1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
|
//===--- OpenedExistentials.cpp - Utilities for existential types ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines common utilities for existential opening and some related
// things, such as the checks around covariant `Self` in class conformances.
//
//===----------------------------------------------------------------------===//
#include "OpenedExistentials.h"
#include "TypeChecker.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Types.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Assertions.h"
using namespace swift;
GenericParameterReferenceInfo &
GenericParameterReferenceInfo::operator|=(const GenericParameterReferenceInfo &other) {
hasCovariantSelfResult |= other.hasCovariantSelfResult;
if (other.selfRef > selfRef) {
selfRef = other.selfRef;
}
if (other.assocTypeRef > assocTypeRef) {
assocTypeRef = other.assocTypeRef;
}
return *this;
}
/// Forward declaration.
static GenericParameterReferenceInfo
findGenericParameterReferencesRec(CanGenericSignature,
GenericTypeParamType *,
GenericTypeParamType *,
Type, TypePosition, bool);
/// Determine whether a function type with the given result type may have
/// a covariant generic parameter type result. This is true if the result type
/// is either a function type, or a generic parameter, possibly wrapped in some
/// level of optionality.
static bool canResultTypeHaveCovariantGenericParameterResult(Type resultTy) {
if (resultTy->is<AnyFunctionType>())
return true;
resultTy = resultTy->lookThroughAllOptionalTypes();
return resultTy->is<GenericTypeParamType>();
}
/// Report references to the given generic parameter within the given function
/// type using the given generic signature.
///
/// \param position The current position in terms of variance.
/// \param skipParamIndex The index of the parameter that shall be skipped.
static GenericParameterReferenceInfo findGenericParameterReferencesInFunction(
CanGenericSignature genericSig,
GenericTypeParamType *origParam,
GenericTypeParamType *openedParam,
const AnyFunctionType *fnType, TypePosition position,
bool canBeCovariantResult, std::optional<unsigned> skipParamIndex) {
// If there are no type parameters, we're done.
if (!isa<GenericFunctionType>(fnType) && !fnType->hasTypeParameter())
return GenericParameterReferenceInfo();
auto inputInfo = GenericParameterReferenceInfo();
const auto params = fnType->getParams();
for (const auto paramIdx : indices(params)) {
// If this is the parameter we were supposed to skip, do so.
if (skipParamIndex && paramIdx == *skipParamIndex)
continue;
const auto ¶m = params[paramIdx];
// inout types are invariant.
if (param.isInOut()) {
inputInfo |= ::findGenericParameterReferencesRec(
genericSig, origParam, openedParam, param.getPlainType(),
TypePosition::Invariant, /*canBeCovariantResult=*/false);
continue;
}
// Parameters are contravariant, but if we're prior to the skipped
// parameter treat them as invariant because we're not allowed to
// reference the parameter at all.
TypePosition paramPos = position.flipped();
if (skipParamIndex && paramIdx < *skipParamIndex)
paramPos = TypePosition::Invariant;
inputInfo |= ::findGenericParameterReferencesRec(
genericSig, origParam, openedParam, param.getParameterType(), paramPos,
/*canBeCovariantResult=*/false);
}
canBeCovariantResult =
// &= does not short-circuit.
canBeCovariantResult &&
canResultTypeHaveCovariantGenericParameterResult(fnType->getResult());
const auto resultInfo = ::findGenericParameterReferencesRec(
genericSig, origParam, openedParam, fnType->getResult(),
position, canBeCovariantResult);
return inputInfo |= resultInfo;
}
/// Report references to the given generic parameter within the given type
/// using the given generic signature.
///
/// \param position The current position in terms of variance.
static GenericParameterReferenceInfo
findGenericParameterReferencesRec(CanGenericSignature genericSig,
GenericTypeParamType *origParam,
GenericTypeParamType *openedParam,
Type type,
TypePosition position,
bool canBeCovariantResult) {
// If there are no type parameters, we're done.
if (!type->getCanonicalType()->hasTypeParameter())
return GenericParameterReferenceInfo();
// Tuples preserve variance.
if (auto tuple = type->getAs<TupleType>()) {
auto info = GenericParameterReferenceInfo();
for (auto &elt : tuple->getElements()) {
info |= findGenericParameterReferencesRec(
genericSig, origParam, openedParam, elt.getType(), position,
/*canBeCovariantResult=*/false);
}
return info;
}
// Function types preserve variance in the result type, and flip variance in
// the parameter type.
