File: RegionAnalysis.cpp

package info (click to toggle)
swiftlang 6.1.3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 2,791,644 kB
  • sloc: cpp: 9,901,738; ansic: 2,201,433; asm: 1,091,827; python: 308,252; objc: 82,166; f90: 80,126; lisp: 38,358; pascal: 25,559; sh: 20,429; ml: 5,058; perl: 4,745; makefile: 4,484; awk: 3,535; javascript: 3,018; xml: 918; fortran: 664; cs: 573; ruby: 396
file content (3854 lines) | stat: -rw-r--r-- 149,512 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
//===--- RegionAnalysis.cpp -----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "send-non-sendable"

#include "swift/SILOptimizer/Analysis/RegionAnalysis.h"

#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Type.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/FrozenMultiMap.h"
#include "swift/Basic/ImmutablePointerSet.h"
#include "swift/Basic/SmallBitVector.h"
#include "swift/SIL/BasicBlockData.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/NodeDatastructures.h"
#include "swift/SIL/OperandDatastructures.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/Test.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/PartitionUtils.h"
#include "swift/SILOptimizer/Utils/VariableNameUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"

using namespace swift;
using namespace swift::PartitionPrimitives;
using namespace swift::PatternMatch;
using namespace swift::regionanalysisimpl;

bool swift::regionanalysisimpl::AbortOnUnknownPatternMatchError = false;

static llvm::cl::opt<bool, true> AbortOnUnknownPatternMatchErrorCmdLine(
    "sil-region-isolation-assert-on-unknown-pattern",
    llvm::cl::desc("Abort if SIL region isolation detects an unknown pattern. "
                   "Intended only to be used when debugging the compiler!"),
    llvm::cl::Hidden,
    llvm::cl::location(
        swift::regionanalysisimpl::AbortOnUnknownPatternMatchError));

//===----------------------------------------------------------------------===//
//                              MARK: Utilities
//===----------------------------------------------------------------------===//

namespace {

using OperandRefRangeTransform = std::function<Operand *(Operand &)>;
using OperandRefRange =
    iterator_range<llvm::mapped_iterator<MutableArrayRef<Operand>::iterator,
                                         OperandRefRangeTransform>>;

} // anonymous namespace

static OperandRefRange makeOperandRefRange(MutableArrayRef<Operand> input) {
  auto toOperand = [](Operand &operand) { return &operand; };
  auto baseRange = llvm::make_range(input.begin(), input.end());
  return llvm::map_range(baseRange, OperandRefRangeTransform(toOperand));
}

std::optional<ApplyIsolationCrossing>
regionanalysisimpl::getApplyIsolationCrossing(SILInstruction *inst) {
  if (ApplyExpr *apply = inst->getLoc().getAsASTNode<ApplyExpr>())
    if (auto crossing = apply->getIsolationCrossing())
      return crossing;

  if (auto fas = FullApplySite::isa(inst)) {
    if (auto crossing = fas.getIsolationCrossing())
      return crossing;
  }

  return {};
}

namespace {

struct UseDefChainVisitor
    : public AccessUseDefChainVisitor<UseDefChainVisitor, SILValue> {
  bool isMerge = false;

  /// The actor isolation that we found while walking from use->def. Always set
  /// to the first one encountered.
  std::optional<ActorIsolation> actorIsolation;

  SILValue visitAll(SILValue sourceAddr) {
    SILValue result = visit(sourceAddr);
    if (!result)
      return sourceAddr;

    while (SILValue nextAddr = visit(result))
      result = nextAddr;

    return result;
  }

  SILValue visitBase(SILValue base, AccessStorage::Kind kind) {
    // If we are passed a project_box, we want to return the box itself. The
    // reason for this is that the project_box is considered to be non-aliasing
    // memory. We want to treat it as part of the box which is
    // aliasing... meaning that we need to merge.
    if (kind == AccessStorage::Box)
      return cast<ProjectBoxInst>(base)->getOperand();
    return SILValue();
  }

  SILValue visitNonAccess(SILValue) { return SILValue(); }

  SILValue visitPhi(SILPhiArgument *phi) {
    llvm_unreachable("Should never hit this");
  }

  // Override AccessUseDefChainVisitor to ignore access markers and find the
  // outer access base.
  SILValue visitNestedAccess(BeginAccessInst *access) {
    return visitAll(access->getSource());
  }

  SILValue visitStorageCast(SingleValueInstruction *cast, Operand *sourceAddr,
                            AccessStorageCast castType) {
    // If this is a type case, see if the result of the cast is sendable. In
    // such a case, we do not want to look through this cast.
    if (castType == AccessStorageCast::Type &&
        !SILIsolationInfo::isNonSendableType(cast->getType(),
                                             cast->getFunction()))
      return SILValue();

    // Do not look through begin_borrow [var_decl]. They are start new semantic
    // values.
    //
    // This only comes up if a codegen pattern occurs where the debug
    // information is place on a debug_value instead of the alloc_box.
    if (auto *bbi = dyn_cast<BeginBorrowInst>(cast)) {
      if (bbi->isFromVarDecl())
        return SILValue();
    }

    // If we do not have an identity cast, mark this as a merge.
    isMerge |= castType != AccessStorageCast::Identity;

    return sourceAddr->get();
  }

  SILValue visitAccessProjection(SingleValueInstruction *inst,
                                 Operand *sourceAddr) {
    // See if this access projection is into a single element value. If so, we
    // do not want to treat this as a merge.
    if (auto p = Projection(inst)) {
      switch (p.getKind()) {
      // Currently if we load and then project_box from a memory location,
      // we treat that as a projection. This follows the semantics/notes in
      // getAccessProjectionOperand.
      case ProjectionKind::Box:
        return cast<ProjectBoxInst>(inst)->getOperand();
      case ProjectionKind::Upcast:
      case ProjectionKind::RefCast:
      case ProjectionKind::BlockStorageCast:
      case ProjectionKind::BitwiseCast:
      case ProjectionKind::Class:
      case ProjectionKind::TailElems:
        llvm_unreachable("Shouldn't see this here");
      case ProjectionKind::Index:
        // Index is always a merge.
        isMerge = true;
        break;
      case ProjectionKind::Enum: {
        auto op = cast<UncheckedTakeEnumDataAddrInst>(inst)->getOperand();

        // See if our operand type is a sendable type. In such a case, we do not
        // want to look through our operand.
        if (!SILIsolationInfo::isNonSendableType(op->getType(),
                                                 op->getFunction()))
          return SILValue();

        break;
      }
      case ProjectionKind::Tuple: {
        // These are merges if we have multiple fields.
        auto op = cast<TupleElementAddrInst>(inst)->getOperand();

        if (!SILIsolationInfo::isNonSendableType(op->getType(),
                                                 op->getFunction()))
          return SILValue();

        isMerge |= op->getType().getNumTupleElements() > 1;
        break;
      }
      case ProjectionKind::Struct:
        auto op = cast<StructElementAddrInst>(inst)->getOperand();

        // See if our result type is a sendable type. In such a case, we do not
        // want to look through the struct_element_addr since we do not want to
        // identify the sendable type with the non-sendable operand. These we
        // are always going to ignore anyways since a sendable let/var field of
        // a struct can always be used.
        if (!SILIsolationInfo::isNonSendableType(op->getType(),
                                                 op->getFunction()))
          return SILValue();

        // These are merges if we have multiple fields.
        isMerge |= op->getType().getNumNominalFields() > 1;
        break;
      }
    }

    return sourceAddr->get();
  }
};

} // namespace

/// Classify an instructions as look through when we are looking through
/// values. We assert that all instructions that are CONSTANT_TRANSLATION
/// LookThrough to make sure they stay in sync.
static bool isStaticallyLookThroughInst(SILInstruction *inst) {
  switch (inst->getKind()) {
  default:
    return false;
  case SILInstructionKind::BeginAccessInst:
  case SILInstructionKind::BeginCOWMutationInst:
  case SILInstructionKind::BeginDeallocRefInst:
  case SILInstructionKind::BridgeObjectToRefInst:
  case SILInstructionKind::CopyValueInst:
  case SILInstructionKind::CopyableToMoveOnlyWrapperAddrInst:
  case SILInstructionKind::CopyableToMoveOnlyWrapperValueInst:
  case SILInstructionKind::DestructureStructInst:
  case SILInstructionKind::DestructureTupleInst:
  case SILInstructionKind::DifferentiableFunctionExtractInst:
  case SILInstructionKind::DropDeinitInst:
  case SILInstructionKind::EndCOWMutationInst:
  case SILInstructionKind::EndInitLetRefInst:
  case SILInstructionKind::ExplicitCopyValueInst:
  case SILInstructionKind::InitEnumDataAddrInst:
  case SILInstructionKind::LinearFunctionExtractInst:
  case SILInstructionKind::MarkDependenceInst:
  case SILInstructionKind::MarkUninitializedInst:
  case SILInstructionKind::MarkUnresolvedNonCopyableValueInst:
  case SILInstructionKind::MarkUnresolvedReferenceBindingInst:
  case SILInstructionKind::MoveOnlyWrapperToCopyableAddrInst:
  case SILInstructionKind::MoveOnlyWrapperToCopyableBoxInst:
  case SILInstructionKind::MoveOnlyWrapperToCopyableValueInst:
  case SILInstructionKind::OpenExistentialAddrInst:
  case SILInstructionKind::OpenExistentialValueInst:
  case SILInstructionKind::ProjectBlockStorageInst:
  case SILInstructionKind::ProjectBoxInst:
  case SILInstructionKind::RefToBridgeObjectInst:
  case SILInstructionKind::RefToUnownedInst:
  case SILInstructionKind::UncheckedRefCastInst:
  case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
  case SILInstructionKind::UnownedCopyValueInst:
  case SILInstructionKind::UnownedToRefInst:
  case SILInstructionKind::UpcastInst:
  case SILInstructionKind::ValueToBridgeObjectInst:
  case SILInstructionKind::WeakCopyValueInst:
  case SILInstructionKind::StrongCopyWeakValueInst:
  case SILInstructionKind::StrongCopyUnmanagedValueInst:
  case SILInstructionKind::RefToUnmanagedInst:
  case SILInstructionKind::UnmanagedToRefInst:
  case SILInstructionKind::InitExistentialValueInst:
    return true;
  case SILInstructionKind::MoveValueInst:
    // Look through if it isn't from a var decl.
    return !cast<MoveValueInst>(inst)->isFromVarDecl();
  case SILInstructionKind::BeginBorrowInst:
    // Look through if it isn't from a var decl.
    return !cast<BeginBorrowInst>(inst)->isFromVarDecl();
  case SILInstructionKind::UnconditionalCheckedCastInst: {
    auto cast = SILDynamicCastInst::getAs(inst);
    assert(cast);
    if (cast.isRCIdentityPreserving())
      return true;
    return false;
  }
  }
}

static bool isLookThroughIfResultNonSendable(SILInstruction *inst) {
  switch (inst->getKind()) {
  default:
    return false;
  case SILInstructionKind::RawPointerToRefInst:
    return true;
  }
}

static bool isLookThroughIfOperandNonSendable(SILInstruction *inst) {
  switch (inst->getKind()) {
  default:
    return false;
  case SILInstructionKind::RefToRawPointerInst:
    return true;
  }
}

static bool isLookThroughIfOperandAndResultNonSendable(SILInstruction *inst) {
  switch (inst->getKind()) {
  default:
    return false;
  case SILInstructionKind::UncheckedTrivialBitCastInst:
  case SILInstructionKind::UncheckedBitwiseCastInst:
  case SILInstructionKind::UncheckedValueCastInst:
  case SILInstructionKind::StructElementAddrInst:
  case SILInstructionKind::TupleElementAddrInst:
  case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
    return true;
  }
}

namespace {

struct TermArgSources {
  SmallFrozenMultiMap<SILValue, Operand *, 8> argSources;

  template <typename ValueRangeTy = ArrayRef<Operand *>>
  void addValues(ValueRangeTy valueRange, SILBasicBlock *destBlock) {
    for (auto pair : llvm::enumerate(valueRange))
      argSources.insert(destBlock->getArgument(pair.index()), pair.value());
  }

  TermArgSources() {}

  void init(SILInstruction *inst) {
    switch (cast<TermInst>(inst)->getTermKind()) {
    case TermKind::UnreachableInst:
    case TermKind::ReturnInst:
    case TermKind::ThrowInst:
    case TermKind::ThrowAddrInst:
    case TermKind::YieldInst:
    case TermKind::UnwindInst:
    case TermKind::TryApplyInst:
    case TermKind::SwitchValueInst:
    case TermKind::SwitchEnumInst:
    case TermKind::SwitchEnumAddrInst:
    case TermKind::AwaitAsyncContinuationInst:
    case TermKind::CheckedCastAddrBranchInst:
      llvm_unreachable("Unsupported?!");

    case TermKind::BranchInst:
      return init(cast<BranchInst>(inst));

    case TermKind::CondBranchInst:
      return init(cast<CondBranchInst>(inst));

    case TermKind::DynamicMethodBranchInst:
      return init(cast<DynamicMethodBranchInst>(inst));

    case TermKind::CheckedCastBranchInst:
      return init(cast<CheckedCastBranchInst>(inst));
    }

    llvm_unreachable("Covered switch isn't covered?!");
  }

private:
  void init(BranchInst *bi) {
    addValues(makeOperandRefRange(bi->getAllOperands()), bi->getDestBB());
  }

  void init(CondBranchInst *cbi) {
    addValues(makeOperandRefRange(cbi->getTrueOperands()), cbi->getTrueBB());
    addValues(makeOperandRefRange(cbi->getFalseOperands()), cbi->getFalseBB());
  }

  void init(DynamicMethodBranchInst *dmBranchInst) {
    addValues({&dmBranchInst->getAllOperands()[0]},
              dmBranchInst->getHasMethodBB());
  }

  void init(CheckedCastBranchInst *ccbi) {
    addValues({&ccbi->getAllOperands()[0]}, ccbi->getSuccessBB());
  }
};

} // namespace

static bool isProjectedFromAggregate(SILValue value) {
  assert(value->getType().isAddress());
  UseDefChainVisitor visitor;
  visitor.visitAll(value);
  return visitor.isMerge;
}

namespace {
using AsyncLetSourceValue =
    llvm::PointerUnion<PartialApplyInst *, ThinToThickFunctionInst *>;
} // namespace

static std::optional<AsyncLetSourceValue>
findAsyncLetPartialApplyFromStart(SILValue value) {
  // If our operand is Sendable then we want to return nullptr. We only want to
  // return a value if we are not
  auto fType = value->getType().castTo<SILFunctionType>();
  if (fType->isSendable())
    return {};

  SILValue temp = value;
  while (true) {
    if (isa<ConvertEscapeToNoEscapeInst>(temp) ||
        isa<ConvertFunctionInst>(temp)) {
      temp = cast<SingleValueInstruction>(temp)->getOperand(0);
    }
    if (temp == value)
      break;
    value = temp;
  }

  // We can also get a thin_to_thick_function here if we do not capture
  // anything. In such a case, we just do not process the partial apply get
  if (auto *ttfi = dyn_cast<ThinToThickFunctionInst>(value))
    return {{ttfi}};

  // Ok, we could still have a reabstraction thunk. In such a case, we want the
  // partial_apply that we process to be the original partial_apply (or
  // thin_to_thick)... so in that case process recursively.
  auto *pai = cast<PartialApplyInst>(value);
  if (auto *calleeFunction = pai->getCalleeFunction()) {
    if (calleeFunction->isThunk() == IsReabstractionThunk) {
      return findAsyncLetPartialApplyFromStart(pai->getArgument(0));
    }
  }

  // Otherwise, this is the right partial_apply... apply it!
  return {{pai}};
}

/// This recurses through reabstraction thunks.
static std::optional<AsyncLetSourceValue>
findAsyncLetPartialApplyFromStart(BuiltinInst *bi) {
  return findAsyncLetPartialApplyFromStart(bi->getOperand(1));
}

/// This recurses through reabstraction thunks.
static std::optional<AsyncLetSourceValue>
findAsyncLetPartialApplyFromGet(ApplyInst *ai) {
  auto *bi = cast<BuiltinInst>(FullApplySite(ai).getArgument(0));
  assert(*bi->getBuiltinKind() ==
         BuiltinValueKind::StartAsyncLetWithLocalBuffer);
  return findAsyncLetPartialApplyFromStart(bi);
}

static bool isAsyncLetBeginPartialApply(PartialApplyInst *pai) {
  if (auto *fas = pai->getCalleeFunction())
    if (fas->isThunk())
      return false;

  // Look through reabstraction thunks.
  SILValue result = pai;
  while (true) {
    SILValue iter = result;

    if (auto *use = iter->getSingleUse()) {
      if (auto *maybeThunk = dyn_cast<PartialApplyInst>(use->getUser())) {
        if (auto *fas = maybeThunk->getCalleeFunction()) {
          if (fas->isThunk()) {
            iter = maybeThunk;
          }
        }
      }
    }

    if (auto *cfi = iter->getSingleUserOfType<ConvertFunctionInst>())
      iter = cfi;
    if (auto *cvt = iter->getSingleUserOfType<ConvertEscapeToNoEscapeInst>())
      iter = cvt;

    if (iter == result)
      break;

    result = iter;
  }

  auto *bi = result->getSingleUserOfType<BuiltinInst>();
  if (!bi)
    return false;

  auto kind = bi->getBuiltinKind();
  if (!kind)
    return false;

  return *kind == BuiltinValueKind::StartAsyncLetWithLocalBuffer;
}

/// Returns true if this is a function argument that is able to be sent in the
/// body of our function.
static bool canFunctionArgumentBeSent(SILFunctionArgument *arg) {
  // Indirect out parameters can never be sent.
  if (arg->isIndirectResult() || arg->isIndirectErrorResult())
    return false;

  // If we have a function argument that is closure captured by a Sendable
  // closure, allow for the argument to be sent.
  //
  // DISCUSSION: The reason that we do this is that in the case of us
  // having an actual Sendable closure there are two cases we can see:
  //
  // 1. If we have an actual Sendable closure, the AST will emit an
  // earlier error saying that we are capturing a non-Sendable value in a
  // Sendable closure. So we want to squelch the error that we would emit
  // otherwise. This only occurs when we are not in swift-6 mode since in
  // swift-6 mode we will error on the earlier error... but in the case of
  // us not being in swift 6 mode lets not emit extra errors.
  //
  // 2. If we have an async-let based Sendable closure, we want to allow
  // for the argument to be sent in the async let's statement and
  // not emit an error.
  //
  // TODO: Once the async let refactoring change this will no longer be needed
  // since closure captures will have sending parameters and be
  // non-Sendable.
  if (arg->isClosureCapture() &&
      arg->getFunction()->getLoweredFunctionType()->isSendable())
    return true;

