File: CSharp.html

package info (click to toggle)
swig 4.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 42,876 kB
  • sloc: cpp: 61,013; ansic: 27,612; java: 14,670; python: 10,632; cs: 8,103; makefile: 6,287; yacc: 6,197; sh: 5,247; ruby: 5,172; perl: 3,541; php: 2,069; ml: 2,066; lisp: 1,894; javascript: 1,300; tcl: 1,091; xml: 115
file content (2788 lines) | stat: -rw-r--r-- 96,127 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>SWIG and C#</title>
<link rel="stylesheet" type="text/css" href="style.css">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body bgcolor="#FFFFFF">
<H1><a name="CSharp">22 SWIG and C#</a></H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#CSharp_introduction">Introduction</a>
<ul>
<li><a href="#CSharp_introduction_swig2_compatibility">SWIG 2 Compatibility</a>
<li><a href="#CSharp_commandline">Additional command line options</a>
</ul>
<li><a href="#CSharp_differences_java">Differences to the Java module</a>
<li><a href="#CSharp_void_pointers">Void pointers</a>
<li><a href="#CSharp_arrays">C# Arrays</a>
<ul>
<li><a href="#CSharp_arrays_swig_library">The SWIG C arrays library</a>
<li><a href="#CSharp_arrays_pinvoke_default_array_marshalling">Managed arrays using P/Invoke default array marshalling</a>
<li><a href="#CSharp_arrays_pinning">Managed arrays using pinning</a>
</ul>
<li><a href="#CSharp_exceptions">C# Exceptions</a>
<ul>
<li><a href="#CSharp_exception_example_check_typemap">C# exception example using "check" typemap</a>
<li><a href="#CSharp_exception_example_percent_exception">C# exception example using %exception</a>
<li><a href="#CSharp_exception_example_exception_specifications">C# exception example using exception specifications</a>
<li><a href="#CSharp_custom_application_exception">Custom C# ApplicationException example</a>
</ul>
<li><a href="#CSharp_directors">C# Directors</a>
<ul>
<li><a href="#CSharp_directors_example">Directors example</a>
<li><a href="#CSharp_directors_implementation">Directors implementation</a>
<li><a href="#CSharp_director_caveats">Director caveats</a>
</ul>
<li><a href="#CSharp_multiple_modules">Multiple modules</a>
<li><a href="#CSharp_typemap_examples">C# Typemap examples</a>
<ul>
<li><a href="#CSharp_memory_management_member_variables">Memory management when returning references to member variables</a>
<li><a href="#CSharp_memory_management_objects">Memory management for objects passed to the C++ layer</a>
<li><a href="#CSharp_date_marshalling">Date marshalling using the csin typemap and associated attributes</a>
<li><a href="#CSharp_date_properties">A date example demonstrating marshalling of C# properties</a>
<li><a href="#CSharp_date_pre_post_directors">Date example demonstrating the 'pre' and 'post' typemap attributes for directors</a>
<li><a href="#CSharp_partial_classes">Turning proxy classes into partial classes</a>
<li><a href="#CSharp_sealed_proxy_class">Turning proxy classes into sealed classes</a>
<li><a href="#CSharp_extending_proxy_class">Extending proxy classes with additional C# code</a>
<li><a href="#CSharp_enum_underlying_type">Underlying type for enums</a>
</ul>
</ul>
</div>
<!-- INDEX -->



<H2><a name="CSharp_introduction">22.1 Introduction</a></H2>


<p>
The purpose of the C# module is to offer an automated way of accessing existing C/C++ code from .NET languages.
The wrapper code implementation uses C# and the Platform Invoke (PInvoke) interface to access natively compiled C/C++ code.
The PInvoke interface has been chosen over Microsoft's Managed C++ interface as it is portable to both Microsoft Windows and non-Microsoft platforms.
PInvoke is part of the ECMA/ISO C# specification.
It is also better suited for robust production environments due to the Managed C++ flaw called the
<a href="https://msdn.microsoft.com/en-us/ie/aa290048(v=vs.94)">Mixed DLL Loading Problem</a>.
SWIG C# works equally well on non-Microsoft operating systems such as Linux, Solaris and Apple Mac using
<a href="https://www.mono-project.com/Main_Page/">Mono</a>.
</p>

