1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
# RUN: %PYTHON %s 2>&1 | FileCheck %s
from mlir.passmanager import PassManager
from mlir.ir import Context, Location, Module, InsertionPoint, UnitAttr
from mlir.dialects import scf, pdl, func, arith, linalg
from mlir.dialects.transform import (
get_parent_op,
apply_patterns_canonicalization,
apply_cse,
any_op_t,
)
from mlir.dialects.transform.structured import structured_match
from mlir.dialects.transform.loop import loop_unroll
from mlir.dialects.transform.extras import named_sequence, apply_patterns
from mlir.extras import types as T
from mlir.dialects.builtin import module, ModuleOp
def construct_and_print_in_module(f):
print("\nTEST:", f.__name__)
with Context(), Location.unknown():
module = Module.create()
with InsertionPoint(module.body):
module = f(module)
if module is not None:
print(module)
return f
# CHECK-LABEL: TEST: test_named_sequence
@construct_and_print_in_module
def test_named_sequence(module_):
# CHECK-LABEL: func.func @loop_unroll_op() {
# CHECK: %[[VAL_0:.*]] = arith.constant 0 : index
# CHECK: %[[VAL_1:.*]] = arith.constant 42 : index
# CHECK: %[[VAL_2:.*]] = arith.constant 5 : index
# CHECK: scf.for %[[VAL_3:.*]] = %[[VAL_0]] to %[[VAL_1]] step %[[VAL_2]] {
# CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index
# CHECK: }
# CHECK: return
# CHECK: }
@func.func()
def loop_unroll_op():
for i in scf.for_(0, 42, 5):
v = arith.addi(i, i)
scf.yield_([])
# CHECK-LABEL: module attributes {transform.with_named_sequence} {
# CHECK: transform.named_sequence @__transform_main(%[[VAL_0:.*]]: !transform.any_op) {
# CHECK: %[[VAL_1:.*]] = transform.structured.match ops{["arith.addi"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
# CHECK: %[[VAL_2:.*]] = transform.get_parent_op %[[VAL_1]] {op_name = "scf.for"} : (!transform.any_op) -> !pdl.operation
# CHECK: transform.loop.unroll %[[VAL_2]] {factor = 4 : i64} : !pdl.operation
# CHECK: transform.yield
# CHECK: }
# CHECK: }
@module(attrs={"transform.with_named_sequence": UnitAttr.get()})
def mod():
@named_sequence("__transform_main", [any_op_t()], [])
def basic(target: any_op_t()):
m = structured_match(any_op_t(), target, ops=["arith.addi"])
loop = get_parent_op(pdl.op_t(), m, op_name="scf.for")
loop_unroll(loop, 4)
# The identifier (name) of the function becomes the Operation
assert isinstance(mod.opview, ModuleOp)
print(module_)
pm = PassManager.parse("builtin.module(transform-interpreter)")
pm.run(module_.operation)
# CHECK-LABEL: func.func @loop_unroll_op() {
# CHECK: %[[VAL_0:.*]] = arith.constant 0 : index
# CHECK: %[[VAL_1:.*]] = arith.constant 42 : index
# CHECK: %[[VAL_2:.*]] = arith.constant 5 : index
# CHECK: %[[VAL_6:.*]] = arith.constant 40 : index
# CHECK: %[[VAL_7:.*]] = arith.constant 20 : index
# CHECK: scf.for %[[VAL_3:.*]] = %[[VAL_0]] to %[[VAL_6]] step %[[VAL_7]] {
# CHECK: %[[VAL_5:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index
# CHECK: %[[VAL_8:.*]] = arith.constant 1 : index
# CHECK: %[[VAL_9:.*]] = arith.muli %[[VAL_2]], %[[VAL_8]] : index
# CHECK: %[[VAL_10:.*]] = arith.addi %[[VAL_3]], %[[VAL_9]] : index
# CHECK: %[[VAL_11:.*]] = arith.addi %[[VAL_10]], %[[VAL_10]] : index
# CHECK: %[[VAL_12:.