  // Otherwise, we only allow for the argument to be sent if it is explicitly
  // marked as a 'sending' parameter.
  return arg->isSending();
}

//===----------------------------------------------------------------------===//
//                        MARK: RegionAnalysisValueMap
//===----------------------------------------------------------------------===//

SILInstruction *RegionAnalysisValueMap::maybeGetActorIntroducingInst(
    Element trackableValueID) const {
  if (auto value = getValueForId(trackableValueID)) {
    auto rep = value->getRepresentative();
    if (rep.hasRegionIntroducingInst())
      return rep.getActorRegionIntroducingInst();
  }

  return nullptr;
}

std::optional<TrackableValue>
RegionAnalysisValueMap::getValueForId(Element id) const {
  auto iter = stateIndexToEquivalenceClass.find(id);
  if (iter == stateIndexToEquivalenceClass.end())
    return {};
  auto iter2 = equivalenceClassValuesToState.find(iter->second);
  if (iter2 == equivalenceClassValuesToState.end())
    return {};
  return {{iter2->first, iter2->second}};
}

SILValue
RegionAnalysisValueMap::getRepresentative(Element trackableValueID) const {
  return getValueForId(trackableValueID)->getRepresentative().getValue();
}

SILValue
RegionAnalysisValueMap::maybeGetRepresentative(Element trackableValueID) const {
  return getValueForId(trackableValueID)->getRepresentative().maybeGetValue();
}

RepresentativeValue
RegionAnalysisValueMap::getRepresentativeValue(Element trackableValueID) const {
  return getValueForId(trackableValueID)->getRepresentative();
}

SILIsolationInfo
RegionAnalysisValueMap::getIsolationRegion(Element trackableValueID) const {
  auto iter = getValueForId(trackableValueID);
  if (!iter)
    return {};
  return iter->getValueState().getIsolationRegionInfo();
}

SILIsolationInfo
RegionAnalysisValueMap::getIsolationRegion(SILValue value) const {
  auto iter = equivalenceClassValuesToState.find(RepresentativeValue(value));
  if (iter == equivalenceClassValuesToState.end())
    return {};
  return iter->getSecond().getIsolationRegionInfo();
}

std::pair<TrackableValue, bool>
RegionAnalysisValueMap::initializeTrackableValue(
    SILValue value, SILIsolationInfo newInfo) const {
  auto info = getUnderlyingTrackedValue(value);
  value = info.value;

  auto *self = const_cast<RegionAnalysisValueMap *>(this);
  auto iter = self->equivalenceClassValuesToState.try_emplace(
      value, TrackableValueState(equivalenceClassValuesToState.size()));

  // If we did not insert, just return the already stored value.
  if (!iter.second) {
    return {{iter.first->first, iter.first->second}, false};
  }

  // If we did not insert, just return the already stored value.
  self->stateIndexToEquivalenceClass[iter.first->second.getID()] = value;

  // Before we do anything, see if we have a Sendable value.
  if (!SILIsolationInfo::isNonSendableType(value->getType(), fn)) {
    iter.first->getSecond().addFlag(TrackableValueFlag::isSendable);
    return {{iter.first->first, iter.first->second}, true};
  }

  // Otherwise, we have a non-Sendable type... so wire up the isolation.
  iter.first->getSecond().setIsolationRegionInfo(newInfo);

  return {{iter.first->first, iter.first->second}, true};
}

/// If \p isAddressCapturedByPartialApply is set to true, then this value is
/// an address that is captured by a partial_apply and we want to treat it as
/// may alias.
TrackableValue RegionAnalysisValueMap::getTrackableValue(
    SILValue value, bool isAddressCapturedByPartialApply) const {
  auto info = getUnderlyingTrackedValue(value);
  value = info.value;

  auto *self = const_cast<RegionAnalysisValueMap *>(this);
  auto iter = self->equivalenceClassValuesToState.try_emplace(
      value, TrackableValueState(equivalenceClassValuesToState.size()));

  // If we did not insert, just return the already stored value.
  if (!iter.second) {
    return {iter.first->first, iter.first->second};
  }

  // If we did not insert, just return the already stored value.
  self->stateIndexToEquivalenceClass[iter.first->second.getID()] = value;

  // Otherwise, we need to compute our flags.

  // Treat function ref and class method as either actor isolated or
  // sendable. Formally they are non-Sendable, so we do the check before we
  // check the oracle.
  if (isa<FunctionRefInst, ClassMethodInst>(value)) {
    if (auto isolation = SILIsolationInfo::get(value)) {
      iter.first->getSecond().setIsolationRegionInfo(isolation);
      return {iter.first->first, iter.first->second};
    }

    iter.first->getSecond().addFlag(TrackableValueFlag::isSendable);
    return {iter.first->first, iter.first->second};
  }

  // Then check our oracle to see if the value is actually sendable. If we have
  // a Sendable value, just return early.
  if (!SILIsolationInfo::isNonSendableType(value->getType(), fn)) {
    iter.first->getSecond().addFlag(TrackableValueFlag::isSendable);
    return {iter.first->first, iter.first->second};
  }

  // Ok, at this point we have a non-Sendable value. First process addresses.
  if (value->getType().isAddress()) {
    // If we were able to find this was actor isolated from finding our
    // underlying object, use that. It is never wrong.
    if (info.actorIsolation) {
      SILIsolationInfo isolation;
      if (info.value->getType().isAnyActor()) {
        isolation = SILIsolationInfo::getActorInstanceIsolated(
            value, info.value, info.actorIsolation->getActor());
      } else if (info.actorIsolation->isGlobalActor()) {
        isolation = SILIsolationInfo::getGlobalActorIsolated(
            value, info.actorIsolation->getGlobalActor());
      }

      if (isolation) {
        iter.first->getSecond().setIsolationRegionInfo(isolation);
      }
    }

    auto storage = AccessStorageWithBase::compute(value);
    if (storage.storage) {
      // Check if we have a uniquely identified address that was not captured
      // by a partial apply... in such a case, we treat it as no-alias.
      if (storage.storage.isUniquelyIdentified() &&
          !isAddressCapturedByPartialApply) {
        iter.first->getSecond().removeFlag(TrackableValueFlag::isMayAlias);
      }

      if (auto isolation = SILIsolationInfo::get(storage.base)) {
        iter.first->getSecond().setIsolationRegionInfo(isolation);
      }
    }
  }

  // Check if we have a load or load_borrow from an address. In that case, we
  // want to look through the load and find a better root from the address we
  // loaded from.
  if (isa<LoadInst, LoadBorrowInst>(iter.first->first.getValue())) {
    auto *svi = cast<SingleValueInstruction>(iter.first->first.getValue());

    // See if we can use get underlying tracked value to find if it is actor
    // isolated.
    //
    // TODO: Instead of using AccessStorageBase, just use our own visitor
    // everywhere. Just haven't done it due to possible perturbations.
    auto parentAddrInfo = getUnderlyingTrackedValue(svi);
    if (parentAddrInfo.actorIsolation) {
      iter.first->getSecond().setIsolationRegionInfo(
          SILIsolationInfo::getActorInstanceIsolated(
              svi, parentAddrInfo.value,
              parentAddrInfo.actorIsolation->getActor()));
    }

    auto storage = AccessStorageWithBase::compute(svi->getOperand(0));
    if (storage.storage) {
      if (auto isolation = SILIsolationInfo::get(storage.base)) {
        iter.first->getSecond().setIsolationRegionInfo(isolation);
      }
    }

    return {iter.first->first, iter.first->second};
  }

  // Ok, we have a non-Sendable type, see if we do not have any isolation
  // yet. If we don't, attempt to infer its isolation.
  if (!iter.first->getSecond().hasIsolationRegionInfo()) {
    if (auto isolation = SILIsolationInfo::get(iter.first->first.getValue())) {
      iter.first->getSecond().setIsolationRegionInfo(isolation);
      return {iter.first->first, iter.first->second};
    }
  }

  return {iter.first->first, iter.first->second};
}

std::optional<TrackableValue>
RegionAnalysisValueMap::getTrackableValueForActorIntroducingInst(
    SILInstruction *inst) const {
  auto *self = const_cast<RegionAnalysisValueMap *>(this);
  auto iter = self->equivalenceClassValuesToState.find(inst);
  if (iter == self->equivalenceClassValuesToState.end())
    return {};

  // Otherwise, we need to compute our flags.
  return {{iter->first, iter->second}};
}

std::optional<TrackableValue>
RegionAnalysisValueMap::tryToTrackValue(SILValue value) const {
  auto state = getTrackableValue(value);
  if (state.isNonSendable())
    return state;
  return {};
}

TrackableValue RegionAnalysisValueMap::getActorIntroducingRepresentative(
    SILInstruction *introducingInst, SILIsolationInfo actorIsolation) const {
  auto *self = const_cast<RegionAnalysisValueMap *>(this);
  auto iter = self->equivalenceClassValuesToState.try_emplace(
      introducingInst,
      TrackableValueState(equivalenceClassValuesToState.size()));

  // If we did not insert, just return the already stored value.
  if (!iter.second) {
    return {iter.first->first, iter.first->second};
  }

  // Otherwise, wire up the value.
  self->stateIndexToEquivalenceClass[iter.first->second.getID()] =
      introducingInst;
  iter.first->getSecond().setIsolationRegionInfo(actorIsolation);
  return {iter.first->first, iter.first->second};
}

bool RegionAnalysisValueMap::valueHasID(SILValue value, bool dumpIfHasNoID) {
  assert(getTrackableValue(value).isNonSendable() &&
         "Can only accept non-Sendable values");
  bool hasID = equivalenceClassValuesToState.count(value);
  if (!hasID && dumpIfHasNoID) {
    llvm::errs() << "FAILURE: valueHasID of ";
    value->print(llvm::errs());
    llvm::report_fatal_error("standard compiler error");
  }
  return hasID;
}

Element RegionAnalysisValueMap::lookupValueID(SILValue value) {
  auto state = getTrackableValue(value);
  assert(state.isNonSendable() &&
         "only non-Sendable values should be entered in the map");
  return state.getID();
}

void RegionAnalysisValueMap::print(llvm::raw_ostream &os) const {
#ifndef NDEBUG
  // Since this is just used for debug output, be inefficient to make nicer
  // output.
  std::vector<std::pair<unsigned, RepresentativeValue>> temp;
  for (auto p : stateIndexToEquivalenceClass) {
    temp.emplace_back(p.first, p.second);
  }
  std::sort(temp.begin(), temp.end());
  for (auto p : temp) {
    os << "%%" << p.first << ": ";
    auto value = getValueForId(Element(p.first));
    value->print(os);
  }
#endif
}

static SILValue getUnderlyingTrackedObjectValue(SILValue value) {
  auto *fn = value->getFunction();
  SILValue result = value;
  while (true) {
    SILValue temp = result;

    if (auto *svi = dyn_cast<SingleValueInstruction>(temp)) {
      if (isStaticallyLookThroughInst(svi)) {
        temp = svi->getOperand(0);
      }

      // If we have a cast and our operand and result are non-Sendable, treat it
      // as a look through.
      if (isLookThroughIfOperandAndResultNonSendable(svi)) {
        if (SILIsolationInfo::isNonSendableType(svi->getType(), fn) &&
            SILIsolationInfo::isNonSendableType(svi->getOperand(0)->getType(),
                                                fn)) {
          temp = svi->getOperand(0);
        }
      }

      if (isLookThroughIfResultNonSendable(svi)) {
        if (SILIsolationInfo::isNonSendableType(svi->getType(), fn)) {
          temp = svi->getOperand(0);
        }
      }

      if (isLookThroughIfOperandNonSendable(svi)) {
        // If our operand is a non-Sendable type, look through this instruction.
        if (SILIsolationInfo::isNonSendableType(svi->getOperand(0)->getType(),
                                                fn)) {
          temp = svi->getOperand(0);
        }
      }
    }

    if (auto *inst = temp->getDefiningInstruction()) {
      if (isStaticallyLookThroughInst(inst)) {
        temp = inst->getOperand(0);
      }
    }

    if (temp != result) {
      result = temp;
      continue;
    }

    return result;
  }
}

RegionAnalysisValueMap::UnderlyingTrackedValueInfo
RegionAnalysisValueMap::getUnderlyingTrackedValueHelper(SILValue value) const {
  // Before a check if the value we are attempting to access is Sendable. In
  // such a case, just return early.
  if (!SILIsolationInfo::isNonSendableType(value))
    return UnderlyingTrackedValueInfo(value);

  // Look through a project_box, so that we process it like its operand object.
  if (auto *pbi = dyn_cast<ProjectBoxInst>(value)) {
    value = pbi->getOperand();
  }

  if (!value->getType().isAddress()) {
    SILValue underlyingValue = getUnderlyingTrackedObjectValue(value);

    // If we do not have a load inst, just return the value.
    if (!isa<LoadInst, LoadBorrowInst>(underlyingValue)) {
      return UnderlyingTrackedValueInfo(underlyingValue);
    }

    // If we got an address, lets see if we can do even better by looking at the
    // address.
    value = cast<SingleValueInstruction>(underlyingValue)->getOperand(0);
  }
  assert(value->getType().isAddress());

  UseDefChainVisitor visitor;
  SILValue base = visitor.visitAll(value);
  assert(base);
  if (base->getType().isObject()) {
    // NOTE: We purposely recurse into the cached version of our computation
    // rather than recurse into getUnderlyingTrackedObjectValueHelper. This is
    // safe since we know that value was previously an address so if our base is
    // an object, it cannot be the same object.
    return {getUnderlyingTrackedValue(base).value, visitor.actorIsolation};
  }

  return {base, visitor.actorIsolation};
}

//===----------------------------------------------------------------------===//
//                            MARK: TrackableValue
//===----------------------------------------------------------------------===//

bool TrackableValue::isSendingParameter() const {
  // First get our alloc_stack.
  //
  // TODO: We should just put a flag on the alloc_stack, so we /know/ 100% that
  // it is from a consuming parameter. We don't have that so we pattern match.
  auto *asi =
      dyn_cast_or_null<AllocStackInst>(representativeValue.maybeGetValue());
  if (!asi)
    return false;

  if (asi->getParent() != asi->getFunction()->getEntryBlock())
    return false;

  // See if we are initialized from a 'sending' parameter and are the only
  // use of the parameter.
  OperandWorklist worklist(asi->getFunction());
  worklist.pushResultOperandsIfNotVisited(asi);

  while (auto *use = worklist.pop()) {
    auto *user = use->getUser();

    // Look through instructions that we don't care about.
    if (isa<MarkUnresolvedNonCopyableValueInst,
            MoveOnlyWrapperToCopyableAddrInst>(user)) {
      worklist.pushResultOperandsIfNotVisited(user);
    }

    if (auto *si = dyn_cast<StoreInst>(user)) {
      // Check if our store inst is from a 'sending' function argument and for
      // which the store is the only use of the function argument.
      auto *fArg = dyn_cast<SILFunctionArgument>(si->getSrc());
      if (!fArg || !fArg->isSending())
        return false;
      return fArg->getSingleUse();
    }

    if (auto *copyAddr = dyn_cast<CopyAddrInst>(user)) {
      // Check if our copy_addr is from a 'sending' function argument and for
      // which the copy_addr is the only use of the function argument.
      auto *fArg = dyn_cast<SILFunctionArgument>(copyAddr->getSrc());
      if (!fArg || !fArg->isSending())
        return false;
      return fArg->getSingleUse();
    }
  }

  // Otherwise, this isn't a consuming parameter.
  return false;
}

//===----------------------------------------------------------------------===//
//                      MARK: Partial Apply Reachability
//===----------------------------------------------------------------------===//

namespace {

/// We need to be able to know if instructions that extract sendable fields from
/// non-sendable addresses are reachable from a partial_apply that captures the
/// non-sendable value or its underlying object by reference. In such a case, we
/// need to require the value to not be sent when the extraction happens since
/// we could race on extracting the value.
///
/// The reason why we use a dataflow to do this is that:
///
/// 1. We do not want to recompute this for each individual instruction that
/// might be reachable from the partial apply.
///
/// 2. Just computing reachability early is a very easy way to do this.
struct PartialApplyReachabilityDataflow {
  RegionAnalysisValueMap &valueMap;
  PostOrderFunctionInfo *pofi;
  llvm::DenseMap<SILValue, unsigned> valueToBit;
  std::vector<std::pair<SILValue, SILInstruction *>> valueToGenInsts;

  struct BlockState {
    SmallBitVector entry;
    SmallBitVector exit;
    SmallBitVector gen;
    bool needsUpdate = true;
  };

  BasicBlockData<BlockState> blockData;
  bool propagatedReachability = false;

  PartialApplyReachabilityDataflow(SILFunction *fn,
                                   RegionAnalysisValueMap &valueMap,
                                   PostOrderFunctionInfo *pofi)
      : valueMap(valueMap), pofi(pofi), blockData(fn) {}

  /// Begin tracking an operand of a partial apply.
  void add(Operand *op);

  /// Once we have finished adding data to the data, propagate reachability.
  void propagateReachability();

  bool isReachable(SILValue value, SILInstruction *user) const;
  bool isReachable(Operand *op) const {
    return isReachable(op->get(), op->getUser());
  }

  bool isGenInstruction(SILValue value, SILInstruction *inst) const {
    assert(propagatedReachability && "Only valid once propagated reachability");
    auto iter =
        std::lower_bound(valueToGenInsts.begin(), valueToGenInsts.end(),
                         std::make_pair(value, nullptr),
                         [](const std::pair<SILValue, SILInstruction *> &p1,
                            const std::pair<SILValue, SILInstruction *> &p2) {
                           return p1 < p2;
                         });
    return iter != valueToGenInsts.end() && iter->first == value &&
           iter->second == inst;
  }

  void print(llvm::raw_ostream &os) const;

  SWIFT_DEBUG_DUMP { print(llvm::dbgs()); }

private:
  SILValue getRootValue(SILValue value) const {
    return valueMap.getRepresentative(value);
  }

  unsigned getBitForValue(SILValue value) const {
    unsigned size = valueToBit.size();
    auto &self = const_cast<PartialApplyReachabilityDataflow &>(*this);
    auto iter = self.valueToBit.try_emplace(value, size);
    return iter.first->second;
  }
};