<p>
SWIG 3 and later requires .NET 2.0 at a minimum.
There are some minor exceptions, where the minimum required is .NET 4.0.
This is when using the <tt>std::complex</tt> and <tt>std::list</tt> STL containers.
</p>

<p>
To get the most out of this chapter an understanding of interop is required.
The <a href="https://msdn.microsoft.com">Microsoft Developer Network (MSDN)</a> has a good reference guide in a section titled "Interop Marshaling".
Monodoc, available from the Mono project, has a very useful section titled <a href="https://www.mono-project.com/docs/advanced/pinvoke/">Interop with native libraries</a>.
</p>

<H3><a name="CSharp_introduction_swig2_compatibility">22.1.1 SWIG 2 Compatibility</a></H3>


<p>
In order to minimize name collisions between names generated based on input to SWIG and names used in the generated code from the .NET framework, SWIG 3 fully qualifies the use of all .NET types. Furthermore, SWIG 3 avoids <tt>using</tt> directives in generated code. This breaks backwards compatibility with typemaps, pragmas, etc written for use with SWIG 2 that assume the presence of <tt>using System;</tt> or <tt>using System.Runtime.InteropServices;</tt> directives in the intermediate class imports, module imports, or proxy imports. SWIG 3 supports backwards compatibility though the use of the <tt>SWIG2_CSHARP</tt> macro. If <tt>SWIG2_CSHARP</tt> is defined, SWIG 3 generates <tt>using</tt> directives in the intermediate class, module class, and proxy class code similar to those generated by SWIG 2. This can be done without modifying any of the input code by passing the <tt>-DSWIG2_CSHARP</tt> commandline parameter when executing <tt>swig</tt>.
</p>


<H3><a name="CSharp_commandline">22.1.2 Additional command line options</a></H3>


<p>
The following table lists the additional commandline options available for the C# module. They can also be seen by using: 
</p>

<div class="code"><pre>
swig -csharp -help 
</pre></div>

<table summary="C# specific options">
<tr>
<th>C# specific options</th>
</tr>

<tr>
<td>-dllimport &lt;dl&gt;</td>
<td>Override DllImport attribute name to &lt;dl&gt;</td>
</tr>

<tr>
<td>-namespace &lt;nm&gt;</td>
<td>Generate wrappers into C# namespace &lt;nm&gt;</td>
</tr>

<tr>
<td>-noproxy</td>
<td>Generate the low-level functional interface instead of proxy classes</td>
</tr>

<tr>
<td>-oldvarnames</td>
<td>Old intermediary method names for variable wrappers</td>
</tr>

<tr>
<td>-outfile &lt;file&gt;</td>
<td>Write all C# into a single &lt;file&gt; located in the output directory
</td>
</tr>

</table>

<p>
The -outfile option combines all the generated C# code into a single output file instead of creating multiple C# files.
The default, when this option is not provided, is to generate separate .cs files for the module class,
intermediary class and each of the generated proxy and type wrapper classes.
Note that the file extension (.cs) will not be automatically added and needs to be provided.
Due to possible compiler limits it is not advisable to use <tt>-outfile</tt> for large projects.
</p>

<H2><a name="CSharp_differences_java">22.2 Differences to the Java module</a></H2>


<p>
The C# module is very similar to the Java module, so until some more complete documentation has been written,
please use the <a href="Java.html#Java">Java documentation</a> as a guide to using SWIG with C#.
The C# module has the same major SWIG features as the Java module.
The rest of this section should be read in conjunction with the Java documentation as it lists the main differences.

