| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 
 | <html>
<head>
<title>SWIG:Examples:tcl:class</title>
</head>
<body bgcolor="#ffffff">
<tt>SWIG/Examples/tcl/class/</tt>
<hr>
<H2>Wrapping a simple C++ class</H2>
<p>
This example illustrates the most primitive form of C++ class wrapping performed
by SWIG.  In this case, C++ classes are simply transformed into a collection of
C-style functions that provide access to class members.
<h2>The C++ Code</h2>
Suppose you have some C++ classes described by the following (and admittedly lame) 
header file:
<blockquote>
<pre>
/* File : example.h */
class Shape {
public:
  Shape() {
    nshapes++;
  }
  virtual ~Shape() {
    nshapes--;
  }
  double  x, y;
  void    move(double dx, double dy);
  virtual double area() = 0;
  virtual double perimeter() = 0;
  static  int nshapes;
};
class Circle : public Shape {
private:
  double radius;
public:
  Circle(double r) : radius(r) { }
  virtual double area();
  virtual double perimeter();
};
class Square : public Shape {
private:
  double width;
public:
  Square(double w) : width(w) { }
  virtual double area();
  virtual double perimeter();
};
</pre>
</blockquote>
<h2>The SWIG interface</h2>
A simple SWIG interface for this can be built by simply grabbing the header file
like this:
<blockquote>
<pre>
/* File : example.i */
%module example
%{
#include "example.h"
%}
/* Let's just grab the original header file here */
%include "example.h"
</pre>
</blockquote>
Note: when creating a C++ extension, you must run SWIG with the <tt>-c++</tt> option like this:
<blockquote>
<pre>
% swig -c++ -tcl example.i
</pre>
</blockquote>
<h2>Some sample Tcl scripts</h2>
SWIG performs two forms of C++ wrapping-- a low level interface and a high level widget-like interface.
<ul>
<li>
Click <a href="runme.tcl">here</a> to see a script that calls the C++ functions using the
low-level interface.
<li>
Click <a href="runme2.tcl">here</a> to see the same script written with the high-level
interface.
</ul>
<h2>Key points</h2>
<ul>
<li>The low-level C++ interface works like this:
<p>
<ul>
<li>To create a new object, you call a constructor like this:
<blockquote>
<pre>
set c [new_Circle 10.0]
</pre>
</blockquote>
<p>
<li>To access member data, a pair of accessor functions are used.
For example:
<blockquote>
<pre>
Shape_x_set $c 15        ;# Set member data
set x [Shape_x_get $c]   ;# Get member data
</pre>
</blockquote>
Note: when accessing member data, the name of the base class must
be used such as <tt>Shape_x_get</tt>
<p>
<li>To invoke a member function, you simply do this
<blockquote>
<pre>
puts "The area is [Shape_area $c]"
</pre>
</blockquote>
<p>
<li>Type checking knows about the inheritance structure of C++. For example:
<blockquote>
<pre>
Shape_area $c       # Works (c is a Shape)
Circle_area $c      # Works (c is a Circle)
Square_area $c      # Fails (c is definitely not a Square)
</pre>
</blockquote>
<p>
<li>To invoke a destructor, simply do this
<blockquote>
<pre>
delete_Shape $c     # Deletes a shape
</pre>
</blockquote>
<p>
<li>Static member variables are wrapped as C global variables.  For example:
<blockquote>
<pre>
set n $Shape_nshapes    # Get a static data member
set Shapes_nshapes 13   # Set a static data member
</pre>
</blockquote>
</ul>
<p>
<li>The high-level interface works like a Tk widget
<p>
<ul>
<li>To create a new object, you call a constructor like this:
<blockquote>
<pre>
Circle c 10      # c becomes a name for the Circle object
</pre>
</blockquote>
<p>
<li>To access member data, use cget and configure methods.
For example:
<blockquote>
<pre>
c configure -x 15        ;# Set member data
set x [c cget -x]        ;# Get member data
</pre>
</blockquote>
<p>
<li>To invoke a member function, you simply do this
<blockquote>
<pre>
puts "The area is [c area]"
</pre>
</blockquote>
<p>
<li>To invoke a destructor, simply destroy the object name like this:
<blockquote>
<pre>
rename c ""         # c goes away
</pre>
</blockquote>
<p>
<li>Static member variables are wrapped as C global variables.  For example:
<blockquote>
<pre>
set n $Shape_nshapes    # Get a static data member
set Shapes_nshapes 13   # Set a static data member
</pre>
</blockquote>
</ul>
</ul>
<h2>General Comments</h2>
<ul>
<li>The low-level function interface is much faster than the high-level interface.
In fact, all the higher level interface does is call functions in the low-level interface.
<li>SWIG <b>does</b> know how to properly perform upcasting of objects in an inheritance
hierarchy (including multiple inheritance).  Therefore it is perfectly safe to pass
an object of a derived class to any function involving a base class.
<li>C++ Namespaces - %nspace isn't yet supported for Tcl.
</ul>
<hr>
</body>
</html>
 |