} // namespace

void PartialApplyReachabilityDataflow::add(Operand *op) {
  assert(!propagatedReachability &&
         "Cannot add more operands once reachability is computed");
  SILValue underlyingValue = getRootValue(op->get());
  REGIONBASEDISOLATION_LOG(llvm::dbgs()
                           << "PartialApplyReachability::add.\nValue: "
                           << underlyingValue << "User: " << *op->getUser());

  unsigned bit = getBitForValue(underlyingValue);
  auto &state = blockData[op->getParentBlock()];
  state.gen.resize(bit + 1);
  state.gen.set(bit);
  valueToGenInsts.emplace_back(underlyingValue, op->getUser());
}

bool PartialApplyReachabilityDataflow::isReachable(SILValue value,
                                                   SILInstruction *user) const {
  assert(
      propagatedReachability &&
      "Can only check for reachability once reachability has been propagated");
  SILValue baseValue = getRootValue(value);
  auto iter = valueToBit.find(baseValue);
  // If we aren't tracking this value... just bail.
  if (iter == valueToBit.end())
    return false;
  unsigned bitNum = iter->second;
  auto &state = blockData[user->getParent()];

  // If we are reachable at entry, then we are done.
  if (state.entry.test(bitNum)) {
    return true;
  }

  // Otherwise, check if we are reachable at exit. If we are not, then we are
  // not reachable.
  if (!state.exit.test(bitNum)) {
    return false;
  }

  // We were not reachable at entry but are at our exit... walk the block and
  // see if our user is before a gen instruction.
  auto genStart = std::lower_bound(
      valueToGenInsts.begin(), valueToGenInsts.end(),
      std::make_pair(baseValue, nullptr),
      [](const std::pair<SILValue, SILInstruction *> &p1,
         const std::pair<SILValue, SILInstruction *> &p2) { return p1 < p2; });
  if (genStart == valueToGenInsts.end() || genStart->first != baseValue)
    return false;

  auto genEnd = genStart;
  while (genEnd != valueToGenInsts.end() && genEnd->first == baseValue)
    ++genEnd;

  // Walk forward from the beginning of the block to user. If we do not find a
  // gen instruction, then we know the gen occurs after the op.
  return llvm::any_of(
      user->getParent()->getRangeEndingAtInst(user), [&](SILInstruction &inst) {
        auto iter = std::lower_bound(
            genStart, genEnd, std::make_pair(baseValue, &inst),
            [](const std::pair<SILValue, SILInstruction *> &p1,
               const std::pair<SILValue, SILInstruction *> &p2) {
              return p1 < p2;
            });
        return iter != valueToGenInsts.end() && iter->first == baseValue &&
               iter->second == &inst;
      });
}

void PartialApplyReachabilityDataflow::propagateReachability() {
  assert(!propagatedReachability && "Cannot propagate reachability twice");
  propagatedReachability = true;

  // Now that we have finished initializing, resize all of our bitVectors to the
  // final number of bits.
  unsigned numBits = valueToBit.size();

  // If numBits is none, we have nothing to process.
  if (numBits == 0)
    return;

  for (auto iter : blockData) {
    iter.data.entry.resize(numBits);
    iter.data.exit.resize(numBits);
    iter.data.gen.resize(numBits);
    iter.data.needsUpdate = true;
  }

  // Freeze our value to gen insts map so we can perform in block checks.
  sortUnique(valueToGenInsts);

  // We perform a simple gen-kill dataflow with union. Since we are just
  // propagating reachability, there isn't any kill.
  bool anyNeedUpdate = true;
  SmallBitVector temp(numBits);
  blockData[&*blockData.getFunction()->begin()].needsUpdate = true;
  while (anyNeedUpdate) {
    anyNeedUpdate = false;

    for (auto *block : pofi->getReversePostOrder()) {
      auto &state = blockData[block];

      if (!state.needsUpdate) {
        continue;
      }

      state.needsUpdate = false;
      temp.reset();
      for (auto *predBlock : block->getPredecessorBlocks()) {
        auto &predState = blockData[predBlock];
        temp |= predState.exit;
      }

      state.entry = temp;

      temp |= state.gen;

      if (temp != state.exit) {
        state.exit = temp;
        for (auto *succBlock : block->getSuccessorBlocks()) {
          anyNeedUpdate = true;
          blockData[succBlock].needsUpdate = true;
        }
      }
    }
  }

  REGIONBASEDISOLATION_LOG(llvm::dbgs() << "Propagating Captures Result!\n";
                           print(llvm::dbgs()));
}

void PartialApplyReachabilityDataflow::print(llvm::raw_ostream &os) const {
  // This is only invoked for debugging purposes, so make nicer output.
  std::vector<std::pair<unsigned, SILValue>> data;
  for (auto [value, bitNo] : valueToBit) {
    data.emplace_back(bitNo, value);
  }
  std::sort(data.begin(), data.end());

  os << "(BitNo, Value):\n";
  for (auto [bitNo, value] : data) {
    os << "    " << bitNo << ": " << value;
  }

  os << "(Block,GenBits):\n";
  for (auto [block, state] : blockData) {
    os << "    bb" << block.getDebugID() << ".\n"
       << "        Entry: " << state.entry << '\n'
       << "        Gen: " << state.gen << '\n'
       << "        Exit: " << state.exit << '\n';
  }
}

//===----------------------------------------------------------------------===//
//                 MARK: Expr/Type Inference for Diagnostics
//===----------------------------------------------------------------------===//

namespace {

struct InferredCallerArgumentTypeInfo {
  Type baseInferredType;
  SmallVector<std::pair<Type, std::optional<ApplyIsolationCrossing>>, 4>
      applyUses;

  void init(const Operand *op);

  /// Init for an apply that does not have an associated apply expr.
  ///
  /// This should only occur when writing SIL test cases today. In the future,
  /// we may represent all of the actor isolation information at the SIL level,
  /// but we are not there yet today.
  void initForApply(ApplyIsolationCrossing isolationCrossing);

  void initForApply(const Operand *op, ApplyExpr *expr);
  void initForAutoclosure(const Operand *op, AutoClosureExpr *expr);

  Expr *getFoundExprForSelf(ApplyExpr *sourceApply) {
    if (auto callExpr = dyn_cast<CallExpr>(sourceApply))
      if (auto calledExpr =
              dyn_cast<DotSyntaxCallExpr>(callExpr->getDirectCallee()))
        return calledExpr->getBase();
    return nullptr;
  }

  Expr *getFoundExprForParam(ApplyExpr *sourceApply, unsigned argNum) {
    auto *expr = sourceApply->getArgs()->getExpr(argNum);

    // If we have an erasure expression, lets use the original type. We do
    // this since we are not saying the specific parameter that is the
    // issue and we are using the type to explain it to the user.
    if (auto *erasureExpr = dyn_cast<ErasureExpr>(expr))
      expr = erasureExpr->getSubExpr();

    return expr;
  }
};

} // namespace

void InferredCallerArgumentTypeInfo::initForApply(
    ApplyIsolationCrossing isolationCrossing) {
  applyUses.emplace_back(baseInferredType, isolationCrossing);
}

void InferredCallerArgumentTypeInfo::initForApply(const Operand *op,
                                                  ApplyExpr *sourceApply) {
  auto isolationCrossing = sourceApply->getIsolationCrossing();
  assert(isolationCrossing && "Should have valid isolation crossing?!");

  // Grab out full apply site and see if we can find a better expr.
  SILInstruction *i = const_cast<SILInstruction *>(op->getUser());
  auto fai = FullApplySite::isa(i);

  Expr *foundExpr = nullptr;

  // If we have self, then infer it.
  if (fai.hasSelfArgument() && op == &fai.getSelfArgumentOperand()) {
    foundExpr = getFoundExprForSelf(sourceApply);
  } else {
    // Otherwise, try to infer using the operand of the ApplyExpr.
    unsigned argNum = [&]() -> unsigned {
      if (fai.isCalleeOperand(*op))
        return op->getOperandNumber();
      return fai.getAppliedArgIndexWithoutIndirectResults(*op);
    }();

    // If something funny happened and we get an arg num that is larger than our
    // num args... just return nullptr so we emit an error using our initial
    // foundExpr.
    //
    // TODO: We should emit a "I don't understand error" so this gets reported
    // to us.
    if (argNum < sourceApply->getArgs()->size()) {
      foundExpr = getFoundExprForParam(sourceApply, argNum);
    }
  }

  auto inferredArgType =
      foundExpr ? foundExpr->findOriginalType() : baseInferredType;
  applyUses.emplace_back(inferredArgType, isolationCrossing);
}

namespace {

struct Walker : ASTWalker {
  InferredCallerArgumentTypeInfo &foundTypeInfo;
  ValueDecl *targetDecl;
  SmallPtrSet<Expr *, 8> visitedCallExprDeclRefExprs;

  Walker(InferredCallerArgumentTypeInfo &foundTypeInfo, ValueDecl *targetDecl)
      : foundTypeInfo(foundTypeInfo), targetDecl(targetDecl) {}

  Expr *lookThroughExpr(Expr *expr) {
    while (true) {
      if (auto *memberRefExpr = dyn_cast<MemberRefExpr>(expr)) {
        expr = memberRefExpr->getBase();
        continue;
      }

      if (auto *cvt = dyn_cast<ImplicitConversionExpr>(expr)) {
        expr = cvt->getSubExpr();
        continue;
      }

      if (auto *e = dyn_cast<ForceValueExpr>(expr)) {
        expr = e->getSubExpr();
        continue;
      }

      if (auto *t = dyn_cast<TupleElementExpr>(expr)) {
        expr = t->getBase();
        continue;
      }

      return expr;
    }
  }

  PreWalkResult<Expr *> walkToExprPre(Expr *expr) override {
    if (auto *declRef = dyn_cast<DeclRefExpr>(expr)) {
      // If this decl ref expr was not visited as part of a callExpr, add it as
      // something without isolation crossing.
      if (!visitedCallExprDeclRefExprs.count(declRef)) {
        if (declRef->getDecl() == targetDecl) {
          visitedCallExprDeclRefExprs.insert(declRef);
          foundTypeInfo.applyUses.emplace_back(declRef->findOriginalType(),
                                               std::nullopt);
          return Action::Continue(expr);
        }
      }
    }

    if (auto *callExpr = dyn_cast<CallExpr>(expr)) {
      if (auto isolationCrossing = callExpr->getIsolationCrossing()) {
        // Search callExpr's arguments to see if we have our targetDecl.
        auto *argList = callExpr->getArgs();
        for (auto pair : llvm::enumerate(argList->getArgExprs())) {
          auto *arg = lookThroughExpr(pair.value());
          if (auto *declRef = dyn_cast<DeclRefExpr>(arg)) {
            if (declRef->getDecl() == targetDecl) {
              // Found our target!
              visitedCallExprDeclRefExprs.insert(declRef);
              foundTypeInfo.applyUses.emplace_back(declRef->findOriginalType(),
                                                   isolationCrossing);
              return Action::Continue(expr);
            }
          }
        }
      }
    }

    return Action::Continue(expr);
  }
};

} // namespace

void InferredCallerArgumentTypeInfo::init(const Operand *op) {
  baseInferredType = op->get()->getType().getASTType();
  auto *nonConstOp = const_cast<Operand *>(op);

  auto loc = op->getUser()->getLoc();
  if (auto *sourceApply = loc.getAsASTNode<ApplyExpr>()) {
    return initForApply(op, sourceApply);
  }

  if (auto fas = FullApplySite::isa(nonConstOp->getUser())) {
    if (auto isolationCrossing = fas.getIsolationCrossing()) {
      return initForApply(*isolationCrossing);
    }
  }

  auto *autoClosureExpr = loc.getAsASTNode<AutoClosureExpr>();
  if (!autoClosureExpr) {
    llvm::report_fatal_error("Unknown node");
  }

  auto *i = const_cast<SILInstruction *>(op->getUser());
  auto pai = ApplySite::isa(i);
  unsigned captureIndex = pai.getAppliedArgIndex(*op);

  auto captureInfo =
      autoClosureExpr->getCaptureInfo().getCaptures()[captureIndex];
  auto *captureDecl = captureInfo.getDecl();
  Walker walker(*this, captureDecl);
  autoClosureExpr->walk(walker);
}

//===----------------------------------------------------------------------===//
//                       MARK: Instruction Level Model
//===----------------------------------------------------------------------===//

namespace {

constexpr StringLiteral SEP_STR = "╾──────────────────────────────╼\n";
constexpr StringLiteral PER_FUNCTION_SEP_STR =
    "╾++++++++++++++++++++++++++++++╼\n";

} // namespace

//===----------------------------------------------------------------------===//
//                          MARK: PartitionOpBuilder
//===----------------------------------------------------------------------===//

namespace {

struct PartitionOpBuilder {
  /// Parent translator that contains state.
  PartitionOpTranslator *translator;

  /// Used to statefully track the instruction currently being translated, for
  /// insertion into generated PartitionOps.
  SILInstruction *currentInst = nullptr;

  /// List of partition ops mapped to the current instruction. Used when
  /// generating partition ops.
  SmallVector<PartitionOp, 8> currentInstPartitionOps;

  void reset(SILInstruction *inst) {
    currentInst = inst;
    currentInstPartitionOps.clear();
  }

  Element lookupValueID(SILValue value);
  bool valueHasID(SILValue value, bool dumpIfHasNoID = false);

  Element getActorIntroducingRepresentative(SILIsolationInfo actorIsolation);

  void addAssignFresh(SILValue value) {
    std::array<Element, 1> values = {lookupValueID(value)};
    currentInstPartitionOps.emplace_back(
        PartitionOp::AssignFresh(values, currentInst));
  }

  void addAssignFresh(ArrayRef<SILValue> values) {
    auto transformedCollection = makeTransformRange(
        values, [&](SILValue value) { return lookupValueID(value); });
    currentInstPartitionOps.emplace_back(
        PartitionOp::AssignFresh(transformedCollection, currentInst));
  }

  void addAssign(SILValue destValue, Operand *srcOperand) {
    assert(valueHasID(srcOperand->get(), /*dumpIfHasNoID=*/true) &&
           "source value of assignment should already have been encountered");

    Element srcID = lookupValueID(srcOperand->get());
    if (lookupValueID(destValue) == srcID) {
      REGIONBASEDISOLATION_LOG(llvm::dbgs()
                               << "    Skipping assign since tgt and src have "
                                  "the same representative.\n");
      REGIONBASEDISOLATION_LOG(llvm::dbgs()
                               << "    Rep ID: %%" << srcID.num << ".\n");
      return;
    }

    currentInstPartitionOps.emplace_back(
        PartitionOp::Assign(lookupValueID(destValue),
                            lookupValueID(srcOperand->get()), srcOperand));
  }

  void addSend(SILValue representative, Operand *op) {
    assert(valueHasID(representative) &&
           "sent value should already have been encountered");

    currentInstPartitionOps.emplace_back(
        PartitionOp::Send(lookupValueID(representative), op));
  }

  void addUndoSend(SILValue representative, SILInstruction *unsendingInst) {
    assert(valueHasID(representative) &&
           "value should already have been encountered");

    currentInstPartitionOps.emplace_back(
        PartitionOp::UndoSend(lookupValueID(representative), unsendingInst));
  }

  void addMerge(SILValue destValue, Operand *srcOperand) {
    assert(valueHasID(destValue, /*dumpIfHasNoID=*/true) &&
           valueHasID(srcOperand->get(), /*dumpIfHasNoID=*/true) &&
           "merged values should already have been encountered");

    if (lookupValueID(destValue) == lookupValueID(srcOperand->get()))
      return;

    currentInstPartitionOps.emplace_back(
        PartitionOp::Merge(lookupValueID(destValue),
                           lookupValueID(srcOperand->get()), srcOperand));
  }

  /// Mark \p value artifically as being part of an actor isolated region by
  /// introducing a new fake actor introducing representative and merging them.
  void addActorIntroducingInst(SILValue sourceValue, Operand *sourceOperand,
                               SILIsolationInfo actorIsolation) {
    assert(valueHasID(sourceValue, /*dumpIfHasNoID=*/true) &&
           "merged values should already have been encountered");

    auto elt = getActorIntroducingRepresentative(actorIsolation);
    currentInstPartitionOps.emplace_back(
        PartitionOp::AssignFresh(elt, currentInst));
    currentInstPartitionOps.emplace_back(
        PartitionOp::Merge(lookupValueID(sourceValue), elt, sourceOperand));
  }

  void addRequire(SILValue value) {
    assert(valueHasID(value, /*dumpIfHasNoID=*/true) &&
           "required value should already have been encountered");
    currentInstPartitionOps.emplace_back(
        PartitionOp::Require(lookupValueID(value), currentInst));
  }

  void addInOutSendingAtFunctionExit(SILValue value) {
    assert(valueHasID(value, /*dumpIfHasNoID=*/true) &&
           "required value should already have been encountered");
    currentInstPartitionOps.emplace_back(
        PartitionOp::InOutSendingAtFunctionExit(lookupValueID(value),
                                                currentInst));
  }

  void addUnknownPatternError(SILValue value) {
    if (shouldAbortOnUnknownPatternMatchError()) {
      llvm::report_fatal_error(
          "RegionIsolation: Aborting on unknown pattern match error");
    }
    currentInstPartitionOps.emplace_back(
        PartitionOp::UnknownPatternError(lookupValueID(value), currentInst));
  }

  SWIFT_DEBUG_DUMP { print(llvm::dbgs()); }

  void print(llvm::raw_ostream &os) const;
};

} // namespace

//===----------------------------------------------------------------------===//
//                     MARK: Top Level Translator Struct
//===----------------------------------------------------------------------===//

namespace {

enum class TranslationSemantics {
  /// An instruction that does not affect region based state or if it does we
  /// would like to error on some other use. An example would be something
  /// like end_borrow, inject_enum_addr, or alloc_global. We do not produce
  /// any partition op.
  Ignored,

  /// An instruction whose result produces a completely new region. E.x.:
  /// alloc_box, alloc_pack, key_path. This results in the translator
  /// producing a partition op that introduces the new region.
  AssignFresh,

  /// An instruction that merges together all of its operands regions and
  /// assigns all of its results to be that new merged region. If the
  /// instruction does not have any non-Sendable operands, we produce a new
  /// singular region that all of the results are assigned to.
  ///
  /// From a partition op perspective, we emit require partition ops for each
  /// of the operands of the instruction, then merge the operand partition
  /// ops. If we do not have any non-Sendable operands, we then create an
  /// assign fresh op for the first result. If we do, we assign the first
  /// result to that merged region. Regardless of the case, we then assign all
  /// of the rest of the results to the region of the first operand.
  Assign,

  /// An instruction that getUnderlyingTrackedValue looks through and thus we
  /// look through from a region translation perspective. The result of this
  /// is we do not produce a new partition op and just assert that
  /// getUnderlyingTrackedValue can look through the instruction.
  LookThrough,