if (auto funcTy = type->getAs<AnyFunctionType>()) {
return findGenericParameterReferencesInFunction(
genericSig, origParam, openedParam, funcTy,
position, canBeCovariantResult,
/*skipParamIndex=*/std::nullopt);
}
// Metatypes preserve variance.
if (auto metaTy = type->getAs<MetatypeType>()) {
return findGenericParameterReferencesRec(genericSig, origParam, openedParam,
metaTy->getInstanceType(),
position, canBeCovariantResult);
}
// Optionals preserve variance.
if (auto optType = type->getOptionalObjectType()) {
return findGenericParameterReferencesRec(
genericSig, origParam, openedParam, optType,
position, canBeCovariantResult);
}
// DynamicSelfType preserves variance.
if (auto selfType = type->getAs<DynamicSelfType>()) {
return findGenericParameterReferencesRec(genericSig, origParam, openedParam,
selfType->getSelfType(), position,
/*canBeCovariantResult=*/false);
}
if (auto *const nominal = type->getAs<NominalOrBoundGenericNominalType>()) {
auto info = GenericParameterReferenceInfo();
// Don't forget to look in the parent.
if (const auto parent = nominal->getParent()) {
info |= findGenericParameterReferencesRec(
genericSig, origParam, openedParam, parent, TypePosition::Invariant,
/*canBeCovariantResult=*/false);
}
// Most bound generic types are invariant.
if (auto *const bgt = type->getAs<BoundGenericType>()) {
if (bgt->isArray()) {
// Swift.Array preserves variance in its 'Value' type.
info |= findGenericParameterReferencesRec(
genericSig, origParam, openedParam, bgt->getGenericArgs().front(),
position, /*canBeCovariantResult=*/false);
} else if (bgt->isDictionary()) {
// Swift.Dictionary preserves variance in its 'Element' type.
info |= findGenericParameterReferencesRec(
genericSig, origParam, openedParam, bgt->getGenericArgs().front(),
TypePosition::Invariant, /*canBeCovariantResult=*/false);
info |= findGenericParameterReferencesRec(
genericSig, origParam, openedParam, bgt->getGenericArgs().back(),
position, /*canBeCovariantResult=*/false);
} else {
for (const auto ¶mType : bgt->getGenericArgs()) {
info |= findGenericParameterReferencesRec(
genericSig, origParam, openedParam, paramType,
TypePosition::Invariant, /*canBeCovariantResult=*/false);
}
}
}
return info;
}
// If the signature of an opaque result type has a same-type constraint
// that references Self, it's invariant.
if (auto opaque = type->getAs<OpaqueTypeArchetypeType>()) {
auto info = GenericParameterReferenceInfo();
auto opaqueSig = opaque->getDecl()->getOpaqueInterfaceGenericSignature();
for (const auto &req : opaqueSig.getRequirements()) {
switch (req.getKind()) {
case RequirementKind::SameShape:
llvm_unreachable("Same-shape requirement not supported here");
case RequirementKind::Conformance:
case RequirementKind::Layout:
continue;
case RequirementKind::SameType:
info |= findGenericParameterReferencesRec(
genericSig, origParam, openedParam, req.getFirstType(),
TypePosition::Invariant, /*canBeCovariantResult=*/false);
LLVM_FALLTHROUGH;
case RequirementKind::Superclass:
info |= findGenericParameterReferencesRec(
genericSig, origParam, openedParam, req.getSecondType(),
TypePosition::Invariant, /*canBeCovariantResult=*/false);
break;
}
}
return info;
}
if (auto *existential = type->getAs<ExistentialType>())
type = existential->getConstraintType();
// Protocol compositions are invariant.
if (auto *comp = type->getAs<ProtocolCompositionType>()) {
auto info = GenericParameterReferenceInfo();
for (auto member : comp->getMembers()) {
info |= findGenericParameterReferencesRec(
genericSig, origParam, openedParam, member,
TypePosition::Invariant, /*canBeCovariantResult=*/false);
}
return info;
}
// Packs are invariant.
