File: matrix.c

package info (click to toggle)
swig 1.1p5-1
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 9,448 kB
  • ctags: 5,025
  • sloc: cpp: 21,599; ansic: 13,333; yacc: 3,297; python: 2,794; makefile: 2,197; perl: 1,984; tcl: 1,583; sh: 736; lisp: 201; objc: 143
file content (380 lines) | stat: -rw-r--r-- 10,653 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

/**********************************************************************
 * GIFPlot 0.0
 * 
 * Dave Beazley
 * 
 * Department of Computer Science        Theoretical Division (T-11)        
 * University of Utah                    Los Alamos National Laboratory     
 * Salt Lake City, Utah 84112            Los Alamos, New Mexico  87545      
 * beazley@cs.utah.edu                   beazley@lanl.gov                   
 *
 * Copyright (c) 1996
 * The Regents of the University of California and the University of Utah
 * All Rights Reserved
 *
 * Permission is hereby granted, without written agreement and without
 * license or royalty fees, to use, copy, modify, and distribute this
 * software and its documentation for any purpose, provided that 
 * (1) The above copyright notice and the following two paragraphs
 * appear in all copies of the source code and (2) redistributions
 * including binaries reproduces these notices in the supporting
 * documentation.   Substantial modifications to this software may be
 * copyrighted by their authors and need not follow the licensing terms
 * described here, provided that the new terms are clearly indicated in
 * all files where they apply.
 * 
 * IN NO EVENT SHALL THE AUTHOR, THE UNIVERSITY OF CALIFORNIA, THE 
 * UNIVERSITY OF UTAH OR DISTRIBUTORS OF THIS SOFTWARE BE LIABLE TO ANY
 * PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
 * DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION,
 * EVEN IF THE AUTHORS OR ANY OF THE ABOVE PARTIES HAVE BEEN ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 *
 * THE AUTHOR, THE UNIVERSITY OF CALIFORNIA, AND THE UNIVERSITY OF UTAH
 * SPECIFICALLY DISCLAIM ANY WARRANTIES,INCLUDING, BUT NOT LIMITED TO, 
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND 
 * THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE,
 * SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
 *
 **************************************************************************/

/**************************************************************************
 * matrix.c
 *
 * Operations on 4x4 matrices
 **************************************************************************/

#define MATRIX
#include "gifplot.h"
#include <math.h>

/* ------------------------------------------------------------------------
   Matrix new_Matrix()

   Create a new 4x4 matrix.
   ------------------------------------------------------------------------ */
Matrix
new_Matrix() {
  Matrix m;
  m = (Matrix) malloc(16*sizeof(double));
  return m;
}

/* ------------------------------------------------------------------------
   delete_Matrix(Matrix *m);

   Destroy a matrix
   ------------------------------------------------------------------------ */

void
delete_Matrix(Matrix m) {
  if (m)
    free((char *) m);
}

/* ------------------------------------------------------------------------
   Matrix Matrix_copy(Matrix a)

   Makes a copy of matrix a and returns it.
   ------------------------------------------------------------------------ */

Matrix Matrix_copy(Matrix a) {
  int i;
  Matrix r = 0;
  if (a) {
    r = new_Matrix();
    if (r) {
      for (i = 0; i < 16; i++)
	r[i] = a[i];
    }
  }
  return r;
}
    
/* ------------------------------------------------------------------------
   Matrix_multiply(Matrix a, Matrix b, Matrix c)

   Multiplies a*b = c
   c may be one of the source matrices
   ------------------------------------------------------------------------ */
void
Matrix_multiply(Matrix a, Matrix b, Matrix c) {
  double temp[16];
  int    i,j,k;

  for (i =0; i < 4; i++)
    for (j = 0; j < 4; j++) {
      temp[i*4+j] = 0.0;
      for (k = 0; k < 4; k++) 
	temp[i*4+j] += a[i*4+k]*b[k*4+j];
    }
  for (i = 0; i < 16; i++)
    c[i] = temp[i];
}
  
/* ------------------------------------------------------------------------
   Matrix_identity(Matrix a)