The most notable differences to Java are the following:
<ul>

<li>
When invoking SWIG use the <tt>-csharp</tt> command line option instead of <tt>-java</tt>.
</li>

<li>
The <tt>-nopgcpp</tt> command line option does not exist.
</li>

<li>
The <tt>-package</tt> command line option does not exist.
</li>

<li>
The <tt>-namespace &lt;name&gt;</tt> commandline option will generate all code into the namespace specified by <tt>&lt;name&gt;</tt>.
C# supports nested namespaces that are not lexically nested, so nested namespaces will of course also work. For example:
<tt>-namespace com.bloggs.widget</tt>, will generate code into C# namespaces:

<div class="code"><pre>
namespace com.bloggs.widget {
  ...
}
</pre></div>
Note that by default, the generated C# classes have no namespace and the module name is unrelated to namespaces. The module name is just like in Java and is merely used to name some of the generated classes.
</li>

<li>
The <a href="SWIGPlus.html#SWIGPlus_nspace">nspace feature</a> is also supported as described in this general section with a C# example.
Unlike Java which requires the use of the -package option when using the <tt>nspace</tt> feature, the -namespace option is not mandatory for C#.
</li>

<li>
The <tt>-dllimport &lt;name&gt;</tt> commandline option specifies the name of the DLL for the <tt>DllImport</tt> attribute for every PInvoke method. If this commandline option is not given, the <tt>DllImport</tt> DLL name is the same as the module name. This option is useful for when one wants to invoke SWIG multiple times on different modules, yet compile all the resulting code into a single DLL.
</li>

<li>
C/C++ variables are wrapped with C# properties and not JavaBean style getters and setters.
</li>

<li>
Global constants are generated into the module class. There is no constants interface.
</li>

<li>
There is no implementation for type unsafe enums - not deemed necessary.
</li>

<li>
The default enum wrapping approach is proper C# enums, not typesafe enums.
<br>
Note that %csconst(0) will be ignored when wrapping C/C++ enums with proper C# enums.
This is because C# enum items must be initialised from a compile time constant.
If an enum item has an initialiser and the initialiser doesn't compile as C# code,
then the %csconstvalue directive must be used as %csconst(0) will have no effect.
If it was used, it would generate an illegal runtime initialisation via a PInvoke call.
</li>

<li>
C# doesn't support the notion of throws clauses.
Therefore there is no 'throws' typemap attribute support for adding exception classes to a throws clause.
Likewise there is no need for an equivalent to <tt>%javaexception</tt>.
In fact, throwing C# exceptions works quite differently, see <a href="CSharp.html#CSharp_exceptions">C# Exceptions</a> below.
</li>

<li>
The majority of the typemaps are in csharp.swg, not java.swg.
</li>

<li>
<p>Typemap equivalent names:</p>

<div class="code"><pre>
jni                         -&gt; ctype
jtype                       -&gt; imtype
jstype                      -&gt; cstype
javain                      -&gt; csin
javaout                     -&gt; csout
javadirectorin              -&gt; csdirectorin
javadirectorout             -&gt; csdirectorout
javainterfaces              -&gt; csinterfaces and csinterfaces_derived
javabase                    -&gt; csbase
javaclassmodifiers          -&gt; csclassmodifiers
javacode                    -&gt; cscode
javaimports                 -&gt; csimports
javabody                    -&gt; csbody
javafinalize                -&gt; csfinalize
javadestruct                -&gt; csdisposing and csdispose
javadestruct_derived        -&gt; csdisposing_derived and csdispose_derived
javainterfacecode           -&gt; csinterfacecode
</pre></div>

</li>

<li>
<p>Typemap macros:</p>
<div class="code"><pre>
SWIG_JAVABODY_PROXY         -&gt; SWIG_CSBODY_PROXY
SWIG_JAVABODY_TYPEWRAPPER   -&gt; SWIG_CSBODY_TYPEWRAPPER
</pre></div>
</li>

<li>
<p>Additional typemaps:</p>

<div class="code"><pre>
csvarin                     C# code property set typemap
csvarout                    C# code property get typemap
csattributes                C# attributes for attaching to proxy classes/enums
</pre></div>

</li>

<li>
<p>Additional typemap attributes:</p>

<p>
The "null" attribute in the "out" typemap can be specified to provide a value for <tt>$null</tt> to expand into for wrapped functions that return non-void. Normally the default value of <tt>0</tt> is used.
For example this is needed if you change the return type to void:
</p>
<div class="code"><pre>
%typemap(ctype) Status "void"
%typemap(out, null="") Status { ... }
</pre></div>