if (auto *pack = type->getAs<PackType>()) {
auto info = GenericParameterReferenceInfo();
// FIXME: Source compatibility remedy to allow existential opening in
// the following case:
// ```
// protocol P {}
// struct S<each T> {}
// func foo<T: P>(_: T, _: S<T>? = nil) {}
// let p: any P
// foo(p)
// ```
//
// for (auto arg : pack->getElementTypes()) {
// info |= findGenericParameterReferencesRec(
// genericSig, origParam, openedParam, arg,
// TypePosition::Invariant, /*canBeCovariantResult=*/false);
// }
(void)pack;
return info;
}
// Pack expansions are invariant.
if (auto *expansion = type->getAs<PackExpansionType>()) {
return findGenericParameterReferencesRec(
genericSig, origParam, openedParam, expansion->getPatternType(),
TypePosition::Invariant, /*canBeCovariantResult=*/false);
}
// Specifically ignore parameterized protocols and existential
// metatypes because we can erase them to the upper bound.
if (type->is<ParameterizedProtocolType>() ||
type->is<ExistentialMetatypeType>()) {
return GenericParameterReferenceInfo();
}
// Everything else should be a type parameter.
if (!type->isTypeParameter()) {
llvm::errs() << "Unhandled type:\n";
type->dump(llvm::errs());
abort();
}
if (!type->getRootGenericParam()->isEqual(origParam)) {
return GenericParameterReferenceInfo();
}
// A direct reference to 'Self'.
if (type->is<GenericTypeParamType>()) {
if (position == TypePosition::Covariant && canBeCovariantResult)
return GenericParameterReferenceInfo::forCovariantResult();
return GenericParameterReferenceInfo::forSelfRef(position);
}
if (origParam != openedParam) {
// Replace the original parameter with the parameter in the opened
// signature.
type = type.subst(
[&](SubstitutableType *type) {
ASSERT(type->isEqual(origParam));
return openedParam;
},
MakeAbstractConformanceForGenericType());
}
if (genericSig) {
// If the type parameter is beyond the domain of the opened
// signature, ignore it.
if (!genericSig->isValidTypeParameter(type)) {
return GenericParameterReferenceInfo();
}
if (auto reducedTy = genericSig.getReducedType(type)) {
if (!reducedTy->isEqual(type)) {
// Note: origParam becomes openedParam for the recursive call,
// because concreteTy is written in terms of genericSig and not
// the signature of the old origParam.
return findGenericParameterReferencesRec(
CanGenericSignature(), openedParam, openedParam, reducedTy,
position, canBeCovariantResult);
}
}
}
// A reference to an associated type rooted on 'Self'.
return GenericParameterReferenceInfo::forAssocTypeRef(position);
}
GenericParameterReferenceInfo
swift::findGenericParameterReferences(const ValueDecl *value,
CanGenericSignature sig,
GenericTypeParamType *origParam,
GenericTypeParamType *openedParam,
std::optional<unsigned> skipParamIndex) {
if (isa<TypeDecl>(value))
return GenericParameterReferenceInfo();
auto type = value->getInterfaceType();
// Skip invalid declarations.
if (type->hasError())
return GenericParameterReferenceInfo();
// For functions and subscripts, take skipParamIndex into account.
if (isa<AbstractFunctionDecl>(value) || isa<SubscriptDecl>(value)) {
// And for a method, skip the 'self' parameter.
if (value->hasCurriedSelf())
type = type->castTo<AnyFunctionType>()->getResult();
return ::findGenericParameterReferencesInFunction(
sig, origParam, openedParam, type->castTo<AnyFunctionType>(),
TypePosition::Covariant, /*canBeCovariantResult=*/true,
skipParamIndex);
}
return ::findGenericParameterReferencesRec(sig, origParam, openedParam, type,
TypePosition::Covariant,
/*canBeCovariantResult=*/true);
}
GenericParameterReferenceInfo swift::findExistentialSelfReferences(
const ValueDecl *value) {
auto *dc = value->getDeclContext();
ASSERT(dc->getSelfProtocolDecl());
auto sig = dc->getGenericSignatureOfContext().getCanonicalSignature();
auto genericParam = dc->getSelfInterfaceType()->castTo<GenericTypeParamType>();
return findGenericParameterReferences(value, sig, genericParam, genericParam,
std::nullopt);
}
bool HasSelfOrAssociatedTypeRequirementsRequest::evaluate(
Evaluator &evaluator, ProtocolDecl *decl) const {
// ObjC protocols do not require `any`.