   Puts an identity matrix in matrix a
   ------------------------------------------------------------------------ */

void
Matrix_identity(Matrix a) {
  int i;
  for (i = 0; i < 16; i++) a[i] = 0;
  a[0] = 1;
  a[5] = 1;
  a[10] = 1;
  a[15] = 1;
}

/* ------------------------------------------------------------------------
   Matrix_zero(Matrix a)
   
   Puts a zero matrix in matrix a
   ------------------------------------------------------------------------ */
void
Matrix_zero(Matrix a) {
  int i;
  for (i = 0; i < 16; i++) a[i] = 0;
}

/* ------------------------------------------------------------------------
   Matrix_transpose(Matrix a, Matrix result)

   Transposes matrix a and puts it in result.
   ------------------------------------------------------------------------ */
void
Matrix_transpose(Matrix a, Matrix result) {
  double temp[16];
  int i,j;

  for (i = 0; i < 4; i++)
    for (j = 0; j < 4; j++) 
      temp[4*i+j] = a[4*j+i];

  for (i = 0; i < 16; i++)
    result[i] = temp[i];
}


/* ------------------------------------------------------------------------
   Matrix_gauss(Matrix a, Matrix b)

   Solves ax=b for x, using Gaussian elimination. Destroys a.
   Really only used for calculating inverses of 4x4 transformation
   matrices.
   ------------------------------------------------------------------------ */

void Matrix_gauss(Matrix a, Matrix b) {
  int ipiv[4], indxr[4], indxc[4];
  int i,j,k,l,ll;
  int irow=0, icol=0;
  double big, pivinv;
  double dum;
  for (j = 0; j < 4; j++)
    ipiv[j] = 0;
  for (i = 0; i < 4; i++) {
    big = 0;
    for (j = 0; j < 4; j++) {
      if (ipiv[j] != 1) {
	for (k = 0; k < 4; k++) {
	  if (ipiv[k] == 0) {
	    if (fabs(a[4*j+k]) >= big) {
	      big = fabs(a[4*j+k]);
	      irow = j;
	      icol = k;
	    }
	  } else if (ipiv[k] > 1)
	    return;  /* Singular matrix */
	}
      }
    }
    ipiv[icol] = ipiv[icol]+1;
    if (irow != icol) {
      for (l = 0; l < 4; l++) {
	dum = a[4*irow+l];
	a[4*irow+l] = a[4*icol+l];
	a[4*icol+l] = dum;
      }
      for (l = 0; l < 4; l++) {
	dum = b[4*irow+l];
	b[4*irow+l] = b[4*icol+l];
	b[4*icol+l] = dum;
      }
    }
    indxr[i] = irow;
    indxc[i] = icol;
    if (a[4*icol+icol] == 0) return;
    pivinv = 1.0/a[4*icol+icol];
    a[4*icol+icol] = 1.0;
    for (l = 0; l < 4; l++)
      a[4*icol+l] = a[4*icol+l]*pivinv;
    for (l = 0; l < 4; l++)
      b[4*icol+l] = b[4*icol+l]*pivinv;
    for (ll = 0; ll < 4; ll++) {
      if (ll != icol) {
	dum = a[4*ll+icol];
	a[4*ll+icol] = 0;
	for (l = 0; l < 4; l++)
	  a[4*ll+l] = a[4*ll+l] - a[4*icol+l]*dum;
	for (l = 0; l < 4; l++)
	  b[4*ll+l] = b[4*ll+l] - b[4*icol+l]*dum;
      }
    }
  }
  for (l = 3; l >= 0; l--) {
    if (indxr[l] != indxc[l]) {
      for (k = 0; k < 4; k++) {
	dum = a[4*k+indxr[l]];
	a[4*k+indxr[l]] = a[4*k+indxc[l]];
	a[4*k+indxc[l]] = dum;
      }
    }
  }
}

/* ------------------------------------------------------------------------
   Matrix_invert(Matrix a, Matrix inva)

   Inverts Matrix a and places the result in inva.
   Relies on the Gaussian Elimination code above. (See Numerical recipes).
   ------------------------------------------------------------------------ */
void
Matrix_invert(Matrix a, Matrix inva) {

  double  temp[16];
  int     i;

  for (i = 0; i < 16; i++)
    temp[i] = a[i];
  Matrix_identity(inva);
  Matrix_gauss(temp,inva);
}
    
