1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
|
//===-- Shared memory RPC server instantiation ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Workaround for missing __has_builtin in < GCC 10.
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
#include "llvmlibc_rpc_server.h"
#include "src/__support/RPC/rpc.h"
#include "src/__support/arg_list.h"
#include "src/stdio/printf_core/converter.h"
#include "src/stdio/printf_core/parser.h"
#include "src/stdio/printf_core/writer.h"
#include "src/stdio/gpu/file.h"
#include <algorithm>
#include <atomic>
#include <cstdio>
#include <cstring>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <variant>
#include <vector>
using namespace LIBC_NAMESPACE;
using namespace LIBC_NAMESPACE::printf_core;
static_assert(sizeof(rpc_buffer_t) == sizeof(rpc::Buffer),
"Buffer size mismatch");
static_assert(RPC_MAXIMUM_PORT_COUNT == rpc::MAX_PORT_COUNT,
"Incorrect maximum port count");
template <bool packed, uint32_t lane_size>
void handle_printf(rpc::Server::Port &port) {
FILE *files[lane_size] = {nullptr};
// Get the appropriate output stream to use.
if (port.get_opcode() == RPC_PRINTF_TO_STREAM ||
port.get_opcode() == RPC_PRINTF_TO_STREAM_PACKED)
port.recv([&](rpc::Buffer *buffer, uint32_t id) {
files[id] = reinterpret_cast<FILE *>(buffer->data[0]);
});
else if (port.get_opcode() == RPC_PRINTF_TO_STDOUT ||
port.get_opcode() == RPC_PRINTF_TO_STDOUT_PACKED)
std::fill(files, files + lane_size, stdout);
else
std::fill(files, files + lane_size, stderr);
uint64_t format_sizes[lane_size] = {0};
void *format[lane_size] = {nullptr};
uint64_t args_sizes[lane_size] = {0};
void *args[lane_size] = {nullptr};
// Recieve the format string and arguments from the client.
port.recv_n(format, format_sizes,
[&](uint64_t size) { return new char[size]; });
// Parse the format string to get the expected size of the buffer.
for (uint32_t lane = 0; lane < lane_size; ++lane) {
if (!format[lane])
continue;
WriteBuffer wb(nullptr, 0);
Writer writer(&wb);
internal::DummyArgList<packed> printf_args;
Parser<internal::DummyArgList<packed> &> parser(
reinterpret_cast<const char *>(format[lane]), printf_args);
for (FormatSection cur_section = parser.get_next_section();
!cur_section.raw_string.empty();
cur_section = parser.get_next_section())
;
args_sizes[lane] = printf_args.read_count();
}
port.send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = args_sizes[id];
});
port.recv_n(args, args_sizes, [&](uint64_t size) { return new char[size]; });
// Identify any arguments that are actually pointers to strings on the client.
// Additionally we want to determine how much buffer space we need to print.
std::vector<void *> strs_to_copy[lane_size];
int buffer_size[lane_size] = {0};
for (uint32_t lane = 0; lane < lane_size; ++lane) {
if (!format[lane])
continue;
WriteBuffer wb(nullptr, 0);
Writer writer(&wb);
internal::StructArgList<packed> printf_args(args[lane], args_sizes[lane]);
Parser<internal::StructArgList<packed>> parser(
reinterpret_cast<const char *>(format[lane]), printf_args);
for (FormatSection cur_section = parser.get_next_section();
!cur_section.raw_string.empty();
cur_section = parser.get_next_section()) {
if (cur_section.has_conv && cur_section.conv_name == 's' &&
cur_section.conv_val_ptr) {
strs_to_copy[lane].emplace_back(cur_section.conv_val_ptr);
// Get the minimum size of the string in the case of padding.
char c = '\0';
cur_section.conv_val_ptr = &c;
convert(&writer, cur_section);
} else if (cur_section.has_conv) {
// Ignore conversion errors for the first pass.
convert(&writer, cur_section);
} else {
writer.write(cur_section.raw_string);
}
}
buffer_size[lane] = writer.get_chars_written();
}
// Recieve any strings from the client and push them into a buffer.