if (decl->isObjC())
return false;
for (auto member : decl->getMembers()) {
// Existential types require `any` if the protocol has an associated type.
if (isa<AssociatedTypeDecl>(member))
return true;
// For value members, look at their type signatures.
if (auto valueMember = dyn_cast<ValueDecl>(member)) {
const auto info = findExistentialSelfReferences(valueMember);
if (info.selfRef > TypePosition::Covariant || info.assocTypeRef) {
return true;
}
}
}
// Check whether any of the inherited protocols require `any`.
for (auto proto : decl->getInheritedProtocols()) {
if (proto->hasSelfOrAssociatedTypeRequirements())
return true;
}
return false;
}
/// A protocol member accessed with an existential value might have generic
/// constraints that require the ability to spell an opened archetype in order
/// to be satisfied. Such are
/// - superclass requirements, when the object is a non-'Self'-rooted type
/// parameter, and the subject is dependent on 'Self', e.g. U : G<Self.A>
/// - same-type requirements, when one side is dependent on 'Self', and the
/// other is a non-'Self'-rooted type parameter, e.g. U.Element == Self.
///
/// Because opened archetypes are not part of the surface language, these
/// constraints render the member inaccessible.
static bool doesMemberHaveUnfulfillableConstraintsWithExistentialBase(
OpenedExistentialSignature existentialSig, const ValueDecl *member) {
const auto sig =
member->getInnermostDeclContext()->getGenericSignatureOfContext();
// Fast path: the member is generic only over 'Self'.
if (sig.getGenericParams().size() == 1) {
return false;
}
class IsDependentOnOpenedExistentialSelf : public TypeWalker {
OpenedExistentialSignature existentialSig;
public:
explicit IsDependentOnOpenedExistentialSelf(OpenedExistentialSignature existentialSig)
: existentialSig(existentialSig) {}
Action walkToTypePre(Type ty) override {
// We're looking at the interface type of a protocol member, so it's written
// in terms of `Self` (tau_0_0) and possibly type parameters at higher depth:
//
// <Self, ... where Self: P, ...>
if (!ty->isTypeParameter()) {
return Action::Continue;
}
if (ty->getRootGenericParam()->getDepth() > 0) {
return Action::SkipNode;
}
// Ok, we found a type parameter rooted in `Self`. Replace `Self` with the
// opened Self type in the existential signature, which looks like this:
//
// <..., Self where ..., Self: P>
ty = ty.subst(
[&](SubstitutableType *type) -> Type {
return existentialSig.SelfType;
},
MakeAbstractConformanceForGenericType());
// Make sure this is valid first.
if (!existentialSig.OpenedSig->isValidTypeParameter(ty)) {
return Action::SkipNode;
}
// If the existential type constrains Self.U to a type from the outer
// context, then the reduced type of Self.U in the existential signature
// will no longer contain Self.
ty = existentialSig.OpenedSig.getReducedType(ty);
if (!ty.findIf([&](Type t) -> bool {
if (auto *paramTy = t->getAs<GenericTypeParamType>())
return paramTy->isEqual(existentialSig.SelfType);
return false;
})) {
return Action::SkipNode;
}
// Ok, we found a type that depends on the opened existential Self.