/* ------------------------------------------------------------------------
   Matrix_transform(Matrix a, GL_Vector *r, GL_Vector *t)

   Transform a vector.    a*r ----> t
   ------------------------------------------------------------------------ */

void   Matrix_transform(Matrix a, GL_Vector *r, GL_Vector *t) {

  double  rx, ry, rz, rw;

  rx = r->x;
  ry = r->y;
  rz = r->z;
  rw = r->w;
  t->x = a[0]*rx + a[1]*ry + a[2]*rz + a[3]*rw;
  t->y = a[4]*rx + a[5]*ry + a[6]*rz + a[7]*rw;
  t->z = a[8]*rx + a[9]*ry + a[10]*rz + a[11]*rw;
  t->w = a[12]*rx + a[13]*ry + a[14]*rz + a[15]*rw;
}

/* ------------------------------------------------------------------------
   Matrix_transform4(Matrix a, double x, double y, double z, double w, GL_Vector *t)

   Transform a vector from a point specified as 4 doubles
   ------------------------------------------------------------------------ */

void   Matrix_transform4(Matrix a, double rx, double ry, double rz, double rw,
			 GL_Vector *t) {

  t->x = a[0]*rx + a[1]*ry + a[2]*rz + a[3]*rw;
  t->y = a[4]*rx + a[5]*ry + a[6]*rz + a[7]*rw;
  t->z = a[8]*rx + a[9]*ry + a[10]*rz + a[11]*rw;
  t->w = a[12]*rx + a[13]*ry + a[14]*rz + a[15]*rw;
}

/* ---------------------------------------------------------------------
   Matrix_translate(Matrix a, double tx, double ty, double tz)

   Put a translation matrix in Matrix a
   ---------------------------------------------------------------------- */

void Matrix_translate(Matrix a, double tx, double ty, double tz) {
  Matrix_identity(a);
  a[3] = tx;
  a[7] = ty;
  a[11] = tz;
  a[15] = 1;
}

/* -----------------------------------------------------------------------
   Matrix_rotatex(Matrix a, double deg)

   Produce an x-rotation matrix for given angle in degrees.
   ----------------------------------------------------------------------- */
void
Matrix_rotatex(Matrix a, double deg) {
  double r;

  r = 3.1415926*deg/180.0;
  Matrix_zero(a);
  a[0] = 1.0;
  a[5] = cos(r);
  a[6] = -sin(r);
  a[9] = sin(r);
  a[10] = cos(r);
  a[15] = 1.0;
}

/* -----------------------------------------------------------------------
   Matrix_rotatey(Matrix a, double deg)

   Produce an y-rotation matrix for given angle in degrees.
   ----------------------------------------------------------------------- */
void
Matrix_rotatey(Matrix a, double deg) {
  double r;

  r = 3.1415926*deg/180.0;
  Matrix_zero(a);
  a[0] = cos(r);
  a[2] = sin(r);
  a[5] = 1.0;
  a[8] = -sin(r);
  a[10] = cos(r);
  a[15] = 1;
  
}
/* -----------------------------------------------------------------------
   Matrix_RotateZ(Matrix a, double deg)

   Produce an z-rotation matrix for given angle in degrees.
   ----------------------------------------------------------------------- */
void
Matrix_rotatez(Matrix a, double deg) {
  double r;

  r = 3.1415926*deg/180.0;
  Matrix_zero(a);
  a[0] = cos(r);
  a[1] = -sin(r);
  a[4] = sin(r);
  a[5] = cos(r);
  a[10] = 1.0;
  a[15] = 1.0;
}


/* A debugging routine */

void Matrix_set(Matrix a, int i, int j, double val) {
  a[4*j+i] = val;
}

void Matrix_print(Matrix a) {
  int i,j;
  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      fprintf(stdout,"%10f ",a[4*i+j]);
    }
    fprintf(stdout,"\n");
  }
  fprintf(stdout,"\n");
}