1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
//===--- ColdBlockInfo.cpp - Hot/cold block analysis for the SIL CFG ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/SemanticAttrs.h"
#include "swift/Basic/Defer.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILModule.h"
#include "swift/SILOptimizer/Analysis/ColdBlockInfo.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "llvm/ADT/PostOrderIterator.h"
#define DEBUG_TYPE "cold-block-info"
using namespace swift;
bool isColdEnergy(ColdBlockInfo::Energy e);
ColdBlockInfo::ColdBlockInfo(DominanceAnalysis *DA,
PostDominanceAnalysis *PDA) : DA(DA), PDA(PDA) {
LLVM_DEBUG(llvm::dbgs() << "ColdBlockInfo: constructed\n");
}
static std::string toString(SILBasicBlock const *bb) {
std::string str = bb->getParent()->getName().str();
str += "::bb" + std::to_string(bb->getDebugID());
return str;
}
static StringRef toString(ColdBlockInfo::Energy e) {
if (e == ColdBlockInfo::Energy::full())
return "<<ALL>>";
else if (e.empty())
return "<<NONE>>";
else if (e.contains(ColdBlockInfo::State::Warm))
return "warm";
else if (e.contains(ColdBlockInfo::State::Cold))
return "cold";
else
llvm_unreachable("unhandled energy state");
}
static StringRef toString(ColdBlockInfo::State::Temperature t) {
ColdBlockInfo::Energy e;
e.insert(t);
return toString(e);
}
void ColdBlockInfo::dump() const {
unsigned warm = 0, cold = 0;
llvm::dbgs() << "ColdBlockInfo {\n";
for (auto pair : EnergyMap) {
auto energy = pair.getSecond();
isColdEnergy(energy) ? cold++ : warm++;
llvm::dbgs() << toString(pair.getFirst())
<< " -> " << toString(energy) << "\n";
}
llvm::dbgs() << "STATISTICS: warm " << warm << " | cold " << cold << "\n}\n";
}
inline bool isCriticalEdge(SILBasicBlock *predBB, SILBasicBlock *succBB) {
return !(predBB->getSingleSuccessorBlock() == succBB
|| succBB->getSinglePredecessorBlock() == predBB);
}
static bool hasCriticalEdge(SILBasicBlock *BB) {
return llvm::any_of(BB->getSuccessorBlocks(), [&](auto *succBB) {
if (!isCriticalEdge(BB, succBB))
return false;
LLVM_DEBUG(llvm::dbgs() << "ColdBlockInfo: "
<< toString(BB) << " -> " << toString(succBB)
<< " is a critical edge!\n");
return true;
});
}
/// A cold terminator is one where it's unlikely to be reached, which are
/// function exits that are less-common. A cold terminator implies a cold block.
/// - 'unreachable', as it's never executed.
/// - 'throw', if throws prediction is enabled.
static bool isColdTerminator(const TermInst *term) {
switch (term->getTermKind()) {
case TermKind::AwaitAsyncContinuationInst:
case TermKind::BranchInst:
case TermKind::CondBranchInst:
case TermKind::SwitchValueInst:
case TermKind::SwitchEnumInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::DynamicMethodBranchInst:
case TermKind::CheckedCastBranchInst:
case TermKind::CheckedCastAddrBranchInst:
case TermKind::TryApplyInst:
case TermKind::YieldInst:
case TermKind::ReturnInst:
return false;
case TermKind::ThrowInst:
case TermKind::ThrowAddrInst:
case TermKind::UnwindInst:
return term->getModule().getOptions().EnableThrowsPrediction;
case TermKind::UnreachableInst:
// For now, assume it's always cold, since it's executed once.