*]] = arith.constant 2 : index
# CHECK: %[[VAL_13:.*]] = arith.muli %[[VAL_2]], %[[VAL_12]] : index
# CHECK: %[[VAL_14:.*]] = arith.addi %[[VAL_3]], %[[VAL_13]] : index
# CHECK: %[[VAL_15:.*]] = arith.addi %[[VAL_14]], %[[VAL_14]] : index
# CHECK: %[[VAL_16:.*]] = arith.constant 3 : index
# CHECK: %[[VAL_17:.*]] = arith.muli %[[VAL_2]], %[[VAL_16]] : index
# CHECK: %[[VAL_18:.*]] = arith.addi %[[VAL_3]], %[[VAL_17]] : index
# CHECK: %[[VAL_19:.*]] = arith.addi %[[VAL_18]], %[[VAL_18]] : index
# CHECK: }
# CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_6]], %[[VAL_6]] : index
# CHECK: return
# CHECK: }
print(module_)
# CHECK-LABEL: TEST: test_apply_patterns
@construct_and_print_in_module
def test_apply_patterns(module_):
M, N, K = 3, 5, 3
# CHECK-LABEL: func.func @matmul(
# CHECK-SAME: %[[VAL_0:.*]]: tensor<3x5xf32>, %[[VAL_1:.*]]: tensor<5x3xf32>, %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> {
# CHECK: %[[VAL_3:.*]] = arith.constant 1 : i32
# CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : i32
# CHECK: %[[VAL_5:.*]] = linalg.matmul {cast = #linalg.type_fn<cast_signed>} ins(%[[VAL_0]], %[[VAL_1]] : tensor<3x5xf32>, tensor<5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32>
# CHECK: return %[[VAL_5]] : tensor<3x3xf32>
# CHECK: }
@func.func(
T.tensor(M, N, T.f32()), T.tensor(N, K, T.f32()), T.tensor(M, K, T.f32())
)
def matmul(A, B, C):
i = arith.constant(T.i32(), 1)
v = arith.addi(i, i)
return linalg.matmul(A, B, outs=[C])
# CHECK-LABEL: module attributes {transform.with_named_sequence} {
# CHECK: transform.named_sequence @__transform_main(%[[VAL_0:.*]]: !transform.any_op) {
# CHECK: %[[VAL_1:.*]] = transform.structured.match ops{["linalg.matmul"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
# CHECK: %[[VAL_2:.*]] = transform.get_parent_op %[[VAL_1]] {op_name = "func.func"} : (!transform.any_op) -> !pdl.operation
# CHECK: transform.apply_patterns to %[[VAL_2]] {
# CHECK: transform.apply_patterns.canonicalization
# CHECK: } : !pdl.operation
# CHECK: %[[VAL_3:.*]] = transform.structured.match ops{["func.func"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
# CHECK: transform.apply_cse to %[[VAL_3]] : !transform.any_op
# CHECK: transform.yield
# CHECK: }
# CHECK: }
@module(attrs={"transform.with_named_sequence": UnitAttr.get()})
def mod():
@named_sequence("__transform_main", [any_op_t()], [])
def basic(variant_op: any_op_t()):
matmul = structured_match(any_op_t(), variant_op, ops=["linalg.matmul"])
top_func = get_parent_op(pdl.op_t(), matmul, op_name="func.func")
@apply_patterns(top_func)
def pats():
apply_patterns_canonicalization()
top_func = structured_match(any_op_t(), variant_op, ops=["func.func"])
apply_cse(top_func)
print(module_)
pm = PassManager.parse("builtin.module(transform-interpreter)")
pm.run(module_.operation)
# CHECK-LABEL: func.func @matmul(
# CHECK-SAME: %[[VAL_0:.*]]: tensor<3x5xf32>, %[[VAL_1:.*]]: tensor<5x3xf32>, %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> {
# CHECK: %[[VAL_3:.*]] = linalg.matmul {cast = #linalg.type_fn<cast_signed>} ins(%[[VAL_0]], %[[VAL_1]] : tensor<3x5xf32>, tensor<5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32>
# CHECK: return %[[VAL_3]] : tensor<3x3xf32>
# CHECK: }
print(module_)
|