1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
# RUN: %PYTHON %s | FileCheck %s
from mlir.dialects import arith, builtin, func, linalg, tensor
from mlir.dialects.linalg.opdsl.lang import *
from mlir.ir import *
def run(f):
print("\nTEST:", f.__name__)
f()
return f
# CHECK-LABEL: TEST: testFill
@run
def testFill():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
# CHECK-LABEL: func @fill_tensor
# CHECK-SAME: %[[OUT:[0-9a-z]+]]: tensor<12x?xf32>
# CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
# CHECK-NEXT: %[[RES:.*]] = linalg.fill ins(%[[CST]] : f32) outs(%[[OUT]] : tensor<12x?xf32>) -> tensor<12x?xf32>
# CHECK-NEXT: return %[[RES]] : tensor<12x?xf32>
@func.FuncOp.from_py_func(
RankedTensorType.get((12, ShapedType.get_dynamic_size()), f32)
)
def fill_tensor(out):
zero = arith.ConstantOp(
value=FloatAttr.get(f32, 0.0), result=f32
).result
return linalg.fill(zero, outs=[out])
# CHECK-LABEL: func @fill_buffer
# CHECK-SAME: %[[OUT:[0-9a-z]+]]: memref<12x?xf32>
# CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
# CHECK-NEXT: linalg.fill ins(%[[CST]] : f32) outs(%[[OUT]] : memref<12x?xf32>)
# CHECK-NEXT: return
@func.FuncOp.from_py_func(
MemRefType.get((12, ShapedType.get_dynamic_size()), f32)
)
def fill_buffer(out):
zero = arith.ConstantOp(
value=FloatAttr.get(f32, 0.0), result=f32
).result
linalg.fill(zero, outs=[out])
print(module)
# CHECK-LABEL: TEST: testNamedStructuredOpCustomForm
@run
def testNamedStructuredOpCustomForm():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 8), f32), RankedTensorType.get((4, 8), f32)
)
def named_form(lhs, rhs):
init_result = tensor.EmptyOp([4, 8], f32)
# Check for the named form with custom format
# CHECK: linalg.elemwise_unary
# CHECK-SAME: cast = #linalg.type_fn<cast_signed>
# CHECK-SAME: fun = #linalg.unary_fn<exp>
# CHECK-SAME: ins(%{{.*}} : tensor<4x8xf32>) outs(%{{.*}} : tensor<4x8xf32>)
unary_result = linalg.elemwise_unary(lhs, outs=[init_result.result])
# CHECK: linalg.elemwise_binary
# CHECK-SAME: cast = #linalg.type_fn<cast_unsigned>
# CHECK-SAME: fun = #linalg.binary_fn<mul>
# CHECK-SAME: ins(%{{.*}}, %{{.*}} : tensor<4x8xf32>, tensor<4x8xf32>) outs(%{{.*}} : tensor<4x8xf32>)
# CHECK: return
binary_result = linalg.elemwise_binary(
lhs,
rhs,
outs=[init_result.result],
fun=BinaryFn.mul,
cast=TypeFn.cast_unsigned,
)
return unary_result, binary_result
print(module)
# CHECK-LABEL: TEST: testNamedStructuredOpGenericForm
@run
def testNamedStructuredOpGenericForm():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
)
def named_form(lhs, rhs):
init_result = tensor.EmptyOp([4, 8], f32)
# CHECK: "linalg.matmul"(%{{.*}})
# CHECK-SAME: cast = #linalg.type_fn<cast_signed>
# CHECK-SAME: operandSegmentSizes = array<i32: 2, 1>
# CHECK-NEXT: ^bb0(%{{.*}}: f32, %{{.*}}: f32, %{{.*}}: f32):
# CHECK-NEXT: arith.mulf{{.*}} (f32, f32) -> f32
# CHECK-NEXT: arith.addf{{.*}} (f32, f32) -> f32
# CHECK-NEXT: linalg.yield{{.*}} (f32) -> ()
# CHECK-NEXT: (tensor<4x16xf32>, tensor<16x8xf32>, tensor<4x8xf32>) -> tensor<4x8xf32>
return linalg.matmul(lhs, rhs, outs=[init_result.result])
module.operation.print(print_generic_op_form=True)
# CHECK-LABEL: TEST: testNamedStructuredAsGenericOp
@run
def testNamedStructuredAsGenericOp():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
)
def generic_form(lhs, rhs):
init_result = tensor.EmptyOp([4, 8], f32)
# CHECK: linalg.generic
return linalg.matmul(
lhs, rhs, outs=[init_result.result], emit_generic=True
)