// Not all functions in the stdlib are properly annotated as a
// "known program termination point", so we don't use
// ApplySite::isCalleeKnownProgramTerminationPoint.
return term->getModule().getOptions().EnableNoReturnCold;
}
}
/// Peek through an extract of Bool.value.
static SILValue getCondition(SILValue C) {
if (auto *SEI = dyn_cast<StructExtractInst>(C)) {
if (auto *Struct = dyn_cast<StructInst>(SEI->getOperand()))
return Struct->getFieldValue(SEI->getField());
return SEI->getOperand();
}
return C;
}
constexpr unsigned RecursionDepthLimit = 3;
std::optional<bool>
ColdBlockInfo::searchForExpectedValue(SILValue Cond,
unsigned recursionDepth) {
if (recursionDepth > RecursionDepthLimit)
return std::nullopt;
if (auto *Arg = dyn_cast<SILArgument>(Cond)) {
llvm::SmallVector<std::pair<SILBasicBlock *, SILValue>, 4> InValues;
if (!Arg->getIncomingPhiValues(InValues))
return std::nullopt;
std::optional<bool> expectedValue;
// Check all predecessor values which come from non-cold blocks.
for (auto Pair : InValues) {
auto *predBB = Pair.first;
auto predArg = Pair.second;
// We only want to consider values coming from a non-cold path of preds.
if (isCold(predBB))
continue;
std::optional<bool> predecessorValue;
// Look for an integer literal, otherwise, recurse.
if (auto *IL = dyn_cast<IntegerLiteralInst>(predArg)) {
predecessorValue = IL->getValue().getBoolValue();
} else {
predecessorValue = searchForExpectedValue(predArg, recursionDepth+1);
}
// There's at least one non-cold predecessor with an unknown value.
if (!predecessorValue)
return std::nullopt;
// If this is the first non-cold predecessor, save the value.
if (!expectedValue) {
expectedValue = *predecessorValue;
continue;
}
// Check if we have a consistent value across all non-cold predecessors.
if (*expectedValue != *predecessorValue)
return std::nullopt;
}
return expectedValue;
}
return std::nullopt;
}
static std::optional<bool> getExpectedValue(SILValue Cond) {
// Handle the fully inlined Builtin.
if (auto *BI = dyn_cast<BuiltinInst>(Cond)) {
if (BI->getIntrinsicInfo().ID == llvm::Intrinsic::expect) {
// peek through an extract of Bool.value.
SILValue ExpectedValue = getCondition(BI->getArguments()[1]);
if (auto *Literal = dyn_cast<IntegerLiteralInst>(ExpectedValue)) {
return (Literal->getValue() == 0) ? false : true;
}
}
return std::nullopt;
}
// Handle the @semantic functions used for branch hints.
auto AI = dyn_cast<ApplyInst>(Cond);
if (!AI)
return std::nullopt;
if (auto *F = AI->getReferencedFunctionOrNull()) {
if (F->hasSemanticsAttrs()) {
// fastpath/slowpath attrs are untested because the inliner luckily
// inlines them before the downstream calls.
if (F->hasSemanticsAttr(semantics::SLOWPATH))
return false;
else if (F->hasSemanticsAttr(semantics::FASTPATH))
return true;
}
}
return std::nullopt;
}
/// The minimum probability that an edge is taken to be considered "warm".
constexpr double WARM_EDGE_MINIMUM = 3.0 / 100.0;
/// Using the profile data on the terminator of this block, annotate successors
/// with cold/warm information.
///
/// \returns true if an inference was made
bool ColdBlockInfo::inferFromEdgeProfile(SILBasicBlock *BB) {
ProfileCounter totalCount{0};
SmallVector<ProfileCounter, 2> succCount;
// Current analysis only accurately handles blocks with 2 successors,
// especially since we only have two temperatures.
if (BB->getNumSuccessors() != 2)
return false;
// Check the successor edges for profile data.
for (auto const &succ : BB->getSuccessors()) {
auto counter = succ.getCount();
// Can't make an inference if there's profile data missing for a successor.