return Action::Stop;
}
} isDependentOnSelf(existentialSig);
for (const auto &req : sig.getRequirements()) {
switch (req.getKind()) {
case RequirementKind::Superclass: {
if (req.getFirstType()->getRootGenericParam()->getDepth() > 0 &&
req.getSecondType().walk(isDependentOnSelf)) {
return true;
}
break;
}
case RequirementKind::SameType:
case RequirementKind::SameShape: {
const auto isNonSelfRootedTypeParam = [](Type ty) {
return ty->isTypeParameter() &&
ty->getRootGenericParam()->getDepth() > 0;
};
if ((isNonSelfRootedTypeParam(req.getFirstType()) &&
req.getSecondType().walk(isDependentOnSelf)) ||
(isNonSelfRootedTypeParam(req.getSecondType()) &&
req.getFirstType().walk(isDependentOnSelf))) {
return true;
}
break;
}
case RequirementKind::Conformance:
case RequirementKind::Layout:
break;
}
}
return false;
}
bool swift::isMemberAvailableOnExistential(
Type baseTy, const ValueDecl *member) {
auto &ctx = member->getASTContext();
auto existentialSig = ctx.getOpenedExistentialSignature(baseTy);
auto *dc = member->getDeclContext();
ASSERT(dc->getSelfProtocolDecl());
auto origParam = dc->getSelfInterfaceType()->castTo<GenericTypeParamType>();
auto openedParam = existentialSig.SelfType->castTo<GenericTypeParamType>();
auto info = findGenericParameterReferences(
member, existentialSig.OpenedSig, origParam, openedParam,
std::nullopt);
if (info.selfRef > TypePosition::Covariant ||
info.assocTypeRef > TypePosition::Covariant) {
return false;
}
// FIXME: Appropriately diagnose assignments instead.
if (auto *const storageDecl = dyn_cast<AbstractStorageDecl>(member)) {
if (info.hasCovariantSelfResult && storageDecl->supportsMutation())
return false;
}
if (doesMemberHaveUnfulfillableConstraintsWithExistentialBase(existentialSig,
member)) {
return false;
}
return true;
}
std::optional<std::tuple<GenericTypeParamType *, TypeVariableType *,
Type, OpenedExistentialAdjustments>>
swift::canOpenExistentialCallArgument(ValueDecl *callee, unsigned paramIdx,
Type paramTy, Type argTy) {
if (!callee)
return std::nullopt;
// Only applies to functions and subscripts.
if (!isa<AbstractFunctionDecl>(callee) && !isa<SubscriptDecl>(callee))
return std::nullopt;
// Special semantics prohibit opening existentials.
switch (TypeChecker::getDeclTypeCheckingSemantics(callee)) {
case DeclTypeCheckingSemantics::OpenExistential:
case DeclTypeCheckingSemantics::TypeOf:
// type(of:) and _openExistential handle their own opening.
return std::nullopt;
case DeclTypeCheckingSemantics::Normal:
case DeclTypeCheckingSemantics::WithoutActuallyEscaping:
break;
}
// C++ function templates require specialization, which is not possible with
// opened existential archetypes, so do not open.
if (isa_and_nonnull<clang::FunctionTemplateDecl>(callee->getClangDecl()))
return std::nullopt;
// The actual parameter type needs to involve a type variable, otherwise
// type inference won't be possible.
if (!paramTy->hasTypeVariable())
return std::nullopt;
OpenedExistentialAdjustments adjustments;
// The argument may be a "var" instead of a "let".
if (auto lv = argTy->getAs<LValueType>()) {
argTy = lv->getObjectType();
adjustments |= OpenedExistentialAdjustmentFlags::LValue;
}
// If the argument is inout, strip it off and we can add it back.
if (auto inOutArg = argTy->getAs<InOutType>()) {
argTy = inOutArg->getObjectType();
adjustments |= OpenedExistentialAdjustmentFlags::InOut;
}
// The argument type needs to be an existential type or metatype thereof.
if (!argTy->isAnyExistentialType())
return std::nullopt;
auto param = getParameterAt(callee, paramIdx);
if (!param)
return std::nullopt;
// If the parameter is non-generic variadic, don't open.
if (param->isVariadic())
return std::nullopt;
// Look through an inout and optional types on the formal type of the
// parameter.
auto formalParamTy = param->getInterfaceType()->getInOutObjectType()
->lookThroughSingleOptionalType();
// If the argument is of an existential metatype, look through the
// metatype on the parameter.
if (argTy->is<AnyMetatypeType>()) {
formalParamTy = formalParamTy->getMetatypeInstanceType();
paramTy = paramTy->getMetatypeInstanceType();
}
// Look through an inout and optional types on the parameter.
paramTy = paramTy->getInOutObjectType()->lookThroughSingleOptionalType();
// The parameter type must be a type variable.
auto paramTypeVar = paramTy->getAs<TypeVariableType>();
if (!paramTypeVar)
return std::nullopt;
auto genericParam = formalParamTy->getAs<GenericTypeParamType>();
if (!genericParam)
return std::nullopt;
// Only allow opening the innermost generic parameters.