</li>

<li>
<p>Feature equivalent names:</p>
<div class="code"><pre>
%javaconst                  -&gt; %csconst
%javaconstvalue             -&gt; %csconstvalue
%javamethodmodifiers        -&gt; %csmethodmodifiers
</pre></div>
</li>

<li>
<p>Pragma equivalent names:</p>
<div class="code"><pre>
%pragma(java)               -&gt; %pragma(csharp)
jniclassbase                -&gt; imclassbase
jniclassclassmodifiers      -&gt; imclassclassmodifiers
jniclasscode                -&gt; imclasscode
jniclassimports             -&gt; imclassimports
jniclassinterfaces          -&gt; imclassinterfaces
</pre></div>
</li>

<li>
<p>Special variable equivalent names:</p>
<div class="code"><pre>
$javaclassname              -&gt; $csclassname
$&amp;javaclassname             -&gt; $&amp;csclassname
$*javaclassname             -&gt; $*csclassname
$javaclazzname              -&gt; $csclazzname
$javainput                  -&gt; $csinput
$jnicall                    -&gt; $imcall
$javainterfacename          -&gt; $csinterfacename
$&amp;javainterfacename         -&gt; $&amp;csinterfacename
$*javainterfacename         -&gt; $*csinterfacename
</pre></div>
</li>

<li>
<p>
Unlike the "javain" typemap, the "csin" typemap does not support the 'pgcpp' attribute as the C# module does not have a premature garbage collection prevention parameter. 
The "csin" typemap supports additional optional attributes called 'cshin' and 'terminator'. 
The "csdirectorin" typemap supports additional optional attributes called 'terminator'. 
The 'cshin' attribute should contain the parameter type and name whenever a <a href="Java.html#Java_constructor_helper_function">constructor helper function</a> is generated due to the 'pre' or 'post' attributes. 
The 'terminator' attribute normally just contains a closing brace for when the 'pre' attribute contains an opening brace, such as when a C# <tt>using</tt> or <tt>fixed</tt> block is started.
Note that 'pre', 'post', 'terminator' and 'cshin' attributes are not used for marshalling the property set.
Please see the <a href="#CSharp_date_marshalling">Date marshalling example</a> and <a href="#CSharp_date_properties">Date marshalling of properties example</a> for further understanding of these "csin" applicable attributes.
Please see the <a href="#CSharp_date_pre_post_directors">Date marshalling director example</a> for further understanding of the "csdirectorin" attributes.
</p>
</li>

<li>
<p>
Support for asymmetric type marshalling. The 'ctype', 'imtype' and 'cstype' typemaps support an optional <tt>out</tt> attribute which is used for output types.
If this typemap attribute is specified, then the type specified in the attribute is used for output types and
the type specified in the typemap itself is used for the input type.
If this typemap attribute is not specified, then the type used for both input and output is the type specified in the typemap.
An example shows that <tt>char *</tt> could be marshalled in different ways, 
</p>

<div class="code">
<pre>
%typemap(imtype, out="global::System.IntPtr") char * "string"
char * function(char *);
</pre>
</div>

<p>
The output type is thus IntPtr and the input type is string. The resulting intermediary C# code is:
</p>

<div class="code">
<pre>
public static extern global::System.IntPtr function(string jarg1);
</pre>
</div>

</li>

<li>
<p>
Support for type attributes.
The 'imtype' and 'cstype' typemaps can have an optional <tt>inattributes</tt> and <tt>outattributes</tt> typemap attribute.
The 'imtype' typemap can also have an optional <tt>directorinattributes</tt> and <tt>directoroutattributes</tt>
typemap attribute which attaches to director delegates, an implementation detail of directors, see <a href="#CSharp_directors_implementation">directors implementation</a>.
Note that there are C# attributes and typemap attributes, don't get confused between the two!!
The C# attributes specified in these typemap attributes are generated wherever the type is used in the C# wrappers.
These can be used to specify any C# attribute associated with a C/C++ type, but are more typically used for the C# <tt>MarshalAs</tt> attribute.
For example:
</p>