// FIXME: there are techniques to determine a missing count;
// see the SamplePGO paper by Diego Novillo.
if (!counter)
return false;
succCount.push_back(counter);
auto didSaturate = totalCount.add_saturating(counter);
ASSERT(!didSaturate && "should rescale the profile data first");
(void)didSaturate;
}
TermInst::ConstSuccessorListTy succs = BB->getSuccessors();
ASSERT(succCount.size() == succs.size());
// Record temperatures.
for (size_t i = 0; i < succs.size(); i++) {
double takenProbability =
succCount[i].getValue() / (double)totalCount.getValue();
// It's a cold edge if the profiling-based probability is below the threshold.
auto state =
takenProbability < WARM_EDGE_MINIMUM ? ColdBlockInfo::State::Cold
: ColdBlockInfo::State::Warm;
set(succs[i], state);
LLVM_DEBUG(llvm::dbgs()
<< "ColdBlockInfo: setting to " << toString(state)
<< " (inferFromEdgeProfile): " << toString(succs[i])
<< " has taken probability " << takenProbability << "\n");
ASSERT(takenProbability >= 0);
ASSERT(takenProbability <= 1);
}
return true;
}
void ColdBlockInfo::analyze(SILFunction *fn) {
SWIFT_DEFER { changedMap = false; };
LLVM_DEBUG(llvm::dbgs()
<< "ColdBlockInfo::analyze on " << fn->getName() << "\n");
LLVM_DEBUG(llvm::dbgs() << "--> Before Stage 1\n");
LLVM_DEBUG(dump());
// The set of blocks for which we can skip searching for an expected
// conditional value, as we've already determined which successor is cold.
BasicBlockSet foundExpectedCond(fn);
// Stage 1: Seed the graph with warm/cold blocks.
changedMap = false;
for (auto &BB : *fn) {
auto *term = BB.getTerminator();
// Check for a cold exit.
if (isColdTerminator(term)) {
assert(term->getNumSuccessors() == 0);
LLVM_DEBUG(llvm::dbgs()
<< "ColdBlockInfo: resetting to cold (isColdTerminator): "
<< toString(&BB) << "\n");
// Overwrite any existing temperatures.
resetToCold(&BB);
continue;
}
// Check profile data for successors, choosing it first over branch hints.
if (inferFromEdgeProfile(&BB)) {
foundExpectedCond.insert(&BB);
continue;
}
// Check for an obvious _fastPath / _slowPath condition for successors.
if (auto *CBI = dyn_cast<CondBranchInst>(term)) {
if (auto val = getExpectedValue(getCondition(CBI->getCondition()))) {
setExpectedCondition(CBI, val);
foundExpectedCond.insert(&BB);
}
}
}
LLVM_DEBUG(llvm::dbgs() << "--> After Stage 1; changedMap = "
<< changedMap << "\n");
LLVM_DEBUG(dump());
/// Latter stages are only for propagating coldness from other cold blocks.
///
/// If we haven't changed the energy map at all in Stage 1, then we didn't
/// find any new coldness, so stop early.
if (!changedMap) {
LLVM_DEBUG(llvm::dbgs()
<< "--> Stopping early in "<< fn->getName() << "\n");
return;
}
// Stage 2: Propagate via dominators
changedMap = false;
SmallVector<SILBasicBlock *, 8> scratch;
for (auto &BB : *fn) {
scratch.clear();
if (isCold(&BB)) {
// Mark all blocks I dominate as cold.
auto *domInfo = DA->get(fn);
domInfo->getDescendants(&BB, scratch);
for (auto *dominatedBB : scratch) {
if (dominatedBB == &BB)
continue;
LLVM_DEBUG(llvm::dbgs() << "ColdBlockInfo: resetting to cold (dominatedBB): "
<< toString(dominatedBB) << "\n");
resetToCold(dominatedBB);
}
} else {
// Mark myself cold if I'm post-dominated by a cold block.
auto *pdInfo = PDA->get(fn);
scratch.push_back(&BB);
auto *node = pdInfo->getNode(&BB);
bool foundCold = false;
while (node && !foundCold) {
node = node->getIDom();
if (!node || pdInfo->isVirtualRoot(node))
break;
auto *postBB = node->getBlock();
if (isCold(postBB)) {
foundCold = true;
} else {
scratch.push_back(postBB);
}
}
if (foundCold) {
for (auto *chainBB : scratch) {
LLVM_DEBUG(llvm::dbgs() << "ColdBlockInfo: resetting to cold (chainBB): "
<< toString(chainBB) << "\n");
resetToCold(chainBB);
}
}
}
}
LLVM_DEBUG(llvm::dbgs() << "--> After Stage 2; changedMap = "
<< changedMap << "\n");
LLVM_DEBUG(dump());
/// Stage 3: Backwards propagate coldness from successors.