std::vector<void *> copied_strs[lane_size];
while (std::any_of(std::begin(strs_to_copy), std::end(strs_to_copy),
[](const auto &v) { return !v.empty() && v.back(); })) {
port.send([&](rpc::Buffer *buffer, uint32_t id) {
void *ptr = !strs_to_copy[id].empty() ? strs_to_copy[id].back() : nullptr;
buffer->data[1] = reinterpret_cast<uintptr_t>(ptr);
if (!strs_to_copy[id].empty())
strs_to_copy[id].pop_back();
});
uint64_t str_sizes[lane_size] = {0};
void *strs[lane_size] = {nullptr};
port.recv_n(strs, str_sizes, [](uint64_t size) { return new char[size]; });
for (uint32_t lane = 0; lane < lane_size; ++lane) {
if (!strs[lane])
continue;
copied_strs[lane].emplace_back(strs[lane]);
buffer_size[lane] += str_sizes[lane];
}
}
// Perform the final formatting and printing using the LLVM C library printf.
int results[lane_size] = {0};
std::vector<void *> to_be_deleted;
for (uint32_t lane = 0; lane < lane_size; ++lane) {
if (!format[lane])
continue;
std::unique_ptr<char[]> buffer(new char[buffer_size[lane]]);
WriteBuffer wb(buffer.get(), buffer_size[lane]);
Writer writer(&wb);
internal::StructArgList<packed> printf_args(args[lane], args_sizes[lane]);
Parser<internal::StructArgList<packed>> parser(
reinterpret_cast<const char *>(format[lane]), printf_args);
// Parse and print the format string using the arguments we copied from
// the client.
int ret = 0;
for (FormatSection cur_section = parser.get_next_section();
!cur_section.raw_string.empty();
cur_section = parser.get_next_section()) {
// If this argument was a string we use the memory buffer we copied from
// the client by replacing the raw pointer with the copied one.
if (cur_section.has_conv && cur_section.conv_name == 's') {
if (!copied_strs[lane].empty()) {
cur_section.conv_val_ptr = copied_strs[lane].back();
to_be_deleted.push_back(copied_strs[lane].back());
copied_strs[lane].pop_back();
} else {
cur_section.conv_val_ptr = nullptr;
}
}
if (cur_section.has_conv) {
ret = convert(&writer, cur_section);
if (ret == -1)
break;
} else {
writer.write(cur_section.raw_string);
}
}
results[lane] =
fwrite(buffer.get(), 1, writer.get_chars_written(), files[lane]);
if (results[lane] != writer.get_chars_written() || ret == -1)
results[lane] = -1;
}
// Send the final return value and signal completion by setting the string
// argument to null.
port.send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(results[id]);
buffer->data[1] = reinterpret_cast<uintptr_t>(nullptr);
delete[] reinterpret_cast<char *>(format[id]);
delete[] reinterpret_cast<char *>(args[id]);
});
for (void *ptr : to_be_deleted)
delete[] reinterpret_cast<char *>(ptr);
}
template <uint32_t lane_size>
rpc_status_t handle_server_impl(
rpc::Server &server,
const std::unordered_map<uint16_t, rpc_opcode_callback_ty> &callbacks,
const std::unordered_map<uint16_t, void *> &callback_data,
uint32_t &index) {
auto port = server.try_open(lane_size, index);
if (!port)
return RPC_STATUS_SUCCESS;
switch (port->get_opcode()) {
case RPC_WRITE_TO_STREAM:
case RPC_WRITE_TO_STDERR:
case RPC_WRITE_TO_STDOUT:
case RPC_WRITE_TO_STDOUT_NEWLINE: {
uint64_t sizes[lane_size] = {0};
void *strs[lane_size] = {nullptr};
FILE *files[lane_size] = {nullptr};
if (port->get_opcode() == RPC_WRITE_TO_STREAM) {
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
files[id] = reinterpret_cast<FILE *>(buffer->data[0]);
});
} else if (port->get_opcode() == RPC_WRITE_TO_STDERR) {
std::fill(files, files + lane_size, stderr);
} else {
std::fill(files, files + lane_size, stdout);
}
port->recv_n(strs, sizes, [&](uint64_t size) { return new char[size]; });
port->send([&](rpc::Buffer *buffer, uint32_t id) {
flockfile(files[id]);
buffer->data[0] = fwrite_unlocked(strs[id], 1, sizes[id], files[id]);
if (port->get_opcode() == RPC_WRITE_TO_STDOUT_NEWLINE &&
buffer->data[0] == sizes[id])
buffer->data[0] += fwrite_unlocked("\n", 1, 1, files[id]);
funlockfile(files[id]);
delete[] reinterpret_cast<uint8_t *>(strs[id]);
});
break;
}
case RPC_READ_FROM_STREAM: {
uint64_t sizes[lane_size] = {0};
void *data[lane_size] = {nullptr};
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