  /// Require that the region associated with a value not be consumed at this
  /// program point.
  Require,

  /// A "CopyLikeInstruction" with a Dest and Src operand value. If the store
  /// is considered to be to unaliased store (computed through a combination
  /// of AccessStorage's isUniquelyIdentified check and a custom search for
  /// captures by partial apply), then we treat this like an assignment of src
  /// to dest and emit assign partition ops. Otherwise, we emit merge
  /// partition ops so that we merge the old region of dest into the new src
  /// region. This ensures in the case of our value being captured by a
  /// closure, we do not lose that the closure could affect the memory
  /// location.
  Store,

  /// An instruction that is not handled in a standardized way. Examples:
  ///
  /// 1. Select insts.
  /// 2. Instructions without a constant way of being handled that change
  ///    their behavior depending on some state on the instruction itself.
  Special,

  /// An instruction that is a full apply site. Can cause sending or
  /// unsending of regions.
  Apply,

  /// A terminator instruction that acts like a phi in terms of its region.
  TerminatorPhi,

  /// An instruction that we should never see and if we do see, we should assert
  /// upon. This is generally used for non-Ownership SSA instructions and
  /// instructions that can only appear in Lowered SIL. Even if we should never
  /// see one of these instructions, we would still like to ensure that we
  /// handle every instruction to ensure we cover the IR.
  Asserting,

  /// An instruction that the checker thinks it can ignore as long as all of its
  /// operands are Sendable. If we see that such an instruction has a
  /// non-Sendable parameter, then someone added an instruction to the compiler
  /// without updating this code correctly. This is most likely driver error and
  /// should be caught in testing when we assert.
  AssertingIfNonSendable,

  /// Instructions that always unconditionally send all of their non-Sendable
  /// parameters and that do not have any results.
  SendingNoResult,
};

} // namespace

namespace llvm {

llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
                              TranslationSemantics semantics) {
  switch (semantics) {
  case TranslationSemantics::Ignored:
    os << "ignored";
    return os;
  case TranslationSemantics::AssignFresh:
    os << "assign_fresh";
    return os;
  case TranslationSemantics::Assign:
    os << "assign";
    return os;
  case TranslationSemantics::LookThrough:
    os << "look_through";
    return os;
  case TranslationSemantics::Require:
    os << "require";
    return os;
  case TranslationSemantics::Store:
    os << "store";
    return os;
  case TranslationSemantics::Special:
    os << "special";
    return os;
  case TranslationSemantics::Apply:
    os << "apply";
    return os;
  case TranslationSemantics::TerminatorPhi:
    os << "terminator_phi";
    return os;
  case TranslationSemantics::Asserting:
    os << "asserting";
    return os;
  case TranslationSemantics::AssertingIfNonSendable:
    os << "asserting_if_nonsendable";
    return os;
  case TranslationSemantics::SendingNoResult:
    os << "sending_no_result";
    return os;
  }

  llvm_unreachable("Covered switch isn't covered?!");
}

} // namespace llvm

namespace swift {
namespace regionanalysisimpl {

/// PartitionOpTranslator is responsible for performing the translation from
/// SILInstructions to PartitionOps. Not all SILInstructions have an effect on
/// the region partition, and some have multiple effects - such as an
/// application pairwise merging its arguments - so the core functions like
/// translateSILBasicBlock map SILInstructions to std::vectors of PartitionOps.
/// No more than a single instance of PartitionOpTranslator should be used for
/// each SILFunction, as SILValues are assigned unique IDs through the
/// nodeIDMap. Some special correspondences between SIL values are also tracked
/// statefully by instances of this class, such as the "projection"
/// relationship: instructions like begin_borrow and begin_access create
/// effectively temporary values used for alternative access to base "projected"
/// values. These are tracked to implement "write-through" semantics for
/// assignments to projections when they're addresses.
///
/// TODO: when translating basic blocks, optimizations might be possible
///       that reduce lists of PartitionOps to smaller, equivalent lists
class PartitionOpTranslator {
  friend PartitionOpBuilder;

  SILFunction *function;

  /// A cache of argument IDs.
  std::optional<Partition> functionArgPartition;

  /// A builder struct that we use to convert individual instructions into lists
  /// of PartitionOps.
  PartitionOpBuilder builder;

  PartialApplyReachabilityDataflow partialApplyReachabilityDataflow;

  RegionAnalysisValueMap &valueMap;

  void gatherFlowInsensitiveInformationBeforeDataflow() {
    REGIONBASEDISOLATION_LOG(llvm::dbgs()
                             << SEP_STR
                             << "Performing pre-dataflow scan to gather "
                                "flow insensitive information "
                             << function->getName() << ":\n"
                             << SEP_STR);

    for (auto &block : *function) {
      for (auto &inst : block) {
        if (auto *pai = dyn_cast<PartialApplyInst>(&inst)) {
          ApplySite applySite(pai);
          for (Operand &op : applySite.getArgumentOperands()) {
            // See if this operand is inout_aliasable or is passed as a box. In
            // such a case, we are passing by reference so we need to add it to
            // the reachability.
            if (applySite.getArgumentConvention(op) ==
                    SILArgumentConvention::Indirect_InoutAliasable ||
                op.get()->getType().is<SILBoxType>())
              partialApplyReachabilityDataflow.add(&op);

            // See if this instruction is a partial apply whose non-sendable
            // address operands we need to mark as captured_uniquely identified.
            //
            // If we find an address or a box of a non-Sendable type that is
            // passed to a partial_apply, mark the value's representative as
            // being uniquely identified and captured.
            SILValue val = op.get();
            if (val->getType().isAddress() &&
                isNonSendableType(val->getType())) {
              auto trackVal = getTrackableValue(val, true);
              (void)trackVal;
              REGIONBASEDISOLATION_LOG(trackVal.print(llvm::dbgs()));
              continue;
            }
            if (auto *pbi = dyn_cast<ProjectBoxInst>(val)) {
              if (isNonSendableType(pbi->getType())) {
                auto trackVal = getTrackableValue(val, true);
                (void)trackVal;
                continue;
              }
            }
          }
        }
      }
    }

    // Once we have finished processing all blocks, propagate reachability.
    partialApplyReachabilityDataflow.propagateReachability();
  }

public:
  PartitionOpTranslator(SILFunction *function, PostOrderFunctionInfo *pofi,
                        RegionAnalysisValueMap &valueMap,
                        IsolationHistory::Factory &historyFactory)
      : function(function), functionArgPartition(), builder(),
        partialApplyReachabilityDataflow(function, valueMap, pofi),
        valueMap(valueMap) {
    builder.translator = this;

    REGIONBASEDISOLATION_LOG(
        llvm::dbgs()
            << PER_FUNCTION_SEP_STR
            << "Beginning processing: " << function->getName() << '\n'
            << "Demangled: "
            << Demangle::demangleSymbolAsString(
                   function->getName(),
                   Demangle::DemangleOptions::SimplifiedUIDemangleOptions())
            << '\n'
            << PER_FUNCTION_SEP_STR << "Dump:\n";
        function->print(llvm::dbgs()));

    gatherFlowInsensitiveInformationBeforeDataflow();

    REGIONBASEDISOLATION_LOG(llvm::dbgs() << "Initializing Function Args:\n");
    auto functionArguments = function->getArguments();
    if (functionArguments.empty()) {
      REGIONBASEDISOLATION_LOG(llvm::dbgs() << "    None.\n");
      functionArgPartition = Partition::singleRegion(SILLocation::invalid(), {},
                                                     historyFactory.get());
      return;
    }

    llvm::SmallVector<Element, 8> nonSendableJoinedIndices;
    llvm::SmallVector<Element, 8> nonSendableSeparateIndices;
    for (SILArgument *arg : functionArguments) {
      // This will decide what the isolation region is.
      if (auto state = tryToTrackValue(arg)) {
        // If we can send our parameter, just add it to
        // nonSendableSeparateIndices.
        //
        // NOTE: We do not support today the ability to have multiple parameters
        // send together as part of the same region.
        if (canFunctionArgumentBeSent(cast<SILFunctionArgument>(arg))) {
          REGIONBASEDISOLATION_LOG(llvm::dbgs() << "    %%" << state->getID()
                                                << " (sending): " << *arg);
          nonSendableSeparateIndices.push_back(state->getID());
          continue;
        }

        // Otherwise, it is one of our merged parameters. Add it to the never
        // send list and to the region join list.
        REGIONBASEDISOLATION_LOG(
            llvm::dbgs() << "    %%" << state->getID() << ": ";
            state->print(llvm::dbgs()); llvm::dbgs() << *arg);
        nonSendableJoinedIndices.push_back(state->getID());
      } else {
        REGIONBASEDISOLATION_LOG(llvm::dbgs() << "    Sendable: " << *arg);
      }
    }

    functionArgPartition = Partition::singleRegion(
        SILLocation::invalid(), nonSendableJoinedIndices, historyFactory.get());
    for (Element elt : nonSendableSeparateIndices) {
      functionArgPartition->trackNewElement(elt);
    }
  }

  bool isClosureCaptured(SILValue value, SILInstruction *inst) const {
    return partialApplyReachabilityDataflow.isReachable(value, inst);
  }

  std::optional<TrackableValue> getValueForId(Element id) const {
    return valueMap.getValueForId(id);
  }

  RegionAnalysisValueMap &getValueMap() const { return valueMap; }

private:
  /// Check if the passed in type is NonSendable.
  ///
  /// NOTE: We special case RawPointer and NativeObject to ensure they are
  /// treated as non-Sendable and strict checking is applied to it.
  bool isNonSendableType(SILType type) const {
    return SILIsolationInfo::isNonSendableType(type, function);
  }

  TrackableValue
  getTrackableValue(SILValue value,
                    bool isAddressCapturedByPartialApply = false) {
    return valueMap.getTrackableValue(value, isAddressCapturedByPartialApply);
  }

  std::optional<TrackableValue> tryToTrackValue(SILValue value) const {
    return valueMap.tryToTrackValue(value);
  }

  /// If \p value already has state associated with it, return that. Otherwise
  /// begin tracking \p value and initialize its isolation info to be \p.
  ///
  /// This is in contrast to tryToTrackValue which infers isolation
  /// information. This should only be used in exceptional cases when one 100%
  /// knows what the isolation is already. E.x.: a partial_apply.
  std::optional<std::pair<TrackableValue, bool>>
  initializeTrackedValue(SILValue value, SILIsolationInfo info) const {
    auto trackedValuePair = valueMap.initializeTrackableValue(value, info);

    // If we have a Sendable value return none.
    if (!trackedValuePair.first.isNonSendable())
      return {};

    return trackedValuePair;
  }

  TrackableValue
  getActorIntroducingRepresentative(SILInstruction *introducingInst,
                                    SILIsolationInfo actorIsolation) const {
    return valueMap.getActorIntroducingRepresentative(introducingInst,
                                                      actorIsolation);
  }

  bool valueHasID(SILValue value, bool dumpIfHasNoID = false) {
    return valueMap.valueHasID(value, dumpIfHasNoID);
  }

  Element lookupValueID(SILValue value) {
    return valueMap.lookupValueID(value);
  }

public:
  /// Return the partition consisting of all function arguments.
  ///
  /// Used to initialize the entry blocko of our analysis.
  const Partition &getEntryPartition() const { return *functionArgPartition; }

  /// Get the results of an apply instruction.
  ///
  /// This is the single result value for most apply instructions, but for try
  /// apply it is the two arguments to each succ block.
  void getApplyResults(const SILInstruction *inst,
                       SmallVectorImpl<SILValue> &foundResults) {
    if (isa<ApplyInst, BeginApplyInst, BuiltinInst, PartialApplyInst>(inst)) {
      copy(inst->getResults(), std::back_inserter(foundResults));
      return;
    }

    if (auto tryApplyInst = dyn_cast<TryApplyInst>(inst)) {
      foundResults.emplace_back(tryApplyInst->getNormalBB()->getArgument(0));
      if (tryApplyInst->getErrorBB()->getNumArguments() > 0) {
        foundResults.emplace_back(tryApplyInst->getErrorBB()->getArgument(0));
      }
      return;
    }

    llvm::report_fatal_error("all apply instructions should be covered");
  }

  /// Require all non-sendable sources, merge their regions, and assign the
  /// resulting region to all non-sendable targets, or assign non-sendable
  /// targets to a fresh region if there are no non-sendable sources.
  ///
  /// \arg isolationInfo An isolation info that can be specified as the true
  /// base isolation of results. Otherwise, results are assumed to have a
  /// element isolation of disconnected. NOTE: The results will still be in the
  /// region of the non-Sendable arguments so at the region level they will have
  /// the same value.
  template <typename TargetRange, typename SourceRange>
  void
  translateSILMultiAssign(const TargetRange &resultValues,
                          const SourceRange &sourceValues,
                          SILIsolationInfo resultIsolationInfoOverride = {},
                          bool requireSrcValues = true) {
    SmallVector<std::pair<Operand *, SILValue>, 8> assignOperands;
    SmallVector<SILValue, 8> assignResults;

    // A helper we use to emit an unknown patten error if our merge is
    // invalid. This ensures we guarantee that if we find an actor merge error,
    // the compiler halts. Importantly this lets our users know 100% that if the
    // compiler exits successfully, actor merge errors could not have happened.
    std::optional<SILDynamicMergedIsolationInfo> mergedInfo;
    if (resultIsolationInfoOverride) {
      mergedInfo = SILDynamicMergedIsolationInfo(resultIsolationInfoOverride);
    } else {
      mergedInfo = SILDynamicMergedIsolationInfo::getDisconnected(false);
    }

    for (Operand *srcOperand : sourceValues) {
      auto src = srcOperand->get();
      if (auto value = tryToTrackValue(src)) {
        assignOperands.push_back(
            {srcOperand, value->getRepresentative().getValue()});
        auto originalMergedInfo = mergedInfo;
        (void)originalMergedInfo;
        if (mergedInfo)
          mergedInfo = mergedInfo->merge(value->getIsolationRegionInfo());

        // If we fail to merge, then we have an incompatibility in between some
        // of our arguments (consider isolated to different actors) or with the
        // isolationInfo we specified. Emit an unknown patten error.
        if (!mergedInfo) {
          REGIONBASEDISOLATION_LOG(
              llvm::dbgs() << "Merge Failure!\n"
                           << "Original Info: ";
              if (originalMergedInfo)
                  originalMergedInfo->printForDiagnostics(llvm::dbgs());
              else llvm::dbgs() << "nil";
              llvm::dbgs() << "\nValue Rep: "
                           << value->getRepresentative().getValue();
              llvm::dbgs() << "Original Src: " << src;
              llvm::dbgs() << "Value Info: ";
              value->getIsolationRegionInfo().printForDiagnostics(llvm::dbgs());
              llvm::dbgs() << "\n");
          builder.addUnknownPatternError(src);
          continue;
        }
      }
    }

    for (SILValue result : resultValues) {
      // If we had isolation info explicitly passed in... use our
      // resultIsolationInfoError. Otherwise, we want to infer.
      if (resultIsolationInfoOverride) {
        // We only get back result if it is non-Sendable.
        if (auto nonSendableValue =
                initializeTrackedValue(result, resultIsolationInfoOverride)) {
          // If we did not insert, emit an unknown patten error.
          if (!nonSendableValue->second) {
            builder.addUnknownPatternError(result);
          }
          assignResults.push_back(
              nonSendableValue->first.getRepresentative().getValue());
        }
      } else {
        if (auto value = tryToTrackValue(result)) {
          assignResults.push_back(value->getRepresentative().getValue());
        }
      }
    }

    // Require all srcs if we are supposed to. (By default we do).
    //
    // DISCUSSION: The reason that this may be useful is for special
    // instructions like store_borrow. On the one hand, we want store_borrow to
    // act like a store in the sense that we want to combine the regions of its
    // src and dest... but at the same time, we do not want to treat the store
    // itself as a use of its parent value. We want that to be any subsequent
    // uses of the store_borrow.
    if (requireSrcValues)
      for (auto src : assignOperands)
        builder.addRequire(src.second);

    // Merge all srcs.
    for (unsigned i = 1; i < assignOperands.size(); i++) {
      builder.addMerge(assignOperands[i - 1].second, assignOperands[i].first);
    }

    // If we do not have any non sendable results, return early.
    if (assignResults.empty()) {
      // If we did not have any non-Sendable results and we did have
      // non-Sendable operands and we are supposed to mark value as actor
      // derived, introduce a fake element so we just propagate the actor
      // region.
      //
      // NOTE: Here we check if we have resultIsolationInfoOverride rather than
      // isolationInfo since we want to do this regardless of whether or not we
      // passed in a specific isolation info unlike earlier when processing
      // actual results.
      if (assignOperands.size() && resultIsolationInfoOverride) {
        builder.addActorIntroducingInst(assignOperands.back().second,
                                        assignOperands.back().first,
                                        resultIsolationInfoOverride);
      }

      return;
    }

    // If we do not have any non-Sendable srcs, then all of our results get one
    // large fresh region.
    if (assignOperands.empty()) {
      builder.addAssignFresh(assignResults);
      return;
    }

    // Otherwise, we need to assign all of the results to be in the same region
    // as the operands. Without losing generality, we just use the first
    // non-Sendable one.
    for (auto result : assignResults) {
      builder.addAssign(result, assignOperands.front().first);
    }
  }

  /// Send the parameters of our partial_apply.
  ///
  /// Handling async let has three-four parts:
  ///
  /// %partial_apply = partial_apply()
  /// %reabstraction = maybe reabstraction thunk of partial_apply
  /// builtin "async let start"(%reabstraction | %partial_apply)
  /// call %asyncLetGet()
  ///
  /// We send the captured parameters of %partial_apply at the async let
  /// start and then unsend them at async let get.
  void translateAsyncLetStart(BuiltinInst *bi) {
    // Just track the result of the builtin inst as an assign fresh. We do this
    // so we properly track the partial_apply get. We already sent the
    // parameters.
    builder.addAssignFresh(bi);
  }

  /// For discussion on how we handle async let, please see the comment on
  /// translateAsyncLetStart.
  void translateAsyncLetGet(ApplyInst *ai) {
    // This looks through reabstraction thunks.
    auto source = findAsyncLetPartialApplyFromGet(ai);
    assert(source.has_value());

    // If we didn't find a partial_apply, then we must have had a
    // thin_to_thick_function meaning we did not capture anything.
    if (source->is<ThinToThickFunctionInst *>())
      return;

    // If our partial_apply was Sendable, then Sema should have checked that
    // none of our captures were non-Sendable and we should have emitted an
    // error earlier.
    assert(bool(source.value()) &&
           "AsyncLet Get should always have a derivable partial_apply");
    auto *pai = source->get<PartialApplyInst *>();
    if (pai->getFunctionType()->isSendable())
      return;