changedMap = false;
auto isColdBlock = [&](auto *bb) { return isCold(bb); };
unsigned completedIters = 0;
bool changed;
do {
changed = false;
// We're bubbling up coldness from the leaves of the function up towards the
// entry block, so walk the blocks in post-order to converge faster.
for (auto *BB : llvm::post_order(fn)) {
// Only on the first pass, search recursively for an expected value,
// if needed, now that more temperature data has been determined.
if (!completedIters && !foundExpectedCond.contains(BB)) {
if (auto *CBI = dyn_cast<CondBranchInst>(BB->getTerminator())) {
auto cond = getCondition(CBI->getCondition());
if (auto val = searchForExpectedValue(cond)) {
setExpectedCondition(CBI, val);
changed = true;
}
}
}
// Nothing to propagate from.
if (BB->getNumSuccessors() == 0)
continue;
// Coldness already exists here.
if (isCold(BB))
continue;
if (llvm::all_of(BB->getSuccessorBlocks(), isColdBlock)) {
resetToCold(BB);
changed = true;
}
}
completedIters++;
} while (changed);
LLVM_DEBUG(llvm::dbgs() << "--> Final for " << fn->getName() <<
" | converged after " << completedIters << " iters"
<< " over " << fn->size() << " blocks; "
<< " changedMap = " << changedMap << "\n");
LLVM_DEBUG(dump());
}
inline bool isColdEnergy(ColdBlockInfo::Energy e) {
return e.contains(ColdBlockInfo::State::Cold)
&& !e.contains(ColdBlockInfo::State::Warm);
}
bool ColdBlockInfo::isCold(const SILBasicBlock *BB) const {
auto result = EnergyMap.find(BB);
if (result == EnergyMap.end())
return false;
return isColdEnergy(result->getSecond());
}
void ColdBlockInfo::resetToCold(const SILBasicBlock *BB) {
auto &entry = EnergyMap.getOrInsertDefault(BB);
if (isColdEnergy(entry))
return;
entry.removeAll();
entry.insert(State::Cold);
changedMap = true;
}
void ColdBlockInfo::set(const SILBasicBlock *BB, State::Temperature temp) {
auto &entry = EnergyMap.getOrInsertDefault(BB);
if (entry.contains(temp))
return;
entry.insert(temp);
changedMap = true;
}
void ColdBlockInfo::setExpectedCondition(CondBranchInst *CBI, ExpectedValue value) {
if (!value)
return;
// This function marks both sides of the conditional-branch, assuming
// critical edges are split. If they're NOT, then unexpected things happen.
// For example, we'd mark bb2 below as cold, which post-dominates the warm
// block bb1, and thus wipes out the warm annotation on bb1!
// bb0: [ _fastPath(trueSide) ]
// │ │
// │ bb1: [ warm ]
// │ │
// │─────────────┘
// ▼
// bb2: [ cold ]
if (hasCriticalEdge(CBI->getParent()))
return;
if (*value) {
set(CBI->getTrueBB(), State::Warm);
set(CBI->getFalseBB(), State::Cold);
LLVM_DEBUG(llvm::dbgs() << "ColdBlockInfo: "
<< "_fastPath = " << toString(CBI->getTrueBB())
<< " | _slowPath = " << toString(CBI->getFalseBB())
<< "\n");
} else {
set(CBI->getTrueBB(), State::Cold);
set(CBI->getFalseBB(), State::Warm);
LLVM_DEBUG(llvm::dbgs() << "ColdBlockInfo: "
<< "_fastPath = " << toString(CBI->getFalseBB())
<< " | _slowPath = " << toString(CBI->getTrueBB())
<< "\n");
}
}
|