print(module)
# CHECK-LABEL: TEST: testOpResultFromOtherOp
@run
def testOpResultFromOtherOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
)
def pass_an_op_directly(arg0, arg1):
one = arith.ConstantOp(F32Type.get(), 1.0)
# CHECK: %[[LHS:.*]] = linalg.fill
lhs = linalg.fill(one, outs=[arg0])
# CHECK: %[[RHS:.*]] = linalg.fill
rhs = linalg.fill(one, outs=[arg1])
# CHECK: %[[INIT:.*]] = tensor.empty
init = tensor.EmptyOp([4, 8], f32)
# CHECK: linalg.matmul
# CHECK: ins(%[[LHS]], %[[RHS]]
# CHECK: outs(%[[INIT]]
return linalg.matmul(lhs, rhs, outs=init)
print(module)
# CHECK-LABEL: TEST: testIdentityRegionOps
@run
def testIdentityRegionOps():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
# CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<1x13xf32>
# CHECK: %[[VAL_1:.*]] = tensor.empty() : tensor<13x1xf32>
op1 = tensor.EmptyOp([1, 13], f32)
op2 = tensor.EmptyOp([13, 1], f32)
# CHECK: %[[VAL_2:.*]] = linalg.transpose ins(%[[VAL_0]] : tensor<1x13xf32>) outs(%[[VAL_1]] : tensor<13x1xf32>) permutation = [1, 0]
op3 = linalg.TransposeOp(
result=[RankedTensorType.get((13, 1), f32)],
input=op1,
init=op2,
permutation=[1, 0],
)
linalg.fill_builtin_region(op3.operation)
# CHECK: %[[VAL_3:.*]] = linalg.transpose ins(%[[VAL_1]] : tensor<13x1xf32>) outs(%[[VAL_0]] : tensor<1x13xf32>) permutation = [1, 0]
op4 = linalg.transpose(op2, outs=[op1], permutation=[1, 0])
# CHECK: func.func @transpose_op(%[[VAL_4:.*]]: memref<1x13xf32>, %[[VAL_5:.*]]: memref<13x1xf32>)
@func.FuncOp.from_py_func(
MemRefType.get((1, 13), f32),
MemRefType.get((13, 1), f32),
)
def transpose_op(op1, op2):
# CHECK: linalg.transpose ins(%[[VAL_4]] : memref<1x13xf32>) outs(%[[VAL_5]] : memref<13x1xf32>) permutation = [1, 0]
op3 = linalg.TransposeOp(
result=[],
input=op1,
init=op2,
permutation=[1, 0],
)
linalg.fill_builtin_region(op3.operation)
# CHECK: linalg.transpose ins(%[[VAL_5]] : memref<13x1xf32>) outs(%[[VAL_4]] : memref<1x13xf32>) permutation = [1, 0]
op4 = linalg.transpose(op2, outs=[op1], permutation=[1, 0])
# CHECK: %[[VAL_6:.*]] = tensor.empty() : tensor<16xf32>
# CHECK: %[[VAL_7:.*]] = tensor.empty() : tensor<16x64xf32>
op1 = tensor.EmptyOp([16], f32)
op2 = tensor.EmptyOp([16, 64], f32)
# CHECK: %[[VAL_8:.*]] = linalg.broadcast ins(%[[VAL_6]] : tensor<16xf32>) outs(%[[VAL_7]] : tensor<16x64xf32>) dimensions = [1]
op3 = linalg.BroadcastOp(
result=[RankedTensorType.get((16, 64), f32)],
input=op1,
init=op2,
dimensions=[1],
)
linalg.fill_builtin_region(op3.operation)
# CHECK: %[[VAL_9:.*]] = tensor.empty() : tensor<64xf32>
op4 = tensor.EmptyOp([64], f32)
# CHECK: %[[VAL_10:.*]] = linalg.broadcast ins(%[[VAL_9]] : tensor<64xf32>) outs(%[[VAL_7]] : tensor<16x64xf32>) dimensions = [0]
op5 = linalg.broadcast(op4, outs=[op2], dimensions=[0])
# CHECK: func.func @broadcast_op(%[[VAL_11:.*]]: memref<16xf32>, %[[VAL_12:.*]]: memref<16x64xf32>, %[[VAL_13:.*]]: memref<64xf32>)
@func.FuncOp.from_py_func(
MemRefType.get((16,), f32),
MemRefType.get((16, 64), f32),
MemRefType.get((64,), f32),
)
def broadcast_op(op1, op2, op3):
# CHECK: linalg.broadcast ins(%[[VAL_11]] : memref<16xf32>) outs(%[[VAL_12]] : memref<16x64xf32>) dimensions = [1]
op4 = linalg.BroadcastOp(
result=[],
input=op1,
init=op2,
dimensions=[1],
)
linalg.fill_builtin_region(op4.operation)
# CHECK: linalg.broadcast ins(%[[VAL_13]] : memref<64xf32>) outs(%[[VAL_12]] : memref<16x64xf32>) dimensions = [0]
op5 = linalg.broadcast(op3, outs=[op2], dimensions=[0])
print(module)
|