    ApplySite applySite(pai);
    // For each of our partial apply operands...
    for (auto pair : llvm::enumerate(applySite.getArgumentOperands())) {
      Operand &op = pair.value();

      // If we are tracking the value...
      if (auto trackedArgValue = tryToTrackValue(op.get())) {

        // Gather the isolation info from the AST for this operand...
        InferredCallerArgumentTypeInfo typeInfo;
        typeInfo.init(&op);

        // Then see if /any/ of our uses are passed to over a isolation boundary
        // that is actor isolated... if we find one continue so we do not undo
        // the send for that element.
        if (llvm::any_of(
                typeInfo.applyUses,
                [](const std::pair<Type, std::optional<ApplyIsolationCrossing>>
                       &data) {
                  // If we do not have an apply isolation crossing, we just use
                  // undefined crossing since that is considered nonisolated.
                  ApplyIsolationCrossing crossing;
                  return data.second.value_or(crossing)
                      .CalleeIsolation.isActorIsolated();
                }))
          continue;

        builder.addUndoSend(trackedArgValue->getRepresentative().getValue(),
                            ai);
      }
    }
  }

  void translateSILPartialApplyAsyncLetBegin(PartialApplyInst *pai) {
    REGIONBASEDISOLATION_LOG(llvm::dbgs()
                             << "Translating Async Let Begin Partial Apply!\n");
    // Grab our partial apply and send all of its non-sendable
    // parameters. We do not merge the parameters since each individual capture
    // of the async let at the program level is viewed as still being in
    // separate regions. Otherwise, we would need to error on the following
    // code:
    //
    // let x = NonSendable(), x2 = NonSendable()
    // async let y = sendToActor(x) + sendToNonIsolated(x2)
    // _ = await y
    // useValue(x2)
    for (auto &op : ApplySite(pai).getArgumentOperands()) {
      if (auto trackedArgValue = tryToTrackValue(op.get())) {
        builder.addRequire(trackedArgValue->getRepresentative().getValue());
        builder.addSend(trackedArgValue->getRepresentative().getValue(), &op);
      }
    }

    // Then mark our partial_apply result as being returned fresh.
    builder.addAssignFresh(pai);
  }

  /// Handles the semantics for SIL applies that cross isolation.
  ///
  /// Semantically this causes all arguments of the applysite to be sent.
  void translateIsolatedPartialApply(PartialApplyInst *pai,
                                     SILIsolationInfo actorIsolation) {
    ApplySite applySite(pai);
    REGIONBASEDISOLATION_LOG(llvm::dbgs()
                             << "Translating Isolated Partial Apply!\n");

    // For each argument operand.
    for (auto &op : applySite.getArgumentOperands()) {
      // See if we tracked it.
      if (auto value = tryToTrackValue(op.get())) {
        // If we are tracking it, sent it and if it is actor derived, mark
        // our partial apply as actor derived.
        builder.addRequire(value->getRepresentative().getValue());
        builder.addSend(value->getRepresentative().getValue(), &op);
      }
    }

    // Now that we have sent everything into the partial_apply, perform
    // an assign fresh for the partial_apply if it is non-Sendable. If we use
    // any of the sent values later, we will error, so it is safe to just
    // create a new value.
    if (pai->getFunctionType()->isSendable())
      return;

    auto trackedValue = initializeTrackedValue(pai, actorIsolation);
    assert(trackedValue && "Should not have happened already");
    assert(
        trackedValue->second &&
        "Insert should have happened since this could not happen before this");
    translateSILAssignFresh(trackedValue->first.getRepresentative().getValue());
  }

  void translateSILPartialApply(PartialApplyInst *pai) {
    // First check if our partial apply is Sendable and not global actor
    // isolated. In such a case, we will have emitted an earlier warning in Sema
    // and can return early. If we have a global actor isolated partial_apply,
    // we can be looser and can use region isolation since we know that the
    // Sendable closure will be executed serially due to the closure having to
    // run on the global actor queue meaning that we do not have to worry about
    // the Sendable closure being run concurrency.
    if (pai->getFunctionType()->isSendableType()) {
      auto isolationInfo = SILIsolationInfo::get(pai);
      if (!isolationInfo || !isolationInfo.hasActorIsolation() ||
          !isolationInfo.getActorIsolation().isGlobalActor())
        return;
    }

    // Then check if our partial_apply is fed into an async let begin. If so,
    // handle it especially.
    //
    // NOTE: If it is an async_let, then the closure itself will be Sendable. We
    // treat passing in a value into the async Sendable closure as sending
    // it into the closure.
    if (isAsyncLetBeginPartialApply(pai)) {
      return translateSILPartialApplyAsyncLetBegin(pai);
    }

    // See if we have a reabstraction thunk. In such a case, just do an assign.
    if (auto *calleeFn = pai->getCalleeFunction()) {
      if (calleeFn->isThunk() == IsReabstractionThunk) {
        return translateSILAssign(pai);
      }
    }

    if (auto isolationRegionInfo = SILIsolationInfo::get(pai)) {
      return translateIsolatedPartialApply(pai, isolationRegionInfo);
    }

    SmallVector<SILValue, 8> applyResults;
    getApplyResults(pai, applyResults);
    translateSILMultiAssign(applyResults,
                            makeOperandRefRange(pai->getAllOperands()));
  }

  void translateCreateAsyncTask(BuiltinInst *bi) {
    if (auto value = tryToTrackValue(bi->getOperand(1))) {
      builder.addRequire(value->getRepresentative().getValue());
      builder.addSend(value->getRepresentative().getValue(),
                      &bi->getAllOperands()[1]);
    }
  }

  void translateSILBuiltin(BuiltinInst *bi) {
    if (auto kind = bi->getBuiltinKind()) {
      if (kind == BuiltinValueKind::StartAsyncLetWithLocalBuffer) {
        return translateAsyncLetStart(bi);
      }

      if (kind == BuiltinValueKind::CreateAsyncTask) {
        return translateCreateAsyncTask(bi);
      }
    }

    // If we do not have a special builtin, just do a multi-assign. Builtins do
    // not cross async boundaries.
    return translateSILMultiAssign(bi->getResults(),
                                   makeOperandRefRange(bi->getAllOperands()));
  }

  void translateNonIsolationCrossingSILApply(FullApplySite fas) {
    // For non-self parameters, gather all of the sending parameters and
    // gather our non-sending parameters.
    SmallVector<Operand *, 8> nonSendingParameters;
    SmallVector<Operand *, 8> sendingIndirectResults;
    if (fas.getNumArguments()) {
      // NOTE: We want to process indirect parameters as if they are
      // parameters... so we process them in nonSendingParameters.
      for (auto &op : fas.getOperandsWithoutSelf()) {
        // If op is the callee operand, skip it.
        if (fas.isCalleeOperand(op))
          continue;

        if (fas.isSending(op)) {
          if (fas.isIndirectResultOperand(op)) {
            sendingIndirectResults.push_back(&op);
            continue;
          }

          if (auto value = tryToTrackValue(op.get())) {
            builder.addRequire(value->getRepresentative().getValue());
            builder.addSend(value->getRepresentative().getValue(), &op);
            continue;
          }
        } else {
          nonSendingParameters.push_back(&op);
        }
      }
    }

    // If our self parameter was sending, send it. Otherwise, just
    // stick it in the non self operand values array and run multiassign on
    // it.
    if (fas.hasSelfArgument()) {
      auto &selfOperand = fas.getSelfArgumentOperand();
      if (fas.getArgumentParameterInfo(selfOperand)
              .hasOption(SILParameterInfo::Sending)) {
        if (auto value = tryToTrackValue(selfOperand.get())) {
          builder.addRequire(value->getRepresentative().getValue());
          builder.addSend(value->getRepresentative().getValue(), &selfOperand);
        }
      } else {
        nonSendingParameters.push_back(&selfOperand);
      }
    }

    // Require our callee operand if it is non-Sendable.
    //
    // DISCUSSION: Even though we do not include our callee operand in the same
    // region as our operands/results, we still need to require that it is live
    // at the point of application. Otherwise, we will not emit errors if the
    // closure before this function application is already in the same region as
    // a sent value. In such a case, the function application must error.
    if (auto value = tryToTrackValue(fas.getCallee())) {
      builder.addRequire(value->getRepresentative().getValue());
    }

    SmallVector<SILValue, 8> applyResults;
    getApplyResults(*fas, applyResults);

    auto type = fas.getSubstCalleeSILType().castTo<SILFunctionType>();
    auto isolationInfo = SILIsolationInfo::get(*fas);

    // If our result is not a 'sending' result, just do the normal multi-assign.
    if (!type->hasSendingResult()) {
      return translateSILMultiAssign(applyResults, nonSendingParameters,
                                     isolationInfo);
    }

    // If our result is a 'sending' result, then pass in empty as our results,
    // no override isolation, then perform assign fresh.
    ArrayRef<SILValue> empty;
    translateSILMultiAssign(empty, nonSendingParameters, {});

    // Sending direct results.
    for (SILValue result : applyResults) {
      if (auto value = tryToTrackValue(result)) {
        builder.addAssignFresh(value->getRepresentative().getValue());
      }
    }

    // Sending indirect results.
    for (Operand *op : sendingIndirectResults) {
      if (auto value = tryToTrackValue(op->get())) {
        builder.addAssignFresh(value->getRepresentative().getValue());
      }
    }
  }

  void translateSILApply(SILInstruction *inst) {
    // Handles normal builtins and async let start.
    if (auto *bi = dyn_cast<BuiltinInst>(inst)) {
      return translateSILBuiltin(bi);
    }

    auto fas = FullApplySite::isa(inst);
    assert(bool(fas) && "Builtins should be handled above");

    // Handle async let get.
    if (auto *f = fas.getCalleeFunction()) {
      if (f->getName() == "swift_asyncLet_get") {
        return translateAsyncLetGet(cast<ApplyInst>(*fas));
      }
    }

    // If this apply does not cross isolation domains, it has normal
    // non-sending multi-assignment semantics
    if (!getApplyIsolationCrossing(*fas))
      return translateNonIsolationCrossingSILApply(fas);

    if (auto cast = dyn_cast<ApplyInst>(inst))
      return translateIsolationCrossingSILApply(cast);
    if (auto cast = dyn_cast<BeginApplyInst>(inst))
      return translateIsolationCrossingSILApply(cast);
    if (auto cast = dyn_cast<TryApplyInst>(inst)) {
      return translateIsolationCrossingSILApply(cast);
    }

    llvm_unreachable("Only ApplyInst, BeginApplyInst, and TryApplyInst should "
                     "cross isolation domains");
  }

  /// Handles the semantics for SIL applies that cross isolation.
  ///
  /// Semantically this causes all arguments of the applysite to be sent.
  void translateIsolationCrossingSILApply(FullApplySite applySite) {
    // Require all operands first before we emit a send.
    for (auto op : applySite.getArguments())
      if (auto value = tryToTrackValue(op))
        builder.addRequire(value->getRepresentative().getValue());

    auto handleSILOperands = [&](MutableArrayRef<Operand> operands) {
      for (auto &op : operands) {
        if (auto value = tryToTrackValue(op.get())) {
          builder.addSend(value->getRepresentative().getValue(), &op);
        }
      }
    };

    auto handleSILSelf = [&](Operand *self) {
      if (auto value = tryToTrackValue(self->get())) {
        builder.addSend(value->getRepresentative().getValue(), self);
      }
    };

    if (applySite.hasSelfArgument()) {
      handleSILOperands(applySite.getOperandsWithoutIndirectResultsOrSelf());
      handleSILSelf(&applySite.getSelfArgumentOperand());
    } else {
      handleSILOperands(applySite.getOperandsWithoutIndirectResults());
    }

    // non-sendable results can't be returned from cross-isolation calls without
    // a diagnostic emitted elsewhere. Here, give them a fresh value for better
    // diagnostics hereafter
    SmallVector<SILValue, 8> applyResults;
    getApplyResults(*applySite, applyResults);
    for (auto result : applyResults)
      if (auto value = tryToTrackValue(result))
        builder.addAssignFresh(value->getRepresentative().getValue());
  }

  template <typename DestValues>
  void translateSILLookThrough(DestValues destValues, SILValue src) {
    auto srcID = tryToTrackValue(src);

    for (SILValue dest : destValues) {
      auto destID = tryToTrackValue(dest);
      assert(((!destID || !srcID) || destID->getID() == srcID->getID()) &&
             "srcID and dstID are different?!");
    }
  }

  /// Add a look through operation. This asserts that dest and src map to the
  /// same ID. Should only be used on instructions that are always guaranteed to
  /// have this property due to getUnderlyingTrackedValue looking through them.
  ///
  /// DISCUSSION: We use this to ensure that the connection in between
  /// getUnderlyingTrackedValue and these instructions is enforced and
  /// explicit. Previously, we always called translateSILAssign and relied on
  /// the builder to recognize these cases and not create an assign
  /// PartitionOp. Doing such a thing obscures what is actually happening.
  template <>
  void translateSILLookThrough<SILValue>(SILValue dest, SILValue src) {
    auto srcID = tryToTrackValue(src);
    auto destID = tryToTrackValue(dest);
    assert(((!destID || !srcID) || destID->getID() == srcID->getID()) &&
           "srcID and dstID are different?!");
  }

  void translateSILLookThrough(SingleValueInstruction *svi) {
    assert(svi->getNumRealOperands() == 1);
    auto srcID = tryToTrackValue(svi->getOperand(0));
    auto destID = tryToTrackValue(svi);
    assert(((!destID || !srcID) || destID->getID() == srcID->getID()) &&
           "srcID and dstID are different?!");
  }

  template <typename Collection>
  void translateSILAssign(SILValue dest, Collection collection) {
    return translateSILMultiAssign(TinyPtrVector<SILValue>(dest), collection);
  }

  template <>
  void translateSILAssign<Operand *>(SILValue dest, Operand *srcOperand) {
    return translateSILAssign(dest, TinyPtrVector<Operand *>(srcOperand));
  }

  void translateSILAssign(SILInstruction *inst) {
    return translateSILMultiAssign(inst->getResults(),
                                   makeOperandRefRange(inst->getAllOperands()));
  }

  /// If the passed SILValue is NonSendable, then create a fresh region for it,
  /// otherwise do nothing.
  ///
  /// By default this is initialized with disconnected isolation info unless \p
  /// isolationInfo is set.
  void translateSILAssignFresh(SILValue val) {
    return translateSILMultiAssign(TinyPtrVector<SILValue>(val),
                                   TinyPtrVector<Operand *>());
  }

  void translateSILAssignFresh(SILValue val, SILIsolationInfo info) {
    auto v = initializeTrackedValue(val, info);
    if (!v)
      return translateSILAssignFresh(val);

    if (!v->second)
      return translateUnknownPatternError(val);

    return translateSILAssignFresh(v->first.getRepresentative().getValue());
  }

  template <typename Collection>
  void translateSILMerge(SILValue dest, Collection srcCollection,
                         bool requireOperands = true) {
    auto trackableDest = tryToTrackValue(dest);
    if (!trackableDest)
      return;
    for (Operand *op : srcCollection) {
      if (auto trackableSrc = tryToTrackValue(op->get())) {
        if (requireOperands) {
          builder.addRequire(trackableSrc->getRepresentative().getValue());
          builder.addRequire(trackableDest->getRepresentative().getValue());
        }
        builder.addMerge(trackableDest->getRepresentative().getValue(), op);
      }
    }
  }

  template <>
  void translateSILMerge<Operand *>(SILValue dest, Operand *src,
                                    bool requireOperands) {
    return translateSILMerge(dest, TinyPtrVector<Operand *>(src),
                             requireOperands);
  }

  void translateSILMerge(MutableArrayRef<Operand> array,
                         bool requireOperands = true) {
    if (array.size() < 2)
      return;

    auto trackableDest = tryToTrackValue(array.front().get());
    if (!trackableDest)
      return;
    for (Operand &op : array.drop_front()) {
      if (auto trackableSrc = tryToTrackValue(op.get())) {
        if (requireOperands) {
          builder.addRequire(trackableSrc->getRepresentative().getValue());
          builder.addRequire(trackableDest->getRepresentative().getValue());
        }
        builder.addMerge(trackableDest->getRepresentative().getValue(), &op);
      }
    }
  }

  void translateSILAssignmentToSendingParameter(TrackableValue destRoot,
                                                Operand *destOperand,
                                                TrackableValue srcRoot,
                                                Operand *srcOperand) {
    assert(isa<AllocStackInst>(destRoot.getRepresentative().getValue()) &&
           "Destination should always be an alloc_stack");

    // Send src. This ensures that we cannot use src again locally in this
    // function... which makes sense since its value is now in the 'sending'
    // parameter.
    builder.addRequire(srcRoot.getRepresentative().getValue());
    builder.addSend(srcRoot.getRepresentative().getValue(), srcOperand);

    // Then check if we are assigning into an aggregate projection. In such a
    // case, we want to ensure that we keep tracking the elements already in the
    // region of sending. This is more conservative than we need to be
    // (since we could forget anything reachable from the aggregate
    // field)... but being more conservative is ok.
    if (isProjectedFromAggregate(destOperand->get()))
      return;

    // If we are assigning over the entire value though, we perform an assign
    // fresh since we are guaranteed that any value that could be referenced via
    // the old value is gone.
    builder.addAssignFresh(destRoot.getRepresentative().getValue());
  }

  /// If \p dest is known to be unaliased (computed through a combination of
  /// AccessStorage's inUniquelyIdenfitied check and a custom search for
  /// captures by applications), then these can be treated as assignments of \p
  /// dest to src. If the \p dest could be aliased, then we must instead treat
  /// them as merges, to ensure any aliases of \p dest are also updated.
  void translateSILStore(Operand *dest, Operand *src) {
    SILValue destValue = dest->get();

    if (auto nonSendableDest = tryToTrackValue(destValue)) {
      // In the following situations, we can perform an assign:
      //
      // 1. A store to unaliased storage.
      // 2. A store that is to an entire value.
      //
      // DISCUSSION: If we have case 2, we need to merge the regions since we
      // are not overwriting the entire region of the value. This does mean that
      // we artificially include the previous region that was stored
      // specifically in this projection... but that is better than
      // miscompiling. For memory like this, we probably need to track it on a
      // per field basis to allow for us to assign.
      if (nonSendableDest.value().isNoAlias() &&
          !isProjectedFromAggregate(destValue))
        return translateSILAssign(destValue, src);

      // Stores to possibly aliased storage must be treated as merges.
      return translateSILMerge(destValue, src);
    }

