1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
# RUN: %PYTHON %s | FileCheck %s
from mlir.ir import *
import mlir.dialects.arith as arith
import mlir.dialects.func as func
import mlir.dialects.tensor as tensor
from mlir.extras import types as T
def run(f):
print("\nTEST:", f.__name__)
f()
return f
# CHECK-LABEL: TEST: testDimOp
@run
def testDimOp():
with Context() as ctx, Location.unknown():
module = Module.create()
f32Type = F32Type.get()
indexType = IndexType.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get(
(ShapedType.get_dynamic_size(), ShapedType.get_dynamic_size()),
f32Type,
)
)
# CHECK: func @tensor_static_dim
# CHECK-SAME: %[[ARG0:.+]]: tensor<?x?xf32>
# CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
# CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
# CHECK: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
# CHECK: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
# CHECK: return %[[D0]], %[[D1]]
def tensor_static_dim(t):
c0 = arith.ConstantOp(indexType, 0)
c1 = arith.ConstantOp(indexType, 1)
d0 = tensor.DimOp(t, c0)
d1 = tensor.DimOp(t, c1)
return [d0.result, d1.result]
print(module)
# CHECK-LABEL: TEST: testEmptyOp
@run
def testEmptyOp():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
# CHECK-LABEL: func @static_sizes
# CHECK: %0 = tensor.empty() : tensor<3x4xf32>
@func.FuncOp.from_py_func()
def static_sizes():
return tensor.EmptyOp([3, 4], f32)
# CHECK-LABEL: func @dynamic_sizes
# CHECK: %0 = tensor.empty(%arg0, %arg1) : tensor<?x?xf32>
@func.FuncOp.from_py_func(IndexType.get(), IndexType.get())
def dynamic_sizes(d0, d1):
return tensor.EmptyOp([d0, d1], f32)
# CHECK-LABEL: func @mixed_static_dynamic_sizes
# CHECK: %0 = tensor.empty(%arg0) : tensor<?x4xf32>
@func.FuncOp.from_py_func(IndexType.get())
def mixed_static_dynamic_sizes(d0):
return tensor.EmptyOp([d0, 4], f32)
# CHECK-LABEL: func @zero_d
# CHECK: %0 = tensor.empty() : tensor<f32>
@func.FuncOp.from_py_func()
def zero_d():
return tensor.EmptyOp([], f32)
print(module)
# CHECK-LABEL: TEST: testInferTypesInsertSlice
@run
def testInferTypesInsertSlice():
with Context() as ctx, Location.unknown():
module = Module.create()
f32Type = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((1, 1), f32Type),
RankedTensorType.get((1, 1), f32Type),
)
# CHECK: func @f
# CHECK: tensor.insert_slice %arg0 into %arg1[0, 0] [1, 1] [0, 0] :
# CHECK-SAME: tensor<1x1xf32> into tensor<1x1xf32>
def f(source, dest):
d0 = tensor.InsertSliceOp(
source,
dest,
[],
[],
[],
DenseI64ArrayAttr.get([0, 0]),
DenseI64ArrayAttr.get([1, 1]),
DenseI64ArrayAttr.get([0, 0]),
)
return [d0.result]
print(module)
# CHECK-LABEL: TEST: testFromElementsOp
@run
def testFromElementsOp():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func()
def default_builder():
c0 = arith.ConstantOp(f32, 0.0)
# CHECK: %[[C0:.*]] = "arith.constant
# CHECK-SAME: value = 0.000000e+00 : f32
print(c0)
c1 = arith.ConstantOp(f32, 1.0)
# CHECK: %[[C1:.*]] = "arith.constant
# CHECK-SAME: value = 1.000000e+00 : f32
print(c1)
t = tensor.FromElementsOp(RankedTensorType.get((2,), f32), [c0, c1])
# CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<2xf32>
print(t)
t = tensor.FromElementsOp(RankedTensorType.get((2, 1), f32), [c0, c1])
# CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<2x1xf32>
print(t)
t = tensor.FromElementsOp(RankedTensorType.get((1, 2), f32), [c0, c1])
# CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<1x2xf32>
print(t)
# CHECK-LABEL: TEST: testGenerateRegionOp
@run
def testGenerateRegionOp():
S = ShapedType.get_dynamic_size()
with Context(), Location.unknown():
module = Module.create()
with InsertionPoint(module.body):
# CHECK: %[[VAL_0:.*]] = arith.constant 1 : index
# CHECK: %[[VAL_1:.*]] = arith.constant 2 : index
one = arith.constant(T.index(), 1)
two = arith.constant(T.index(), 2)
@tensor.generate(T.tensor(S, 3, S, T.index()), dynamic_extents=[one, two])
def generate_one(i: T.index(), j: T.index(), k: T.index()):
ij = arith.addi(i, j)
ijk = arith.addi(ij, k)
return ijk
assert (
isinstance(generate_one, Value)
and generate_one.owner.name == "tensor.generate"
)
# CHECK: %[[GENERATED:.*]] = tensor.generate
# CHECK-SAME: %[[VAL_0]],
# CHECK-SAME: %[[VAL_1]] {
# CHECK: ^bb0(%[[VAL_1:.*]]: index, %[[VAL_2:.*]]: index, %[[VAL_3:.*]]: index):
# CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_1]], %[[VAL_2]] : index
# CHECK: %[[VAL_5:.*]] = arith.addi %[[VAL_4]], %[[VAL_3]] : index
# CHECK: tensor.yield %[[VAL_5]] : index
# CHECK: } : tensor<?x3x?xindex>
print(module)
|