<div class="code">
<pre>
%typemap(imtype,
         inattributes="[global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPStr)]",
         outattributes="[return: global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPStr)]") const char * "String"

const char * GetMsg() {}
void SetMsg(const char *msg) {}
</pre>
</div>

<p>
The intermediary class will then have the marshalling as specified by everything in the 'imtype' typemap:
</p>

<div class="code">
<pre>
class examplePINVOKE {
  ...
  [global::System.Runtime.InteropServices.DllImport("example", EntryPoint="CSharp_GetMsg")]
  [return: global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPStr)]
  public static extern String GetMsg();

  [global::System.Runtime.InteropServices.DllImport("example", EntryPoint="CSharp_SetMsg")]
  public static extern void SetMsg([global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPStr)]String jarg1);
}
</pre>
</div>

<p>
Note that the <tt>DllImport</tt> attribute is always generated, irrespective of any additional attributes specified.
</p>

<p>
These attributes are associated with the C/C++ parameter type or return type, which is subtly different to 
the attribute features and typemaps covered next.
Note that all these different C# attributes can be combined so that a method has more than one attribute.
</p>

<p>
The <tt>directorinattributes</tt> and <tt>directoroutattributes</tt> typemap attribute are attached to the delegates in the director class, for example, the SwigDelegateBase_0
</p>

</li>

<li>
<p>
Support for attaching C# attributes to wrapped methods, variables and enum values.
This is done using the <tt>%csattributes</tt> feature, see <a href="Customization.html#Customization_features">%feature directives</a>.
Note that C# attributes are attached to proxy classes and enums using the <tt>csattributes</tt> typemap.
For example, imagine we have a custom attribute class, <tt>ThreadSafeAttribute</tt>, for labelling thread safety.
The following SWIG code shows how to attach this C# attribute to some methods and the class declaration itself:
</p>

<div class="code">
<pre>
%typemap(csattributes) AClass          "[ThreadSafe]"
%csattributes AClass::AClass(double d) "[ThreadSafe(false)]"
%csattributes AClass::AMethod()        "[ThreadSafe(true)]"

%inline %{
class AClass {
public:
  AClass(double a) {}
  void AMethod() {}
};
%}
</pre>
</div>

<p>
will generate a C# proxy class:
</p>

<div class="code">
<pre>
[ThreadSafe]
public class AClass : global::System.IDisposable {
  ...
  [ThreadSafe(false)]
  public AClass(double a) ...

  [ThreadSafe(true)]
  public void AMethod() ...
}
</pre>
</div>

<p>
If C# attributes need adding to the <tt>set</tt> or <tt>get</tt> part of C# properties, when wrapping C/C++ variables,
they can be added using the 'csvarin' and 'csvarout' typemaps respectively.
Note that the type used for the property is specified in the 'cstype' typemap.
If the 'out' attribute exists in this typemap, then the type used is from the 'out' attribute.
</p>

<p>
An example for attaching attributes to the enum and enum values is shown below.
</p>

<div class="code">
<pre>
%typemap(csattributes) Couleur "[global::System.ComponentModel.Description(\"Colours\")]"
%csattributes Rouge "[global::System.ComponentModel.Description(\"Red\")]"
%csattributes Vert "[global::System.ComponentModel.Description(\"Green\")]"
%inline %{
  enum Couleur { Rouge, Orange, Vert };
%}
</pre>
</div>

<p>
which will result in the following C# enum:
</p>

<div class="code">
<pre>
[global::System.ComponentModel.Description("Colours")]
public enum Couleur {
  [global::System.ComponentModel.Description("Red")]
  Rouge,
  Orange,
  [global::System.ComponentModel.Description("Green")]
  Vert
}
</pre>
</div>
</li>

<li>
<p>
The intermediary classname has <tt>PINVOKE</tt> appended after the module name instead of <tt>JNI</tt>, for example <tt>modulenamePINVOKE</tt>.
</p>
</li>