    // Stores to storage of non-Sendable type can be ignored.
  }

  void translateSILTupleAddrConstructor(TupleAddrConstructorInst *inst) {
    SILValue dest = inst->getDest();
    if (auto nonSendableTgt = tryToTrackValue(dest)) {
      // In the following situations, we can perform an assign:
      //
      // 1. A store to unaliased storage.
      // 2. A store that is to an entire value.
      //
      // DISCUSSION: If we have case 2, we need to merge the regions since we
      // are not overwriting the entire region of the value. This does mean that
      // we artificially include the previous region that was stored
      // specifically in this projection... but that is better than
      // miscompiling. For memory like this, we probably need to track it on a
      // per field basis to allow for us to assign.
      if (nonSendableTgt.value().isNoAlias() && !isProjectedFromAggregate(dest))
        return translateSILAssign(
            dest, makeOperandRefRange(inst->getElementOperands()));

      // Stores to possibly aliased storage must be treated as merges.
      return translateSILMerge(dest,
                               makeOperandRefRange(inst->getElementOperands()));
    }

    // Stores to storage of non-Sendable type can be ignored.
  }

  void translateSILRequire(SILValue val) {
    if (auto nonSendableVal = tryToTrackValue(val))
      return builder.addRequire(nonSendableVal->getRepresentative().getValue());
  }

  /// An enum select is just a multi assign.
  void translateSILSelectEnum(SelectEnumOperation selectEnumInst) {
    SmallVector<Operand *, 8> enumOperands;
    for (unsigned i = 0; i < selectEnumInst.getNumCases(); i++)
      enumOperands.push_back(selectEnumInst.getCaseOperand(i).second);
    if (selectEnumInst.hasDefault())
      enumOperands.push_back(selectEnumInst.getDefaultResultOperand());
    return translateSILMultiAssign(
        TinyPtrVector<SILValue>(selectEnumInst->getResult(0)), enumOperands);
  }

  void translateSILSwitchEnum(SwitchEnumInst *switchEnumInst) {
    TermArgSources argSources;

    // accumulate each switch case that branches to a basic block with an arg
    for (unsigned i = 0; i < switchEnumInst->getNumCases(); i++) {
      SILBasicBlock *dest = switchEnumInst->getCase(i).second;
      if (dest->getNumArguments() > 0) {
        assert(dest->getNumArguments() == 1 &&
               "expected at most one bb arg in dest of enum switch");
        argSources.addValues({&switchEnumInst->getOperandRef()}, dest);
      }
    }

    translateSILPhi(argSources);
  }

  // translate a SIL instruction corresponding to possible branches with args
  // to one or more basic blocks. This is the SIL equivalent of SSA Phi nodes.
  // each element of `branches` corresponds to the arguments passed to a bb,
  // and a pointer to the bb being branches to itself.
  // this is handled as assigning to each possible arg being branched to the
  // merge of all values that could be passed to it from this basic block.
  void translateSILPhi(TermArgSources &argSources) {
    argSources.argSources.setFrozen();
    for (auto pair : argSources.argSources.getRange()) {
      translateSILMultiAssign(TinyPtrVector<SILValue>(pair.first), pair.second);
    }
  }

  /// Instructions that send all of their non-Sendable parameters
  /// unconditionally and that do not have a result.
  void translateSILSendingNoResult(MutableArrayRef<Operand> values) {
    for (auto &op : values) {
      if (auto ns = tryToTrackValue(op.get())) {
        builder.addRequire(ns->getRepresentative().getValue());
        builder.addSend(ns->getRepresentative().getValue(), &op);
      }
    }
  }

  /// Emit an unknown pattern error.
  void translateUnknownPatternError(SILValue value) {
    builder.addUnknownPatternError(value);
  }

  /// Translate the instruction's in \p basicBlock to a vector of PartitionOps
  /// that define the block's dataflow.
  void translateSILBasicBlock(SILBasicBlock *basicBlock,
                              std::vector<PartitionOp> &foundPartitionOps) {
    REGIONBASEDISOLATION_LOG(
        llvm::dbgs() << SEP_STR << "Compiling basic block for function "
                     << basicBlock->getFunction()->getName() << ": ";
        basicBlock->printID(llvm::dbgs()); llvm::dbgs() << SEP_STR;
        basicBlock->print(llvm::dbgs());
        llvm::dbgs() << SEP_STR << "Results:\n";);
    // Translate each SIL instruction to the PartitionOps that it represents if
    // any.
    for (auto &instruction : *basicBlock) {
      REGIONBASEDISOLATION_LOG(llvm::dbgs() << "Visiting: " << instruction);
      translateSILInstruction(&instruction);
      copy(builder.currentInstPartitionOps,
           std::back_inserter(foundPartitionOps));
    }
  }

#define INST(INST, PARENT) TranslationSemantics visit##INST(INST *inst);
#include "swift/SIL/SILNodes.def"

  /// Adds requires for all sending inout parameters to make sure that they are
  /// properly updated before the end of the function.
  void addEndOfFunctionChecksForInOutSendingParameters(TermInst *inst) {
    assert(inst->isFunctionExiting() && "Must be function exiting term inst?!");
    for (auto *arg : inst->getFunction()->getArguments()) {
      auto *fArg = cast<SILFunctionArgument>(arg);
      if (fArg->getArgumentConvention().isInoutConvention() &&
          fArg->getKnownParameterInfo().hasOption(SILParameterInfo::Sending)) {
        if (auto ns = tryToTrackValue(arg)) {
          auto rep = ns->getRepresentative().getValue();
          builder.addInOutSendingAtFunctionExit(rep);
        }
      }
    }
  }

  /// Top level switch that translates SIL instructions.
  void translateSILInstruction(SILInstruction *inst) {
    builder.reset(inst);
    SWIFT_DEFER { REGIONBASEDISOLATION_LOG(builder.print(llvm::dbgs())); };

    auto computeOpKind = [&]() -> TranslationSemantics {
      switch (inst->getKind()) {
#define INST(ID, PARENT)                                                       \
  case SILInstructionKind::ID:                                                 \
    return visit##ID(cast<ID>(inst));
#include "swift/SIL/SILNodes.def"
      }
    };

    auto kind = computeOpKind();
    REGIONBASEDISOLATION_LOG(llvm::dbgs() << "    Semantics: " << kind << '\n');
    switch (kind) {
    case TranslationSemantics::Ignored:
      return;

    case TranslationSemantics::AssignFresh:
      for (auto result : inst->getResults())
        translateSILAssignFresh(result);
      return;

    case TranslationSemantics::Assign:
      return translateSILMultiAssign(
          inst->getResults(), makeOperandRefRange(inst->getAllOperands()));

    case TranslationSemantics::Require:
      for (auto op : inst->getOperandValues())
        translateSILRequire(op);
      return;

    case TranslationSemantics::LookThrough:
      assert(inst->getNumRealOperands() == 1);
      assert((isStaticallyLookThroughInst(inst) ||
              isLookThroughIfResultNonSendable(inst) ||
              isLookThroughIfOperandNonSendable(inst) ||
              isLookThroughIfOperandAndResultNonSendable(inst)) &&
             "Out of sync... should return true for one of these categories!");
      return translateSILLookThrough(inst->getResults(), inst->getOperand(0));

    case TranslationSemantics::Store:
      return translateSILStore(
          &inst->getAllOperands()[CopyLikeInstruction::Dest],
          &inst->getAllOperands()[CopyLikeInstruction::Src]);

    case TranslationSemantics::Special:
      return;

    case TranslationSemantics::Apply:
      return translateSILApply(inst);

    case TranslationSemantics::TerminatorPhi: {
      TermArgSources sources;
      sources.init(inst);
      return translateSILPhi(sources);
    }

    case TranslationSemantics::Asserting:
      llvm::errs() << "BannedInst: " << *inst;
      llvm::report_fatal_error("send-non-sendable: Found banned instruction?!");
      return;

    case TranslationSemantics::AssertingIfNonSendable:
      // Do not error if all of our operands are sendable.
      if (llvm::none_of(inst->getOperandValues(), [&](SILValue value) {
            return ::SILIsolationInfo::isNonSendableType(value->getType(),
                                                         inst->getFunction());
          }))
        return;
      llvm::errs() << "BadInst: " << *inst;
      llvm::report_fatal_error(
          "send-non-sendable: Found instruction that is not allowed to "
          "have non-Sendable parameters with such parameters?!");
      return;
    case TranslationSemantics::SendingNoResult:
      return translateSILSendingNoResult(inst->getAllOperands());
    }
    llvm_unreachable("Covered switch isn't covered?!");
  }
};

} // namespace regionanalysisimpl
} // namespace swift

Element PartitionOpBuilder::lookupValueID(SILValue value) {
  return translator->lookupValueID(value);
}

Element PartitionOpBuilder::getActorIntroducingRepresentative(
    SILIsolationInfo actorIsolation) {
  return translator
      ->getActorIntroducingRepresentative(currentInst, actorIsolation)
      .getID();
}

bool PartitionOpBuilder::valueHasID(SILValue value, bool dumpIfHasNoID) {
  auto v = translator->valueMap.getTrackableValue(value);
  if (auto m = v.getRepresentative().maybeGetValue())
    return translator->valueHasID(m, dumpIfHasNoID);
  return true;
}

void PartitionOpBuilder::print(llvm::raw_ostream &os) const {
#ifndef NDEBUG
  // If we do not have anything to dump, just return.
  if (currentInstPartitionOps.empty())
    return;

  // First line.
  llvm::dbgs() << " ┌─┬─╼";
  currentInst->print(llvm::dbgs());

  // Second line.
  llvm::dbgs() << " │ └─╼  ";
  currentInst->getLoc().getSourceLoc().printLineAndColumn(
      llvm::dbgs(), currentInst->getFunction()->getASTContext().SourceMgr);

  auto ops = llvm::ArrayRef(currentInstPartitionOps);

  // First op on its own line.
  llvm::dbgs() << "\n ├─────╼ ";
  ops.front().print(llvm::dbgs());

  // Rest of ops each on their own line.
  for (const PartitionOp &op : ops.drop_front()) {
    llvm::dbgs() << " │    └╼ ";
    op.print(llvm::dbgs());
  }

  // Now print out a translation from region to equivalence class value.
  llvm::dbgs() << " └─────╼ Used Values\n";
  llvm::SmallVector<Element, 8> opsToPrint;
  SWIFT_DEFER { opsToPrint.clear(); };
  for (const PartitionOp &op : ops) {
    // Now dump our the root value we map.
    for (unsigned opArg : op.getOpArgs()) {
      // If we didn't insert, skip this. We only emit this once.
      opsToPrint.push_back(Element(opArg));
    }
  }
  sortUnique(opsToPrint);
  for (Element opArg : opsToPrint) {
    llvm::dbgs() << "          └╼ ";
    auto trackableValue = translator->getValueForId(opArg);
    assert(trackableValue);
    llvm::dbgs() << "State: %%" << opArg << ". ";
    trackableValue->getValueState().print(llvm::dbgs());
    llvm::dbgs() << "\n             Rep Value: "
                 << trackableValue->getRepresentative();
    if (auto value = trackableValue->getRepresentative().maybeGetValue()) {
      llvm::dbgs() << "             Type: " << value->getType() << '\n';
    }
  }
#endif
}

//===----------------------------------------------------------------------===//
//                 MARK: Translator - Instruction To Op Kind
//===----------------------------------------------------------------------===//

#ifdef CONSTANT_TRANSLATION
#error "CONSTANT_TRANSLATION already defined?!"
#endif

#define CONSTANT_TRANSLATION(INST, Kind)                                       \
  TranslationSemantics PartitionOpTranslator::visit##INST(INST *inst) {        \
    assert((TranslationSemantics::Kind != TranslationSemantics::LookThrough || \
            isStaticallyLookThroughInst(inst)) &&                              \
           "Out of sync?!");                                                   \
    assert((TranslationSemantics::Kind == TranslationSemantics::LookThrough || \
            !isStaticallyLookThroughInst(inst)) &&                             \
           "Out of sync?!");                                                   \
    return TranslationSemantics::Kind;                                         \
  }

//===---
// Assign Fresh
//

CONSTANT_TRANSLATION(AllocBoxInst, AssignFresh)
CONSTANT_TRANSLATION(AllocPackInst, AssignFresh)
CONSTANT_TRANSLATION(AllocRefDynamicInst, AssignFresh)
CONSTANT_TRANSLATION(AllocRefInst, AssignFresh)
CONSTANT_TRANSLATION(AllocVectorInst, AssignFresh)
CONSTANT_TRANSLATION(KeyPathInst, AssignFresh)
CONSTANT_TRANSLATION(FunctionRefInst, AssignFresh)
CONSTANT_TRANSLATION(DynamicFunctionRefInst, AssignFresh)
CONSTANT_TRANSLATION(PreviousDynamicFunctionRefInst, AssignFresh)
CONSTANT_TRANSLATION(GlobalAddrInst, AssignFresh)
CONSTANT_TRANSLATION(GlobalValueInst, AssignFresh)
CONSTANT_TRANSLATION(HasSymbolInst, AssignFresh)
CONSTANT_TRANSLATION(ObjCProtocolInst, AssignFresh)
CONSTANT_TRANSLATION(WitnessMethodInst, AssignFresh)
// TODO: These should always be sendable.
CONSTANT_TRANSLATION(IntegerLiteralInst, AssignFresh)
CONSTANT_TRANSLATION(FloatLiteralInst, AssignFresh)
CONSTANT_TRANSLATION(StringLiteralInst, AssignFresh)
// Metatypes are Sendable, but AnyObject isn't
CONSTANT_TRANSLATION(ObjCMetatypeToObjectInst, AssignFresh)
CONSTANT_TRANSLATION(ObjCExistentialMetatypeToObjectInst, AssignFresh)

//===---
// Assign
//

// These are instructions that we treat as true assigns since we want to
// error semantically upon them if there is a use of one of these. For
// example, a cast would be inappropriate here. This is implemented by
// propagating the operand's region into the result's region and by
// requiring all operands.
CONSTANT_TRANSLATION(LoadWeakInst, Assign)
CONSTANT_TRANSLATION(StrongCopyUnownedValueInst, Assign)
CONSTANT_TRANSLATION(ClassMethodInst, Assign)
CONSTANT_TRANSLATION(ObjCMethodInst, Assign)
CONSTANT_TRANSLATION(SuperMethodInst, Assign)
CONSTANT_TRANSLATION(ObjCSuperMethodInst, Assign)
CONSTANT_TRANSLATION(LoadUnownedInst, Assign)

// These instructions are in between look through and a true assign. We should
// probably eventually treat them as look through but we haven't done the work
// yet of validating that everything fits together in terms of
// getUnderlyingTrackedObject.
CONSTANT_TRANSLATION(AddressToPointerInst, Assign)
CONSTANT_TRANSLATION(BaseAddrForOffsetInst, Assign)
CONSTANT_TRANSLATION(ConvertEscapeToNoEscapeInst, Assign)
CONSTANT_TRANSLATION(ConvertFunctionInst, Assign)
CONSTANT_TRANSLATION(ThunkInst, Assign)
CONSTANT_TRANSLATION(CopyBlockInst, Assign)
CONSTANT_TRANSLATION(CopyBlockWithoutEscapingInst, Assign)
CONSTANT_TRANSLATION(IndexAddrInst, Assign)
CONSTANT_TRANSLATION(InitBlockStorageHeaderInst, Assign)
CONSTANT_TRANSLATION(InitExistentialAddrInst, Assign)
CONSTANT_TRANSLATION(InitExistentialRefInst, Assign)
CONSTANT_TRANSLATION(OpenExistentialBoxInst, Assign)
CONSTANT_TRANSLATION(OpenExistentialRefInst, Assign)
CONSTANT_TRANSLATION(TailAddrInst, Assign)
CONSTANT_TRANSLATION(ThickToObjCMetatypeInst, Assign)
CONSTANT_TRANSLATION(ThinToThickFunctionInst, Assign)
CONSTANT_TRANSLATION(UncheckedAddrCastInst, Assign)
CONSTANT_TRANSLATION(UncheckedEnumDataInst, Assign)
CONSTANT_TRANSLATION(UncheckedOwnershipConversionInst, Assign)
CONSTANT_TRANSLATION(IndexRawPointerInst, Assign)

// These are used by SIL to aggregate values together in a gep like way. We
// want to look at uses of structs, not the struct uses itself. So just
// propagate.
CONSTANT_TRANSLATION(ObjectInst, Assign)
CONSTANT_TRANSLATION(StructInst, Assign)
CONSTANT_TRANSLATION(TupleInst, Assign)

//===---
// Look Through
//

// Instructions that getUnderlyingTrackedValue is guaranteed to look through
// and whose operand and result are guaranteed to be mapped to the same
// underlying region.
CONSTANT_TRANSLATION(BeginAccessInst, LookThrough)
CONSTANT_TRANSLATION(BorrowedFromInst, LookThrough)
CONSTANT_TRANSLATION(BeginDeallocRefInst, LookThrough)
CONSTANT_TRANSLATION(BridgeObjectToRefInst, LookThrough)
CONSTANT_TRANSLATION(CopyValueInst, LookThrough)
CONSTANT_TRANSLATION(ExplicitCopyValueInst, LookThrough)
CONSTANT_TRANSLATION(EndCOWMutationInst, LookThrough)
CONSTANT_TRANSLATION(ProjectBoxInst, LookThrough)
CONSTANT_TRANSLATION(EndInitLetRefInst, LookThrough)
CONSTANT_TRANSLATION(InitEnumDataAddrInst, LookThrough)
CONSTANT_TRANSLATION(OpenExistentialAddrInst, LookThrough)
CONSTANT_TRANSLATION(UncheckedRefCastInst, LookThrough)
CONSTANT_TRANSLATION(UpcastInst, LookThrough)
CONSTANT_TRANSLATION(MarkUnresolvedNonCopyableValueInst, LookThrough)
CONSTANT_TRANSLATION(MarkUnresolvedReferenceBindingInst, LookThrough)
CONSTANT_TRANSLATION(CopyableToMoveOnlyWrapperValueInst, LookThrough)
CONSTANT_TRANSLATION(MoveOnlyWrapperToCopyableValueInst, LookThrough)
CONSTANT_TRANSLATION(MoveOnlyWrapperToCopyableBoxInst, LookThrough)
CONSTANT_TRANSLATION(MoveOnlyWrapperToCopyableAddrInst, LookThrough)
CONSTANT_TRANSLATION(CopyableToMoveOnlyWrapperAddrInst, LookThrough)
CONSTANT_TRANSLATION(MarkUninitializedInst, LookThrough)
// We identify destructured results with their operand's region.
CONSTANT_TRANSLATION(DestructureTupleInst, LookThrough)
CONSTANT_TRANSLATION(DestructureStructInst, LookThrough)
CONSTANT_TRANSLATION(ProjectBlockStorageInst, LookThrough)
CONSTANT_TRANSLATION(RefToUnownedInst, LookThrough)
CONSTANT_TRANSLATION(UnownedToRefInst, LookThrough)
CONSTANT_TRANSLATION(UnownedCopyValueInst, LookThrough)
CONSTANT_TRANSLATION(DropDeinitInst, LookThrough)
CONSTANT_TRANSLATION(ValueToBridgeObjectInst, LookThrough)
CONSTANT_TRANSLATION(BeginCOWMutationInst, LookThrough)
CONSTANT_TRANSLATION(OpenExistentialValueInst, LookThrough)
CONSTANT_TRANSLATION(WeakCopyValueInst, LookThrough)
CONSTANT_TRANSLATION(StrongCopyWeakValueInst, LookThrough)
CONSTANT_TRANSLATION(StrongCopyUnmanagedValueInst, LookThrough)
CONSTANT_TRANSLATION(RefToUnmanagedInst, LookThrough)
CONSTANT_TRANSLATION(UnmanagedToRefInst, LookThrough)
CONSTANT_TRANSLATION(InitExistentialValueInst, LookThrough)