data[id] = new char[buffer->data[0]];
sizes[id] =
fread(data[id], 1, buffer->data[0], file::to_stream(buffer->data[1]));
});
port->send_n(data, sizes);
port->send([&](rpc::Buffer *buffer, uint32_t id) {
delete[] reinterpret_cast<uint8_t *>(data[id]);
std::memcpy(buffer->data, &sizes[id], sizeof(uint64_t));
});
break;
}
case RPC_READ_FGETS: {
uint64_t sizes[lane_size] = {0};
void *data[lane_size] = {nullptr};
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
data[id] = new char[buffer->data[0]];
const char *str =
fgets(reinterpret_cast<char *>(data[id]), buffer->data[0],
file::to_stream(buffer->data[1]));
sizes[id] = !str ? 0 : std::strlen(str) + 1;
});
port->send_n(data, sizes);
for (uint32_t id = 0; id < lane_size; ++id)
if (data[id])
delete[] reinterpret_cast<uint8_t *>(data[id]);
break;
}
case RPC_OPEN_FILE: {
uint64_t sizes[lane_size] = {0};
void *paths[lane_size] = {nullptr};
port->recv_n(paths, sizes, [&](uint64_t size) { return new char[size]; });
port->recv_and_send([&](rpc::Buffer *buffer, uint32_t id) {
FILE *file = fopen(reinterpret_cast<char *>(paths[id]),
reinterpret_cast<char *>(buffer->data));
buffer->data[0] = reinterpret_cast<uintptr_t>(file);
});
break;
}
case RPC_CLOSE_FILE: {
port->recv_and_send([&](rpc::Buffer *buffer, uint32_t id) {
FILE *file = reinterpret_cast<FILE *>(buffer->data[0]);
buffer->data[0] = fclose(file);
});
break;
}
case RPC_EXIT: {
// Send a response to the client to signal that we are ready to exit.
port->recv_and_send([](rpc::Buffer *) {});
port->recv([](rpc::Buffer *buffer) {
int status = 0;
std::memcpy(&status, buffer->data, sizeof(int));
exit(status);
});
break;
}
case RPC_ABORT: {
// Send a response to the client to signal that we are ready to abort.
port->recv_and_send([](rpc::Buffer *) {});
port->recv([](rpc::Buffer *) {});
abort();
break;
}
case RPC_HOST_CALL: {
uint64_t sizes[lane_size] = {0};
void *args[lane_size] = {nullptr};
port->recv_n(args, sizes, [&](uint64_t size) { return new char[size]; });
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
reinterpret_cast<void (*)(void *)>(buffer->data[0])(args[id]);
});
port->send([&](rpc::Buffer *, uint32_t id) {
delete[] reinterpret_cast<uint8_t *>(args[id]);
});
break;
}
case RPC_FEOF: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = feof(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_FERROR: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = ferror(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_CLEARERR: {
port->recv_and_send([](rpc::Buffer *buffer) {
clearerr(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_FSEEK: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = fseek(file::to_stream(buffer->data[0]),
static_cast<long>(buffer->data[1]),
static_cast<int>(buffer->data[2]));
});
break;
}
case RPC_FTELL: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = ftell(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_FFLUSH: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = fflush(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_UNGETC: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = ungetc(static_cast<int>(buffer->data[0]),
file::to_stream(buffer->data[1]));
});
break;
}
case RPC_PRINTF_TO_STREAM_PACKED:
case RPC_PRINTF_TO_STDOUT_PACKED:
case RPC_PRINTF_TO_STDERR_PACKED: {
handle_printf<true, lane_size>(*port);
break;
}
case RPC_PRINTF_TO_STREAM:
case RPC_PRINTF_TO_STDOUT:
case RPC_PRINTF_TO_STDERR: {
handle_printf<false, lane_size>(*port);
break;
}
case RPC_REMOVE: {
uint64_t sizes[lane_size] = {0};
void *args[lane_size] = {nullptr};
port->recv_n(args, sizes, [&](uint64_t size) { return new char[size]; });
port->send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(
remove(reinterpret_cast<const char *>(args[id])));
delete[] reinterpret_cast<uint8_t *>(args[id]);
});
break;
}
case RPC_NOOP: {
port->recv([](rpc::Buffer *) {});
break;
}
default: {
auto handler =
callbacks.find(static_cast<rpc_opcode_t>(port->get_opcode()));
// We error out on an unhandled opcode.
if (handler == callbacks.end())
return RPC_STATUS_UNHANDLED_OPCODE;
// Invoke the registered callback with a reference to the port.