auto genericContext = callee->getAsGenericContext();
if (!genericContext || !genericContext->isGeneric())
return std::nullopt;
auto genericSig = callee->getInnermostDeclContext()
->getGenericSignatureOfContext().getCanonicalSignature();
if (genericParam->getDepth() < genericSig->getMaxDepth())
return std::nullopt;
Type existentialTy;
if (auto existentialMetaTy = argTy->getAs<ExistentialMetatypeType>())
existentialTy = existentialMetaTy->getInstanceType();
else
existentialTy = argTy;
ASSERT(existentialTy->isAnyExistentialType());
if (!existentialTy->isExistentialType())
return std::nullopt;
auto &ctx = callee->getASTContext();
// If the existential argument conforms to all of protocol requirements on
// the formal parameter's type, don't open unless ImplicitOpenExistentials is
// enabled.
// If all of the conformance requirements on the formal parameter's type
// are self-conforming, don't open.
if (!ctx.LangOpts.hasFeature(Feature::ImplicitOpenExistentials)) {
bool containsNonSelfConformance = false;
for (auto proto : genericSig->getRequiredProtocols(genericParam)) {
auto conformance = lookupExistentialConformance(
existentialTy, proto);
if (conformance.isInvalid()) {
containsNonSelfConformance = true;
break;
}
}
if (!containsNonSelfConformance)
return std::nullopt;
}
auto existentialSig = ctx.getOpenedExistentialSignature(existentialTy);
// Ensure that the formal parameter is only used in covariant positions,
// because it won't match anywhere else.
auto referenceInfo = findGenericParameterReferences(
callee, existentialSig.OpenedSig, genericParam,
existentialSig.SelfType->castTo<GenericTypeParamType>(),
/*skipParamIdx=*/paramIdx);
if (referenceInfo.selfRef > TypePosition::Covariant ||
referenceInfo.assocTypeRef > TypePosition::Covariant)
return std::nullopt;
return std::make_tuple(genericParam, paramTypeVar, argTy, adjustments);
}
/// For each occurrence of a type **type** in `refTy` that satisfies
/// `predicateFn` in covariant position, **type** is erased to an
/// existential using `eraseFn`.
static Type typeEraseExistentialSelfReferences(
Type refTy, TypePosition outermostPosition,
llvm::function_ref<bool(Type)> containsFn,
llvm::function_ref<bool(Type)> predicateFn,
llvm::function_ref<Type(Type, TypePosition)> eraseFn) {
if (!containsFn(refTy))
return refTy;
return refTy.transformWithPosition(
outermostPosition,
[&](TypeBase *t, TypePosition currPos) -> std::optional<Type> {
if (!containsFn(t)) {
return Type(t);
}
if (t->is<MetatypeType>()) {
const auto instanceTy = t->getMetatypeInstanceType();
auto erasedTy = typeEraseExistentialSelfReferences(
instanceTy, currPos,
containsFn, predicateFn, eraseFn);
if (instanceTy.getPointer() == erasedTy.getPointer()) {
return Type(t);
}
// - If the output instance type is an existential, but the input is
// not, wrap the output in an existential metatype.
//
// X.Type → X → any Y → any Y.Type
//
// - Otherwise, both are existential or the output instance type is
// not existential; wrap the output in a singleton metatype.
if (erasedTy->isAnyExistentialType() &&
!erasedTy->isConstraintType() &&
!(instanceTy->isAnyExistentialType() &&
!instanceTy->isConstraintType())) {
return Type(ExistentialMetatypeType::get(erasedTy));
}
return Type(MetatypeType::get(erasedTy));
}
// Opaque types whose substitutions involve this type parameter are
// erased to their upper bound.
if (auto opaque = dyn_cast<OpaqueTypeArchetypeType>(t)) {
for (auto replacementType :
opaque->getSubstitutions().getReplacementTypes()) {
auto erasedReplacementType = typeEraseExistentialSelfReferences(
replacementType, TypePosition::Covariant,
containsFn, predicateFn, eraseFn);
if (erasedReplacementType.getPointer() !=
replacementType.getPointer())
return opaque->getExistentialType();
}
}
// Parameterized protocol types whose arguments involve this type
// parameter are erased to the base type.