//===---
// Store
//

// These are treated as stores - meaning that they could write values into
// memory. The beahvior of this depends on whether the tgt addr is aliased,
// but conservative behavior is to treat these as merges of the regions of
// the src value and tgt addr
CONSTANT_TRANSLATION(CopyAddrInst, Store)
CONSTANT_TRANSLATION(ExplicitCopyAddrInst, Store)
CONSTANT_TRANSLATION(StoreInst, Store)
CONSTANT_TRANSLATION(StoreWeakInst, Store)
CONSTANT_TRANSLATION(MarkUnresolvedMoveAddrInst, Store)
CONSTANT_TRANSLATION(UncheckedRefCastAddrInst, Store)
CONSTANT_TRANSLATION(UnconditionalCheckedCastAddrInst, Store)
CONSTANT_TRANSLATION(StoreUnownedInst, Store)

//===---
// Ignored
//

// These instructions are ignored because they cannot affect the region that a
// value is within or because even though they are technically a use we would
// rather emit an error on a better instruction.
CONSTANT_TRANSLATION(AllocGlobalInst, Ignored)
CONSTANT_TRANSLATION(AutoreleaseValueInst, Ignored)
CONSTANT_TRANSLATION(DeallocBoxInst, Ignored)
CONSTANT_TRANSLATION(DeallocPartialRefInst, Ignored)
CONSTANT_TRANSLATION(DeallocRefInst, Ignored)
CONSTANT_TRANSLATION(DeallocStackInst, Ignored)
CONSTANT_TRANSLATION(DeallocStackRefInst, Ignored)
CONSTANT_TRANSLATION(DebugValueInst, Ignored)
CONSTANT_TRANSLATION(DeinitExistentialAddrInst, Ignored)
CONSTANT_TRANSLATION(DeinitExistentialValueInst, Ignored)
CONSTANT_TRANSLATION(DestroyAddrInst, Ignored)
CONSTANT_TRANSLATION(DestroyValueInst, Ignored)
CONSTANT_TRANSLATION(EndAccessInst, Ignored)
CONSTANT_TRANSLATION(EndBorrowInst, Ignored)
CONSTANT_TRANSLATION(EndLifetimeInst, Ignored)
CONSTANT_TRANSLATION(ExtendLifetimeInst, Ignored)
CONSTANT_TRANSLATION(EndUnpairedAccessInst, Ignored)
CONSTANT_TRANSLATION(HopToExecutorInst, Ignored)
CONSTANT_TRANSLATION(InjectEnumAddrInst, Ignored)
CONSTANT_TRANSLATION(IsEscapingClosureInst, Ignored)
CONSTANT_TRANSLATION(MetatypeInst, Ignored)
CONSTANT_TRANSLATION(EndApplyInst, Ignored)
CONSTANT_TRANSLATION(AbortApplyInst, Ignored)
CONSTANT_TRANSLATION(DebugStepInst, Ignored)
CONSTANT_TRANSLATION(IncrementProfilerCounterInst, Ignored)
CONSTANT_TRANSLATION(SpecifyTestInst, Ignored)
CONSTANT_TRANSLATION(TypeValueInst, Ignored)

//===---
// Require
//

// Instructions that only require that the region of the value be live:
CONSTANT_TRANSLATION(FixLifetimeInst, Require)
CONSTANT_TRANSLATION(ClassifyBridgeObjectInst, Require)
CONSTANT_TRANSLATION(BridgeObjectToWordInst, Require)
CONSTANT_TRANSLATION(IsUniqueInst, Require)
CONSTANT_TRANSLATION(MarkFunctionEscapeInst, Require)
CONSTANT_TRANSLATION(UnmanagedRetainValueInst, Require)
CONSTANT_TRANSLATION(UnmanagedReleaseValueInst, Require)
CONSTANT_TRANSLATION(UnmanagedAutoreleaseValueInst, Require)
CONSTANT_TRANSLATION(RebindMemoryInst, Require)
CONSTANT_TRANSLATION(BindMemoryInst, Require)
CONSTANT_TRANSLATION(BeginUnpairedAccessInst, Require)
// Require of the value we extract the metatype from.
CONSTANT_TRANSLATION(ValueMetatypeInst, Require)
// Require of the value we extract the metatype from.
CONSTANT_TRANSLATION(ExistentialMetatypeInst, Require)
// These can take a parameter. If it is non-Sendable, use a require.
CONSTANT_TRANSLATION(GetAsyncContinuationAddrInst, Require)

//===---
// Asserting If Non Sendable Parameter
//

// Takes metatypes as parameters and metatypes today are always sendable.
CONSTANT_TRANSLATION(InitExistentialMetatypeInst, AssertingIfNonSendable)
CONSTANT_TRANSLATION(OpenExistentialMetatypeInst, AssertingIfNonSendable)
CONSTANT_TRANSLATION(ObjCToThickMetatypeInst, AssertingIfNonSendable)

//===---
// Terminators
//

// Ignored terminators.
CONSTANT_TRANSLATION(CondFailInst, Ignored)
// Switch value inst is ignored since we only switch over integers and
// function_ref/class_method which are considered sendable.
CONSTANT_TRANSLATION(SwitchValueInst, Ignored)
CONSTANT_TRANSLATION(UnreachableInst, Ignored)

// Terminators that only need require.
CONSTANT_TRANSLATION(SwitchEnumAddrInst, Require)
CONSTANT_TRANSLATION(YieldInst, Require)

// Terminators that act as phis.
CONSTANT_TRANSLATION(BranchInst, TerminatorPhi)
CONSTANT_TRANSLATION(CondBranchInst, TerminatorPhi)
CONSTANT_TRANSLATION(CheckedCastBranchInst, TerminatorPhi)
CONSTANT_TRANSLATION(DynamicMethodBranchInst, TerminatorPhi)

// Function exiting terminators.
//
// We handle these especially since we want to make sure that inout parameters
// that are sent are forced to be reinitialized.
//
// There is an assert in TermInst::isFunctionExiting that makes sure we do this
// correctly.
//
// NOTE: We purposely do not require reinitialization along paths that end in
// unreachable.
#ifdef FUNCTION_EXITING_TERMINATOR_TRANSLATION
#error "FUNCTION_EXITING_TERMINATOR_TRANSLATION already defined?!"
#endif

#define FUNCTION_EXITING_TERMINATOR_CONSTANT(INST, Kind)                       \
  TranslationSemantics PartitionOpTranslator::visit##INST(INST *inst) {        \
    assert(inst->isFunctionExiting() && "Must be function exiting?!");         \
    addEndOfFunctionChecksForInOutSendingParameters(inst);                     \
    return TranslationSemantics::Kind;                                         \
  }

FUNCTION_EXITING_TERMINATOR_CONSTANT(UnwindInst, Ignored)
FUNCTION_EXITING_TERMINATOR_CONSTANT(ThrowAddrInst, Ignored)
FUNCTION_EXITING_TERMINATOR_CONSTANT(ThrowInst, Require)

#undef FUNCTION_EXITING_TERMINATOR_CONSTANT

// Today, await_async_continuation just takes Sendable values
// (UnsafeContinuation and UnsafeThrowingContinuation).
CONSTANT_TRANSLATION(AwaitAsyncContinuationInst, AssertingIfNonSendable)
CONSTANT_TRANSLATION(GetAsyncContinuationInst, AssertingIfNonSendable)
CONSTANT_TRANSLATION(ExtractExecutorInst, AssertingIfNonSendable)
CONSTANT_TRANSLATION(FunctionExtractIsolationInst, Require)

//===---
// Existential Box
//

// NOTE: Today these can only be used with Errors. Since Error is a sub-protocol
// of Sendable, we actually do not have any way to truly test them. These are
// just hypothetical assignments so we are complete.
CONSTANT_TRANSLATION(AllocExistentialBoxInst, AssignFresh)
CONSTANT_TRANSLATION(ProjectExistentialBoxInst, Assign)
CONSTANT_TRANSLATION(OpenExistentialBoxValueInst, Assign)
CONSTANT_TRANSLATION(DeallocExistentialBoxInst, Ignored)

//===---
// Differentiable
//

CONSTANT_TRANSLATION(DifferentiabilityWitnessFunctionInst, AssignFresh)
CONSTANT_TRANSLATION(DifferentiableFunctionExtractInst, LookThrough)
CONSTANT_TRANSLATION(LinearFunctionExtractInst, LookThrough)
CONSTANT_TRANSLATION(LinearFunctionInst, Assign)
CONSTANT_TRANSLATION(DifferentiableFunctionInst, Assign)

//===---
// Packs
//

CONSTANT_TRANSLATION(DeallocPackInst, Ignored)
CONSTANT_TRANSLATION(DynamicPackIndexInst, Ignored)
CONSTANT_TRANSLATION(OpenPackElementInst, Ignored)
CONSTANT_TRANSLATION(PackLengthInst, Ignored)
CONSTANT_TRANSLATION(PackPackIndexInst, Ignored)
CONSTANT_TRANSLATION(ScalarPackIndexInst, Ignored)

//===---
// Apply
//

CONSTANT_TRANSLATION(ApplyInst, Apply)
CONSTANT_TRANSLATION(BeginApplyInst, Apply)
CONSTANT_TRANSLATION(BuiltinInst, Apply)
CONSTANT_TRANSLATION(TryApplyInst, Apply)

//===---
// Asserting
//

// Non-OSSA instructions that we should never see since we bail on non-OSSA
// functions early.
CONSTANT_TRANSLATION(ReleaseValueAddrInst, Asserting)
CONSTANT_TRANSLATION(ReleaseValueInst, Asserting)
CONSTANT_TRANSLATION(RetainValueAddrInst, Asserting)
CONSTANT_TRANSLATION(RetainValueInst, Asserting)
CONSTANT_TRANSLATION(StrongReleaseInst, Asserting)
CONSTANT_TRANSLATION(StrongRetainInst, Asserting)
CONSTANT_TRANSLATION(StrongRetainUnownedInst, Asserting)
CONSTANT_TRANSLATION(UnownedReleaseInst, Asserting)
CONSTANT_TRANSLATION(UnownedRetainInst, Asserting)

// Instructions only valid in lowered SIL. Please only add instructions here
// after adding an assert into the SILVerifier that this property is true.
CONSTANT_TRANSLATION(AllocPackMetadataInst, Asserting)
CONSTANT_TRANSLATION(DeallocPackMetadataInst, Asserting)

// All of these instructions should be removed by DI which runs before us in the
// pass pipeline.
CONSTANT_TRANSLATION(AssignInst, Asserting)
CONSTANT_TRANSLATION(AssignByWrapperInst, Asserting)
CONSTANT_TRANSLATION(AssignOrInitInst, Asserting)

// We should never hit this since it can only appear as a final instruction in a
// global variable static initializer list.
CONSTANT_TRANSLATION(VectorInst, Asserting)

#undef CONSTANT_TRANSLATION

#define IGNORE_IF_SENDABLE_RESULT_ASSIGN_OTHERWISE(INST)                       \
  TranslationSemantics PartitionOpTranslator::visit##INST(INST *inst) {        \
    return TranslationSemantics::Assign;                                       \
  }

IGNORE_IF_SENDABLE_RESULT_ASSIGN_OTHERWISE(TupleExtractInst)
IGNORE_IF_SENDABLE_RESULT_ASSIGN_OTHERWISE(StructExtractInst)

#undef IGNORE_IF_SENDABLE_RESULT_ASSIGN_OTHERWISE

#ifdef LOOKTHROUGH_IF_NONSENDABLE_RESULT_AND_OPERAND
#error "LOOKTHROUGH_IF_NONSENDABLE_RESULT_AND_OPERAND already defined"
#endif

#define LOOKTHROUGH_IF_NONSENDABLE_RESULT_AND_OPERAND(INST)                    \
                                                                               \
  TranslationSemantics PartitionOpTranslator::visit##INST(INST *cast) {        \
    assert(isLookThroughIfOperandAndResultNonSendable(cast) && "Out of sync"); \
    bool isOperandNonSendable =                                                \
        isNonSendableType(cast->getOperand()->getType());                      \
    bool isResultNonSendable = isNonSendableType(cast->getType());             \
                                                                               \
    if (isOperandNonSendable) {                                                \
      if (isResultNonSendable) {                                               \
        return TranslationSemantics::LookThrough;                              \
      }                                                                        \
                                                                               \
      return TranslationSemantics::Require;                                    \
    }                                                                          \
                                                                               \
    /* We always use assign fresh here regardless of whether or not a */       \
    /* type is sendable.                                              */       \
    /*                                                                */       \
    /* DISCUSSION: Since the typechecker is lazy, if there is a bug   */       \
    /* that causes us to not look up enough type information it is    */       \
    /* possible for a type to move from being Sendable to being       */       \
    /* non-Sendable. For example, we could call isNonSendableType and */       \
    /* get that the type is non-Sendable, but as a result of calling  */       \
    /* that API, the type checker could get more information that the */       \
    /* next time we call isNonSendableType, we will get that the type */       \
    /* is non-Sendable.                                               */       \
    return TranslationSemantics::AssignFresh;                                  \
  }

LOOKTHROUGH_IF_NONSENDABLE_RESULT_AND_OPERAND(UncheckedTrivialBitCastInst)
LOOKTHROUGH_IF_NONSENDABLE_RESULT_AND_OPERAND(UncheckedBitwiseCastInst)
LOOKTHROUGH_IF_NONSENDABLE_RESULT_AND_OPERAND(UncheckedValueCastInst)
LOOKTHROUGH_IF_NONSENDABLE_RESULT_AND_OPERAND(TupleElementAddrInst)
LOOKTHROUGH_IF_NONSENDABLE_RESULT_AND_OPERAND(StructElementAddrInst)
LOOKTHROUGH_IF_NONSENDABLE_RESULT_AND_OPERAND(UncheckedTakeEnumDataAddrInst)

#undef LOOKTHROUGH_IF_NONSENDABLE_RESULT_AND_OPERAND

//===---
// Custom Handling
//

TranslationSemantics
PartitionOpTranslator::visitStoreBorrowInst(StoreBorrowInst *sbi) {
  // A store_borrow is an interesting instruction since we are essentially
  // temporarily binding an object value to an address... so really any uses of
  // the address, we want to consider to be uses of the parent object. So we
  // basically put source/dest into the same region, but do not consider the
  // store_borrow itself to be a require use. This prevents the store_borrow
  // from causing incorrect diagnostics.
  SILValue destValue = sbi->getDest();

  auto nonSendableDest = tryToTrackValue(destValue);
  if (!nonSendableDest)
    return TranslationSemantics::Ignored;

  // In the following situations, we can perform an assign:
  //
  // 1. A store to unaliased storage.
  // 2. A store that is to an entire value.
  //
  // DISCUSSION: If we have case 2, we need to merge the regions since we
  // are not overwriting the entire region of the value. This does mean that
  // we artificially include the previous region that was stored
  // specifically in this projection... but that is better than
  // miscompiling. For memory like this, we probably need to track it on a
  // per field basis to allow for us to assign.
  if (nonSendableDest.value().isNoAlias() &&
      !isProjectedFromAggregate(destValue)) {
    translateSILMultiAssign(sbi->getResults(),
                            makeOperandRefRange(sbi->getAllOperands()),
                            SILIsolationInfo(), false /*require src*/);
  } else {
    // Stores to possibly aliased storage must be treated as merges.
    translateSILMerge(destValue, &sbi->getAllOperands()[StoreBorrowInst::Src],
                      false /*require src*/);
  }

  return TranslationSemantics::Special;
}

TranslationSemantics
PartitionOpTranslator::visitAllocStackInst(AllocStackInst *asi) {
  // Before we do anything, see if asi is Sendable or if it is non-Sendable,
  // that it is from a var decl. In both cases, we can just return assign fresh
  // and exit early.
  if (!SILIsolationInfo::isNonSendableType(asi) || asi->isFromVarDecl())
    return TranslationSemantics::AssignFresh;

  // Ok at this point we know that our value is a non-Sendable temporary.
  auto isolationInfo = SILIsolationInfo::get(asi);
  if (!bool(isolationInfo) || isolationInfo.isDisconnected()) {
    return TranslationSemantics::AssignFresh;
  }

  // Ok, we can handle this and have a valid isolation. Initialize the value.
  auto v = initializeTrackedValue(asi, isolationInfo);
  assert(v && "Only return none if we have a sendable value, but we checked "
              "that earlier!");

  // If we already had a value for this alloc_stack (which we shouldn't
  // ever)... emit an unknown pattern error.
  if (!v->second) {
    translateUnknownPatternError(asi);
    return TranslationSemantics::Special;
  }

  // NOTE: To prevent an additional reinitialization by the canned AssignFresh
  // code, we do our own assign fresh and return special.
  builder.addAssignFresh(v->first.getRepresentative().getValue());
  return TranslationSemantics::Special;
}

TranslationSemantics
PartitionOpTranslator::visitMoveValueInst(MoveValueInst *mvi) {
  if (mvi->isFromVarDecl())
    return TranslationSemantics::Assign;
  return TranslationSemantics::LookThrough;
}

TranslationSemantics
PartitionOpTranslator::visitBeginBorrowInst(BeginBorrowInst *bbi) {
  if (bbi->isFromVarDecl())
    return TranslationSemantics::Assign;
  return TranslationSemantics::LookThrough;
}

