensor.EmptyOp([16], f32)
            op2 = tensor.EmptyOp([16, 64], f32)
            # CHECK: %[[VAL_8:.*]] = linalg.broadcast ins(%[[VAL_6]] : tensor<16xf32>) outs(%[[VAL_7]] : tensor<16x64xf32>) dimensions = [1]
            op3 = linalg.BroadcastOp(
                result=[RankedTensorType.get((16, 64), f32)],
                input=op1,
                init=op2,
                dimensions=[1],
            )
            linalg.fill_builtin_region(op3.operation)

            # CHECK: %[[VAL_9:.*]] = tensor.empty() : tensor<64xf32>
            op4 = tensor.EmptyOp([64], f32)
            # CHECK: %[[VAL_10:.*]] = linalg.broadcast ins(%[[VAL_9]] : tensor<64xf32>) outs(%[[VAL_7]] : tensor<16x64xf32>) dimensions = [0]
            op5 = linalg.broadcast(op4, outs=[op2], dimensions=[0])

            # CHECK: func.func @broadcast_op(%[[VAL_11:.*]]: memref<16xf32>, %[[VAL_12:.*]]: memref<16x64xf32>, %[[VAL_13:.*]]: memref<64xf32>)
            @func.FuncOp.from_py_func(
                MemRefType.get((16,), f32),
                MemRefType.get((16, 64), f32),
                MemRefType.get((64,), f32),
            )
            def broadcast_op(op1, op2, op3):
                # CHECK: linalg.broadcast ins(%[[VAL_11]] : memref<16xf32>) outs(%[[VAL_12]] : memref<16x64xf32>) dimensions = [1]
                op4 = linalg.BroadcastOp(
                    result=[],
                    input=op1,
                    init=op2,
                    dimensions=[1],
                )
                linalg.fill_builtin_region(op4.operation)
                # CHECK: linalg.broadcast ins(%[[VAL_13]] : memref<64xf32>) outs(%[[VAL_12]] : memref<16x64xf32>) dimensions = [0]
                op5 = linalg.broadcast(op3, outs=[op2], dimensions=[0])

    print(module)