if (auto parameterized = dyn_cast<ParameterizedProtocolType>(t)) {
for (auto argType : parameterized->getArgs()) {
auto erasedArgType = typeEraseExistentialSelfReferences(
argType, TypePosition::Covariant,
containsFn, predicateFn, eraseFn);
if (erasedArgType.getPointer() != argType.getPointer())
return parameterized->getBaseType();
}
}
/*
if (auto lvalue = dyn_cast<LValueType>(t)) {
auto objTy = lvalue->getObjectType();
auto erasedTy =
typeEraseExistentialSelfReferences(
objTy, currPos,
containsFn, predicateFn, eraseFn);
if (erasedTy.getPointer() == objTy.getPointer())
return Type(lvalue);
return erasedTy;
}
*/
if (!predicateFn(t)) {
// Recurse.
return std::nullopt;
}
auto erasedTy = eraseFn(t, currPos);
if (!erasedTy)
return Type(t);
return erasedTy;
});
}
Type swift::typeEraseOpenedExistentialReference(
Type type, Type existentialBaseType, TypeVariableType *openedTypeVar,
TypePosition outermostPosition) {
auto existentialSig =
type->getASTContext().getOpenedExistentialSignature(
existentialBaseType);
auto applyOuterSubstitutions = [&](Type t) -> Type {
if (t->hasTypeParameter()) {
auto outerSubs = existentialSig.Generalization;
unsigned depth = existentialSig.OpenedSig->getMaxDepth();
OuterSubstitutions replacer{outerSubs, depth};
return t.subst(replacer, replacer);
}
return t;
};
auto erase = [&](Type paramTy, TypePosition currPos) -> Type {
switch (currPos) {
case TypePosition::Covariant:
break;
case TypePosition::Contravariant:
case TypePosition::Invariant:
case TypePosition::Shape:
return Type();
}
// The upper bounds of 'Self' is the existential base type.
if (paramTy->is<GenericTypeParamType>())
return existentialBaseType;
return applyOuterSubstitutions(
existentialSig.OpenedSig->getExistentialType(paramTy));
};
return typeEraseExistentialSelfReferences(
type,
outermostPosition,
/*containsFn=*/[](Type t) {
return t->hasTypeVariable();
},
/*predicateFn=*/[](Type t) {
return t->isTypeVariableOrMember();
},
/*eraseFn=*/[&](Type t, TypePosition currPos) -> Type {
bool found = false;
auto paramTy = t.transformRec([&](Type t) -> std::optional<Type> {
if (t.getPointer() == openedTypeVar) {
found = true;
return existentialSig.SelfType;
}
return std::nullopt;
});
if (!found)
return Type();
assert(paramTy->isTypeParameter());
// This can happen with invalid code.
if (!existentialSig.OpenedSig->isValidTypeParameter(paramTy)) {
return Type(t);
}
// Check if this existential fixes this `Self`-rooted type to something
// in the existential's outer generic signature.
Type reducedTy = existentialSig.OpenedSig.getReducedType(paramTy);
if (!reducedTy->isEqual(paramTy)) {
reducedTy = applyOuterSubstitutions(reducedTy);
auto erasedTy = typeEraseExistentialSelfReferences(
reducedTy, currPos,
[&](Type t) { return t->hasTypeParameter(); },
[&](Type t) { return t->isTypeParameter(); },
[&](Type t, TypePosition currPos) { return erase(t, currPos); });
if (erasedTy.getPointer() == reducedTy.getPointer()) {
return Type(t);
}
return erasedTy;
}
return erase(paramTy, currPos);
});
}
Type swift::typeEraseOpenedArchetypesFromEnvironment(
Type type, GenericEnvironment *env) {
assert(env->getKind() == GenericEnvironment::Kind::OpenedExistential);
return typeEraseExistentialSelfReferences(
type,
TypePosition::Covariant,
/*containsFn=*/[](Type t) {
return t->hasOpenedExistential();
},
/*predicateFn=*/[](Type t) {
return t->is<OpenedArchetypeType>();
},
/*eraseFn=*/[&](Type t, TypePosition currPos) {
auto *openedTy = t->castTo<OpenedArchetypeType>();
if (openedTy->getGenericEnvironment() == env)
return openedTy->getExistentialType();
return Type();
});
}
|