void *data =
callback_data.at(static_cast<rpc_opcode_t>(port->get_opcode()));
rpc_port_t port_ref{reinterpret_cast<uint64_t>(&*port), lane_size};
(handler->second)(port_ref, data);
}
}
// Increment the index so we start the scan after this port.
index = port->get_index() + 1;
port->close();
return RPC_STATUS_CONTINUE;
}
struct Device {
Device(uint32_t lane_size, uint32_t num_ports, void *buffer)
: lane_size(lane_size), buffer(buffer), server(num_ports, buffer),
client(num_ports, buffer) {}
rpc_status_t handle_server(uint32_t &index) {
switch (lane_size) {
case 1:
return handle_server_impl<1>(server, callbacks, callback_data, index);
case 32:
return handle_server_impl<32>(server, callbacks, callback_data, index);
case 64:
return handle_server_impl<64>(server, callbacks, callback_data, index);
default:
return RPC_STATUS_INVALID_LANE_SIZE;
}
}
uint32_t lane_size;
void *buffer;
rpc::Server server;
rpc::Client client;
std::unordered_map<uint16_t, rpc_opcode_callback_ty> callbacks;
std::unordered_map<uint16_t, void *> callback_data;
};
rpc_status_t rpc_server_init(rpc_device_t *rpc_device, uint64_t num_ports,
uint32_t lane_size, rpc_alloc_ty alloc,
void *data) {
if (!rpc_device)
return RPC_STATUS_ERROR;
if (lane_size != 1 && lane_size != 32 && lane_size != 64)
return RPC_STATUS_INVALID_LANE_SIZE;
uint64_t size = rpc::Server::allocation_size(lane_size, num_ports);
void *buffer = alloc(size, data);
if (!buffer)
return RPC_STATUS_ERROR;
Device *device = new Device(lane_size, num_ports, buffer);
if (!device)
return RPC_STATUS_ERROR;
rpc_device->handle = reinterpret_cast<uintptr_t>(device);
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_server_shutdown(rpc_device_t rpc_device, rpc_free_ty dealloc,
void *data) {
if (!rpc_device.handle)
return RPC_STATUS_ERROR;
Device *device = reinterpret_cast<Device *>(rpc_device.handle);
dealloc(device->buffer, data);
delete device;
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_handle_server(rpc_device_t rpc_device) {
if (!rpc_device.handle)
return RPC_STATUS_ERROR;
Device *device = reinterpret_cast<Device *>(rpc_device.handle);
uint32_t index = 0;
for (;;) {
rpc_status_t status = device->handle_server(index);
if (status != RPC_STATUS_CONTINUE)
return status;
}
}
rpc_status_t rpc_register_callback(rpc_device_t rpc_device, uint16_t opcode,
rpc_opcode_callback_ty callback,
void *data) {
if (!rpc_device.handle)
return RPC_STATUS_ERROR;
Device *device = reinterpret_cast<Device *>(rpc_device.handle);
device->callbacks[opcode] = callback;
device->callback_data[opcode] = data;
return RPC_STATUS_SUCCESS;
}
const void *rpc_get_client_buffer(rpc_device_t rpc_device) {
if (!rpc_device.handle)
return nullptr;
Device *device = reinterpret_cast<Device *>(rpc_device.handle);
return &device->client;
}
uint64_t rpc_get_client_size() { return sizeof(rpc::Client); }
void rpc_send(rpc_port_t ref, rpc_port_callback_ty callback, void *data) {
auto port = reinterpret_cast<rpc::Server::Port *>(ref.handle);
port->send([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
}
void rpc_send_n(rpc_port_t ref, const void *const *src, uint64_t *size) {
auto port = reinterpret_cast<rpc::Server::Port *>(ref.handle);
port->send_n(src, size);
}
void rpc_recv(rpc_port_t ref, rpc_port_callback_ty callback, void *data) {
auto port = reinterpret_cast<rpc::Server::Port *>(ref.handle);
port->recv([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
}
void rpc_recv_n(rpc_port_t ref, void **dst, uint64_t *size, rpc_alloc_ty alloc,
void *data) {
auto port = reinterpret_cast<rpc::Server::Port *>(ref.handle);
auto alloc_fn = [=](uint64_t size) { return alloc(size, data); };
port->recv_n(dst, size, alloc_fn);
}
void rpc_recv_and_send(rpc_port_t ref, rpc_port_callback_ty callback,
void *data) {
auto port = reinterpret_cast<rpc::Server::Port *>(ref.handle);
port->recv_and_send([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
}
|