1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
//===-- Implementation of mktime function ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/time/time_utils.h"
#include "src/__support/CPP/limits.h" // INT_MIN, INT_MAX
#include "src/__support/common.h"
#include "src/__support/macros/config.h"
namespace LIBC_NAMESPACE_DECL {
namespace time_utils {
using LIBC_NAMESPACE::time_utils::TimeConstants;
static int64_t computeRemainingYears(int64_t daysPerYears,
int64_t quotientYears,
int64_t *remainingDays) {
int64_t years = *remainingDays / daysPerYears;
if (years == quotientYears)
years--;
*remainingDays -= years * daysPerYears;
return years;
}
// First, divide "total_seconds" by the number of seconds in a day to get the
// number of days since Jan 1 1970. The remainder will be used to calculate the
// number of Hours, Minutes and Seconds.
//
// Then, adjust that number of days by a constant to be the number of days
// since Mar 1 2000. Year 2000 is a multiple of 400, the leap year cycle. This
// makes it easier to count how many leap years have passed using division.
//
// While calculating numbers of years in the days, the following algorithm
// subdivides the days into the number of 400 years, the number of 100 years and
// the number of 4 years. These numbers of cycle years are used in calculating
// leap day. This is similar to the algorithm used in getNumOfLeapYearsBefore()
// and isLeapYear(). Then compute the total number of years in days from these
// subdivided units.
//
// Compute the number of months from the remaining days. Finally, adjust years
// to be 1900 and months to be from January.
int64_t update_from_seconds(int64_t total_seconds, struct tm *tm) {
// Days in month starting from March in the year 2000.
static const char daysInMonth[] = {31 /* Mar */, 30, 31, 30, 31, 31,
30, 31, 30, 31, 31, 29};
constexpr time_t time_min =
(sizeof(time_t) == 4)
? INT_MIN
: INT_MIN * static_cast<int64_t>(
TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR);
constexpr time_t time_max =
(sizeof(time_t) == 4)
? INT_MAX
: INT_MAX * static_cast<int64_t>(
TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR);
time_t ts = static_cast<time_t>(total_seconds);
if (ts < time_min || ts > time_max)
return time_utils::out_of_range();
int64_t seconds =
total_seconds - TimeConstants::SECONDS_UNTIL2000_MARCH_FIRST;
int64_t days = seconds / TimeConstants::SECONDS_PER_DAY;
int64_t remainingSeconds = seconds % TimeConstants::SECONDS_PER_DAY;
if (remainingSeconds < 0) {
remainingSeconds += TimeConstants::SECONDS_PER_DAY;
days--;
}
int64_t wday = (TimeConstants::WEEK_DAY_OF2000_MARCH_FIRST + days) %
TimeConstants::DAYS_PER_WEEK;
if (wday < 0)
wday += TimeConstants::DAYS_PER_WEEK;
// Compute the number of 400 year cycles.
int64_t numOfFourHundredYearCycles = days / TimeConstants::DAYS_PER400_YEARS;
int64_t remainingDays = days % TimeConstants::DAYS_PER400_YEARS;
if (remainingDays < 0) {
remainingDays += TimeConstants::DAYS_PER400_YEARS;
numOfFourHundredYearCycles--;
}
// The remaining number of years after computing the number of
// "four hundred year cycles" will be 4 hundred year cycles or less in 400
// years.
int64_t numOfHundredYearCycles = computeRemainingYears(
TimeConstants::DAYS_PER100_YEARS, 4, &remainingDays);
// The remaining number of years after computing the number of
// "hundred year cycles" will be 25 four year cycles or less in 100 years.
int64_t numOfFourYearCycles =
computeRemainingYears(TimeConstants::DAYS_PER4_YEARS, 25, &remainingDays);
// The remaining number of years after computing the number of
// "four year cycles" will be 4 one year cycles or less in 4 years.
int64_t remainingYears = computeRemainingYears(
TimeConstants::DAYS_PER_NON_LEAP_YEAR, 4, &remainingDays);
// Calculate number of years from year 2000.
int64_t years = remainingYears + 4 * numOfFourYearCycles +
100 * numOfHundredYearCycles +
400LL * numOfFourHundredYearCycles;
int leapDay =
!remainingYears && (numOfFourYearCycles || !numOfHundredYearCycles);
// We add 31 and 28 for the number of days in January and February, since our
// starting point was March 1st.
int64_t yday = remainingDays + 31 + 28 + leapDay;
if (yday >= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay)
yday -= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay;
int64_t months = 0;
while (daysInMonth[months] <= remainingDays) {
remainingDays -= daysInMonth[months];
months++;
}
if (months >= TimeConstants::MONTHS_PER_YEAR - 2) {
months -= TimeConstants::MONTHS_PER_YEAR;
years++;
}
if (years > INT_MAX || years < INT_MIN)
return time_utils::out_of_range();
// All the data (years, month and remaining days) was calculated from
// March, 2000. Thus adjust the data to be from January, 1900.
tm->tm_year = static_cast<int>(years + 2000 - TimeConstants::TIME_YEAR_BASE);
tm->tm_mon = static_cast<int>(months + 2);
tm->tm_mday = static_cast<int>(remainingDays + 1);
tm->tm_wday = static_cast<int>(wday);
tm->tm_yday = static_cast<int>(yday);
tm->tm_hour =
static_cast<int>(remainingSeconds / TimeConstants::SECONDS_PER_HOUR);
tm->tm_min =
static_cast<int>(remainingSeconds / TimeConstants::SECONDS_PER_MIN %
TimeConstants::SECONDS_PER_MIN);
tm->tm_sec =
static_cast<int>(remainingSeconds % TimeConstants::SECONDS_PER_MIN);
// TODO(rtenneti): Need to handle timezone and update of tm_isdst.
tm->tm_isdst = 0;
return 0;
}
} // namespace time_utils
} // namespace LIBC_NAMESPACE_DECL
|