1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
# Generic Image Class
#
# Built on top of the 'gd-1.2' library by Thomas Boutell
#
import gd
BLACK = 0
WHITE = 1
RED = 2
GREEN = 3
BLUE = 4
class Image:
def __init__(self,width,height,xmin=0.0,ymin=0.0,xmax=1.0,ymax=1.0):
self.im = gd.gdImageCreate(width,height)
self.xmin = xmin
self.ymin = ymin
self.xmax = xmax
self.ymax = ymax
self.width = width
self.height = height
self.dx = 1.0*(xmax-xmin)
self.dy = 1.0*(ymax-ymin)
self.xtick = self.dx/10.0
self.ytick = self.dy/10.0
self.ticklen= 3
self.name = "image.gif"
gd.gdImageColorAllocate(self.im,0,0,0) # Black
gd.gdImageColorAllocate(self.im,255,255,255) # White
gd.gdImageColorAllocate(self.im,255,0,0) # Red
gd.gdImageColorAllocate(self.im,0,255,0) # Green
gd.gdImageColorAllocate(self.im,0,0,255) # Blue
def __del__(self):
print "Deleting"
gd.gdImageDestroy(self.im)
# Dump out this image to a file
def write(self,name="NONE"):
if name == "NONE":
name = self.name
f = gd.fopen(name,"w")
gd.gdImageGif(self.im,f)
gd.fclose(f)
self.name = name
print "Wrote '",name,"'"
# Virtual method that the user classes define
def draw(self):
print "No drawing method specified."
# A combination of write and draw
def show(self,filename="NONE"):
self.draw()
self.write(filename)
# Load up a colormap from an array of tuples
def colormap(self, cmap):
for i in range(0,255):
gd.gdImageColorDeallocate(self.im,i)
for c in cmap:
gd.gdImageColorAllocate(self.im,c[0],c[1],c[2])
# Change viewing region
def region(self,xmin,ymin,xmax,ymax):
self.xmin = xmin
self.ymin = ymin
self.xmax = xmax
self.ymax = ymax
self.dx = 1.0*(xmax-xmin)
self.dy = 1.0*(ymax-ymin)
# Transforms a point into screen coordinates
def transform(self,x,y):
npt = []
ix = (x-self.xmin)/self.dx*self.width + 0.5
iy = (self.ymax-y)/self.dy*self.height + 0.5
return (ix,iy)
# A few graphics primitives
def clear(self,color):
gd.gdImageFilledRectangle(self.im,0,0,self.width,self.height,color)
def plot(self,x,y,color):
ix,iy = self.transform(x,y)
gd.gdImageSetPixel(self.im,ix,iy,color)
def line(self,x1,y1,x2,y2,color):
ix1,iy1 = self.transform(x1,y1)
ix2,iy2 = self.transform(x2,y2)
gd.gdImageLine(self.im,ix1,iy1,ix2,iy2,color)
def box(self,x1,y1,x2,y2,color):
ix1,iy1 = self.transform(x1,y1)
ix2,iy2 = self.transform(x2,y2)
gd.gdImageRectangle(self.im,ix1,iy1,ix2,iy2,color)
def solidbox(self,x1,y1,x2,y2,color):
ix1,iy1 = self.transform(x1,y1)
ix2,iy2 = self.transform(x2,y2)
gd.gdImageFilledRectangle(self.im,ix1,iy1,ix2,iy2,color)
def arc(self,cx,cy,w,h,s,e,color):
ix,iy = self.transform(cx,cy)
iw = (x - self.xmin)/self.dx * self.width
ih = (y - self.ymin)/self.dy * self.height
gd.gdImageArc(self.im,ix,iy,iw,ih,s,e,color)
def fill(self,x,y,color):
ix,iy = self.transform(x,y)
gd.gdImageFill(self,ix,iy,color)
def axis(self,color):
self.line(self.xmin,0,self.xmax,0,color)
self.line(0,self.ymin,0,self.ymax,color)
x = -self.xtick*(int(-self.xmin/self.xtick)+1)
while x <= self.xmax:
ix,iy = self.transform(x,0)
gd.gdImageLine(self.im,ix,iy-self.ticklen,ix,iy+self.ticklen,color)
x = x + self.xtick
y = -self.ytick*(int(-self.ymin/self.ytick)+1)
while y <= self.ymax:
ix,iy = self.transform(0,y)
gd.gdImageLine(self.im,ix-self.ticklen,iy,ix+self.ticklen,iy,color)
y = y + self.ytick
# scalex(s). Scales the x-axis. s is given as a scaling factor
def scalex(self,s):
xc = self.xmin + self.dx/2.0
dx = self.dx*s
xmin = xc - dx/2.0
xmax = xc + dx/2.0
self.region(xmin,self.ymin,xmax,self.ymax)
# scaley(s). Scales the y-axis. s is given as a percent with s = 100 meaning no effect
def scaley(self,s):
yc = self.ymin + self.dy/2.0
dy = self.dy*s
ymin = yc - dy/2.0
ymax = yc + dy/2.0
self.region(self.xmin,ymin,self.xmax,ymax)
# Zooms a current image. s is given as a percent with s = 100 meaning no effect
def zoom(self,s):
s = 100.0/s
self.scalex(s)
self.scaley(s)
# Move image left. s is given in range 0,100. 100 moves a full screen left
def left(self,s):
dx = self.dx*s/100.0
xmin = self.xmin + dx
xmax = self.xmax + dx
self.region(xmin,self.ymin,xmax,self.ymax)
# Move image right. s is given in range 0,100. 100 moves a full screen right
def right(self,s):
self.left(-s)
# Move image down. s is given in range 0,100. 100 moves a full screen down
def down(self,s):
dy = self.dy*s/100.0
ymin = self.ymin + dy
ymax = self.ymax + dy
self.region(self.xmin,ymin,self.xmax,ymax)
# Move image up. s is given in range 0,100. 100 moves a full screen up
def up(self,s):
self.down(-s)
# Center image
def center(self,x,y):
self.right(50-x)
self.up(50-y)
|