/// LoadInst is technically a statically look through instruction, but we want
/// to handle it especially in the infrastructure, so we cannot mark it as
/// such. This makes marking it as a normal lookthrough instruction impossible
/// since the routine checks that invariant.
TranslationSemantics PartitionOpTranslator::visitLoadInst(LoadInst *limvi) {
  return TranslationSemantics::Special;
}

/// LoadBorrowInst is technically a statically look through instruction, but we
/// want to handle it especially in the infrastructure, so we cannot mark it as
/// such. This makes marking it as a normal lookthrough instruction impossible
/// since the routine checks that invariant.
TranslationSemantics
PartitionOpTranslator::visitLoadBorrowInst(LoadBorrowInst *lbi) {
  return TranslationSemantics::Special;
}

TranslationSemantics PartitionOpTranslator::visitReturnInst(ReturnInst *ri) {
  addEndOfFunctionChecksForInOutSendingParameters(ri);
  if (ri->getFunction()->getLoweredFunctionType()->hasSendingResult()) {
    return TranslationSemantics::SendingNoResult;
  }
  return TranslationSemantics::Require;
}

TranslationSemantics
PartitionOpTranslator::visitRefToBridgeObjectInst(RefToBridgeObjectInst *r) {
  translateSILLookThrough(
      SILValue(r), r->getOperand(RefToBridgeObjectInst::ConvertedOperand));
  return TranslationSemantics::Special;
}

TranslationSemantics
PartitionOpTranslator::visitPackElementGetInst(PackElementGetInst *r) {
  if (!isNonSendableType(r->getType()))
    return TranslationSemantics::Require;
  translateSILAssign(SILValue(r), r->getPackOperand());
  return TranslationSemantics::Special;
}

TranslationSemantics PartitionOpTranslator::visitTuplePackElementAddrInst(
    TuplePackElementAddrInst *r) {
  if (!isNonSendableType(r->getType())) {
    translateSILRequire(r->getTuple());
  } else {
    translateSILAssign(SILValue(r), r->getTupleOperand());
  }
  return TranslationSemantics::Special;
}

TranslationSemantics
PartitionOpTranslator::visitTuplePackExtractInst(TuplePackExtractInst *r) {
  if (!isNonSendableType(r->getType())) {
    translateSILRequire(r->getTuple());
  } else {
    translateSILAssign(SILValue(r), r->getTupleOperand());
  }
  return TranslationSemantics::Special;
}

TranslationSemantics
PartitionOpTranslator::visitPackElementSetInst(PackElementSetInst *r) {
  // If the value we are storing is sendable, treat this as a require.
  if (!isNonSendableType(r->getValue()->getType())) {
    return TranslationSemantics::Require;
  }

  // Otherwise, this is a store.
  translateSILStore(r->getPackOperand(), r->getValueOperand());
  return TranslationSemantics::Special;
}

TranslationSemantics
PartitionOpTranslator::visitRawPointerToRefInst(RawPointerToRefInst *r) {
  assert(isLookThroughIfResultNonSendable(r) && "Out of sync");
  // If our result is non sendable, perform a look through.
  if (isNonSendableType(r->getType()))
    return TranslationSemantics::LookThrough;

  // Otherwise to be conservative, we need to treat this as a require.
  return TranslationSemantics::Require;
}

TranslationSemantics
PartitionOpTranslator::visitRefToRawPointerInst(RefToRawPointerInst *r) {
  assert(isLookThroughIfOperandNonSendable(r) && "Out of sync");

  // If our source ref is non sendable, perform a look through.
  if (isNonSendableType(r->getOperand()->getType()))
    return TranslationSemantics::LookThrough;

  // Otherwise to be conservative, we need to treat the raw pointer as a fresh
  // sendable value.
  return TranslationSemantics::AssignFresh;
}

TranslationSemantics
PartitionOpTranslator::visitMarkDependenceInst(MarkDependenceInst *mdi) {
  assert(isStaticallyLookThroughInst(mdi) && "Out of sync");
  translateSILLookThrough(mdi->getResults(), mdi->getValue());
  translateSILRequire(mdi->getBase());
  return TranslationSemantics::Special;
}

TranslationSemantics PartitionOpTranslator::visitMergeIsolationRegionInst(
    MergeIsolationRegionInst *mir) {
  // But we want to require and merge the base into the result.
  translateSILMerge(mir->getAllOperands(), true /*require operands*/);
  return TranslationSemantics::Special;
}

TranslationSemantics
PartitionOpTranslator::visitPointerToAddressInst(PointerToAddressInst *ptai) {
  if (!isNonSendableType(ptai->getType())) {
    return TranslationSemantics::Require;
  }
  return TranslationSemantics::Assign;
}

TranslationSemantics PartitionOpTranslator::visitUnconditionalCheckedCastInst(
    UnconditionalCheckedCastInst *ucci) {
  if (SILDynamicCastInst(ucci).isRCIdentityPreserving()) {
    assert(isStaticallyLookThroughInst(ucci) && "Out of sync");
    return TranslationSemantics::LookThrough;
  }

  assert(!isStaticallyLookThroughInst(ucci) && "Out of sync");
  return TranslationSemantics::Assign;
}

// RefElementAddrInst is not considered to be a lookThrough since we want to
// consider the address projected from the class to be a separate value that
// is in the same region as the parent operand. The reason that we want to
// do this is to ensure that if we assign into the ref_element_addr memory,
// we do not consider writes into the struct that contains the
// ref_element_addr to be merged into.
TranslationSemantics
PartitionOpTranslator::visitRefElementAddrInst(RefElementAddrInst *reai) {
  // If our field is a NonSendableType...
  if (!isNonSendableType(reai->getType())) {
    // And the field is a let... then ignore it. We know that we cannot race on
    // any writes to the field.
    if (reai->getField()->isLet()) {
      REGIONBASEDISOLATION_LOG(llvm::dbgs()
                               << "    Found a let! Not tracking!\n");
      return TranslationSemantics::Ignored;
    }

    // Otherwise, we need to treat the access to the field as a require since we
    // could have a race on assignment to the class.
    return TranslationSemantics::Require;
  }

  return TranslationSemantics::Assign;
}

TranslationSemantics
PartitionOpTranslator::visitRefTailAddrInst(RefTailAddrInst *reai) {
  // If our trailing type is Sendable...
  if (!isNonSendableType(reai->getType())) {
    // And our ref_tail_addr is immutable... we can ignore the access since we
    // cannot race against a write to any of these fields.
    if (reai->isImmutable()) {
      REGIONBASEDISOLATION_LOG(
          llvm::dbgs()
          << "    Found an immutable Sendable ref_tail_addr! Not tracking!\n");
      return TranslationSemantics::Ignored;
    }

    // Otherwise, we need a require since the value maybe alive.
    return TranslationSemantics::Require;
  }

  // If we have a NonSendable type, treat the address as a separate Element from
  // our base value.
  return TranslationSemantics::Assign;
}

/// Enum inst is handled specially since if it does not have an argument,
/// we must assign fresh. Otherwise, we must propagate.
TranslationSemantics PartitionOpTranslator::visitEnumInst(EnumInst *ei) {
  if (ei->getNumOperands() == 0)
    return TranslationSemantics::AssignFresh;
  return TranslationSemantics::Assign;
}

TranslationSemantics
PartitionOpTranslator::visitSelectEnumAddrInst(SelectEnumAddrInst *inst) {
  translateSILSelectEnum(inst);
  return TranslationSemantics::Special;
}

TranslationSemantics
PartitionOpTranslator::visitSelectEnumInst(SelectEnumInst *inst) {
  translateSILSelectEnum(inst);
  return TranslationSemantics::Special;
}

TranslationSemantics
PartitionOpTranslator::visitSwitchEnumInst(SwitchEnumInst *inst) {
  translateSILSwitchEnum(inst);
  return TranslationSemantics::Special;
}

TranslationSemantics PartitionOpTranslator::visitTupleAddrConstructorInst(
    TupleAddrConstructorInst *inst) {
  translateSILTupleAddrConstructor(inst);
  return TranslationSemantics::Special;
}

TranslationSemantics
PartitionOpTranslator::visitPartialApplyInst(PartialApplyInst *pai) {
  translateSILPartialApply(pai);
  return TranslationSemantics::Special;
}

TranslationSemantics PartitionOpTranslator::visitCheckedCastAddrBranchInst(
    CheckedCastAddrBranchInst *ccabi) {
  assert(ccabi->getSuccessBB()->getNumArguments() <= 1);

  // checked_cast_addr_br does not have any arguments in its resulting
  // block. We should just use a multi-assign on its operands.
  //
  // TODO: We should be smarter and treat the success/fail branches
  // differently depending on what the result of checked_cast_addr_br
  // is. For now just keep the current behavior. It is more conservative,
  // but still correct.
  translateSILMultiAssign(ArrayRef<SILValue>(),
                          makeOperandRefRange(ccabi->getAllOperands()));
  return TranslationSemantics::Special;
}

//===----------------------------------------------------------------------===//
//                          MARK: Block Level Model
//===----------------------------------------------------------------------===//

BlockPartitionState::BlockPartitionState(
    SILBasicBlock *basicBlock, PartitionOpTranslator &translator,
    SendingOperandSetFactory &ptrSetFactory,
    IsolationHistory::Factory &isolationHistoryFactory,
    SendingOperandToStateMap &sendingOpToStateMap)
    : entryPartition(isolationHistoryFactory.get()),
      exitPartition(isolationHistoryFactory.get()), basicBlock(basicBlock),
      ptrSetFactory(ptrSetFactory), sendingOpToStateMap(sendingOpToStateMap) {
  translator.translateSILBasicBlock(basicBlock, blockPartitionOps);
}

bool BlockPartitionState::recomputeExitFromEntry(
    PartitionOpTranslator &translator) {
  Partition workingPartition = entryPartition;

  struct ComputeEvaluator final
      : PartitionOpEvaluatorBaseImpl<ComputeEvaluator> {
    PartitionOpTranslator &translator;

    ComputeEvaluator(Partition &workingPartition,
                     SendingOperandSetFactory &ptrSetFactory,
                     PartitionOpTranslator &translator,
                     SendingOperandToStateMap &sendingOpToStateMap)
        : PartitionOpEvaluatorBaseImpl(workingPartition, ptrSetFactory,
                                       sendingOpToStateMap),
          translator(translator) {}

    SILIsolationInfo getIsolationRegionInfo(Element elt) const {
      return translator.getValueMap().getIsolationRegion(elt);
    }

    std::optional<Element> getElement(SILValue value) const {
      return translator.getValueMap().getTrackableValue(value).getID();
    }

    SILValue getRepresentative(SILValue value) const {
      return translator.getValueMap()
          .getTrackableValue(value)
          .getRepresentative()
          .maybeGetValue();
    }

    RepresentativeValue getRepresentativeValue(Element element) const {
      return translator.getValueMap().getRepresentativeValue(element);
    }

    bool isClosureCaptured(Element elt, Operand *op) const {
      auto iter = translator.getValueForId(elt);
      if (!iter)
        return false;
      auto value = iter->getRepresentative().maybeGetValue();
      if (!value)
        return false;
      return translator.isClosureCaptured(value, op->getUser());
    }
  };
  ComputeEvaluator eval(workingPartition, ptrSetFactory, translator,
                        sendingOpToStateMap);
  for (const auto &partitionOp : blockPartitionOps) {
    // By calling apply without providing any error handling callbacks, errors
    // will be surpressed.  will be suppressed
    eval.apply(partitionOp);
  }
  REGIONBASEDISOLATION_LOG(llvm::dbgs() << "    Working Partition: ";
                           workingPartition.print(llvm::dbgs()));
  bool exitUpdated = !Partition::equals(exitPartition, workingPartition);
  exitPartition = workingPartition;
  REGIONBASEDISOLATION_LOG(llvm::dbgs() << "    Exit Partition: ";
                           exitPartition.print(llvm::dbgs()));
  REGIONBASEDISOLATION_LOG(llvm::dbgs() << "    Updated Partition: "
                                        << (exitUpdated ? "yes\n" : "no\n"));
  return exitUpdated;
}

void BlockPartitionState::print(llvm::raw_ostream &os) const {
  os << SEP_STR << "BlockPartitionState[needsUpdate=" << needsUpdate
     << "]\nid: ";
  basicBlock->printID(os);
  os << "entry partition: ";
  entryPartition.print(os);
  os << "exit partition: ";
  exitPartition.print(os);
  os << "instructions:\n┌──────────╼\n";
  for (const auto &op : blockPartitionOps) {
    os << "│ ";
    op.print(os, true /*extra space*/);
  }
  os << "└──────────╼\nSuccs:\n";
  for (auto succ : basicBlock->getSuccessorBlocks()) {
    os << "→";
    succ->printID(os);
  }
  os << "Preds:\n";
  for (auto pred : basicBlock->getPredecessorBlocks()) {
    os << "←";
    pred->printID(os);
  }
  os << SEP_STR;
}

//===----------------------------------------------------------------------===//
//                         MARK: Dataflow Entrypoint
//===----------------------------------------------------------------------===//

static bool canComputeRegionsForFunction(SILFunction *fn) {
  if (!fn->getASTContext().LangOpts.hasFeature(Feature::RegionBasedIsolation))
    return false;

  assert(fn->getASTContext().LangOpts.StrictConcurrencyLevel ==
             StrictConcurrency::Complete &&
         "Need strict concurrency to be enabled for RegionBasedIsolation to be "
         "enabled as well");

  // If this function does not correspond to a syntactic declContext and it
  // doesn't have a parent module, don't check it since we cannot check if a
  // type is sendable.
  if (!fn->getDeclContext() && !fn->getParentModule()) {
    return false;
  }

  if (!fn->hasOwnership()) {
    REGIONBASEDISOLATION_LOG(llvm::dbgs()
                             << "Only runs on Ownership SSA, skipping!\n");
    return false;
  }

  // The sendable protocol should /always/ be available if SendNonSendable
  // is enabled. If not, there is a major bug in the compiler and we should
  // fail loudly.
  if (!fn->getASTContext().getProtocol(KnownProtocolKind::Sendable))
    return false;

  return true;
}

RegionAnalysisFunctionInfo::RegionAnalysisFunctionInfo(
    SILFunction *fn, PostOrderFunctionInfo *pofi)
    : allocator(), fn(fn), valueMap(fn), translator(), ptrSetFactory(allocator),
      isolationHistoryFactory(allocator),
      sendingOperandToStateMap(isolationHistoryFactory), blockStates(),
      pofi(pofi), solved(false), supportedFunction(true) {
  // Before we do anything, make sure that we support processing this function.
  //
  // NOTE: See documentation on supportedFunction for criteria.
  if (!canComputeRegionsForFunction(fn)) {
    supportedFunction = false;
    return;
  }

  translator = new (allocator)
      PartitionOpTranslator(fn, pofi, valueMap, isolationHistoryFactory);
  blockStates.emplace(fn, [this](SILBasicBlock *block) -> BlockPartitionState {
    return BlockPartitionState(block, *translator, ptrSetFactory,
                               isolationHistoryFactory,
                               sendingOperandToStateMap);
  });
  // Mark all blocks as needing to be updated.
  for (auto &block : *fn) {
    (*blockStates)[&block].needsUpdate = true;
  }
  // Set our entry partition to have the "entry partition".
  (*blockStates)[fn->getEntryBlock()].entryPartition =
      translator->getEntryPartition();
  runDataflow();
}

RegionAnalysisFunctionInfo::~RegionAnalysisFunctionInfo() {
  // If we had a non-supported function, we didn't create a translator, so we do
  // not need to tear anything down.
  if (!supportedFunction)
    return;

  // Tear down translator before we tear down the allocator.
  translator->~PartitionOpTranslator();
}

bool RegionAnalysisFunctionInfo::isClosureCaptured(SILValue value,
                                                   Operand *op) {
  assert(supportedFunction && "Unsupported Function?!");
  return translator->isClosureCaptured(value, op->getUser());
}

void RegionAnalysisFunctionInfo::runDataflow() {
  assert(!solved && "solve should only be called once");
  solved = true;

  REGIONBASEDISOLATION_LOG(llvm::dbgs() << SEP_STR << "Performing Dataflow!\n"
                                        << SEP_STR);
  REGIONBASEDISOLATION_LOG(llvm::dbgs() << "Values!\n";
                           translator->getValueMap().print(llvm::dbgs()));

  bool anyNeedUpdate = true;
  while (anyNeedUpdate) {
    anyNeedUpdate = false;

    for (auto *block : pofi->getReversePostOrder()) {
      auto &blockState = (*blockStates)[block];
      blockState.isLive = true;

      REGIONBASEDISOLATION_LOG(llvm::dbgs()
                               << "Block: bb" << block->getDebugID() << "\n");
      if (!blockState.needsUpdate) {
        REGIONBASEDISOLATION_LOG(llvm::dbgs()
                                 << "    Doesn't need update! Skipping!\n");
        continue;
      }

      // Mark this block as no longer needing an update.
      blockState.needsUpdate = false;

      // Compute the new entry partition to this block.
      Partition newEntryPartition = blockState.entryPartition;

      REGIONBASEDISOLATION_LOG(llvm::dbgs() << "    Visiting Preds!\n");

      // This loop computes the union of the exit partitions of all
      // predecessors of this block
      for (SILBasicBlock *predBlock : block->getPredecessorBlocks()) {
        BlockPartitionState &predState = (*blockStates)[predBlock];

        // Predecessors that have not been reached yet will have an empty pred
        // state... so just merge them all. Also our initial value of
        REGIONBASEDISOLATION_LOG(
            llvm::dbgs() << "    Pred. bb" << predBlock->getDebugID() << ": ";
            predState.exitPartition.print(llvm::dbgs()));
        newEntryPartition =
            Partition::join(newEntryPartition, predState.exitPartition);
      }

      // Update the entry partition. We need to still try to
      // recomputeExitFromEntry before we know if we made a difference to the
      // exit partition after applying the instructions of the block.
      blockState.entryPartition = newEntryPartition;

      // recompute this block's exit partition from its (updated) entry
      // partition, and if this changed the exit partition notify all
      // successor blocks that they need to update as well
      if (blockState.recomputeExitFromEntry(*translator)) {
        for (SILBasicBlock *succBlock : block->getSuccessorBlocks()) {
          anyNeedUpdate = true;
          (*blockStates)[succBlock].needsUpdate = true;
        }
      }
    }
  }
}

//===----------------------------------------------------------------------===//
//                              Main Entry Point
//===----------------------------------------------------------------------===//

void RegionAnalysis::initialize(SILPassManager *pm) {
  poa = pm->getAnalysis<PostOrderAnalysis>();
}

SILAnalysis *swift::createRegionAnalysis(SILModule *) {
  return new RegionAnalysis();
}