<li>
<p>
The <tt>%csmethodmodifiers</tt> feature can also be applied to variables as well as methods.
In addition to the default <tt>public</tt> modifier that SWIG generates when <tt>%csmethodmodifiers</tt> is not
specified, the feature will also replace the <tt>virtual</tt>/<tt>new</tt>/<tt>override</tt> modifiers that SWIG thinks is appropriate.
This feature is useful for some obscure cases where SWIG might get the <tt>virtual</tt>/<tt>new</tt>/<tt>override</tt> modifiers incorrect, for example with multiple inheritance.
</p>
</li>

<li>
<a name="CSharp_module_directive"></a>
<p>
The name of the intermediary class can be changed from its default, that is, the module name with PINVOKE appended after it. 
The module directive attribute <tt>imclassname</tt> is used to achieve this:
</p>

<div class="code">
<pre>
%module (imclassname="name") modulename
</pre>
</div>

<p>
If <tt>name</tt> is the same as <tt>modulename</tt> then the module class name gets changed
from <tt>modulename</tt> to <tt>modulenameModule</tt>.
</p>
</li>

<li>
There is no additional 'premature garbage collection prevention parameter' as the marshalling of the <tt>HandleRef</tt> object
takes care of ensuring a reference to the proxy class is held until the unmanaged call completed.
</li>

</ul>

<p>
<b><tt>$dllimport</tt></b><br>
This is a C# only special variable that can be used in typemaps, pragmas, features etc.
The special variable will get translated into the value specified by the <tt>-dllimport</tt> commandline option
if specified, otherwise it is equivalent to the <b>$module</b> special variable.
</p>

<p>
<b><tt>$imclassname</tt></b><br>
This special variable expands to the intermediary class name. For C# this is usually the same as '$modulePINVOKE' ('$moduleJNI' for Java),
unless the imclassname attribute is specified in the <a href="CSharp.html#CSharp_module_directive">%module directive</a>.
</p>

<p>
The directory <tt>Examples/csharp</tt> has a number of simple examples. 
Visual Studio .NET 2003 solution and project files are available for compiling with the Microsoft .NET C#
compiler on Windows. This also works with newer versions of Visual Studio if you allow
it to convert the solution to the latest version.
If your SWIG installation went well on a Unix environment and your C# compiler was detected, you should be able to type <tt>make</tt> in each example directory.
After SWIG has run and both the C# and C/C++ compilers have finished building,
the examples will be run, by either running <tt>runme.exe</tt> or by running
<tt>mono runme.exe</tt> (Mono C# compiler).
Windows users can also get the examples working using a
<a href="http://www.cygwin.com">Cygwin</a> or <a href="http://www.mingw.org">MinGW</a> environment for automatic configuration of the example makefiles.
Any one of the C# compilers (Mono or Microsoft) can be detected from within a Cygwin or Mingw environment if installed in your path. 

<H2><a name="CSharp_void_pointers">22.3 Void pointers</a></H2>


<p>
By default SWIG treats <tt>void *</tt> as any other pointer and hence marshalls it as a type wrapper class called <tt>SWIGTYPE_p_void</tt>.
If you want to marshall with the .NET <tt>System.IntPtr</tt> type instead, there is a simple set of named typemaps called
<tt>void *VOID_INT_PTR</tt> that can be used.
They can be applied like any other named typemaps:
</p>


<div class="code">
<pre>
%apply void *VOID_INT_PTR { void * }
void * f(void *v);
</pre>
</div>

<H2><a name="CSharp_arrays">22.4 C# Arrays</a></H2>


<p>
There are various ways to pass arrays from C# to C/C++. 
The default wrapping treats arrays as pointers and as such simple type wrapper classes are generated, 
eg <tt>SWIGTYPE_p_int</tt> when wrapping the C type <tt>int []</tt> or <tt>int *</tt>.
This gives a rather restricted use of the underlying unmanaged code and the most practical way to use arrays is to enhance or customise
with one of the following three approaches; namely the SWIG C arrays library, P/Invoke default array marshalling or 
pinned arrays.
</p>

<H3><a name="CSharp_arrays_swig_library">22.4.1 The SWIG C arrays library</a></H3>


<p>
The C arrays library keeps all the array memory in the unmanaged layer.
The library is available to all language modules and is documented in the <a href="Library.html#Library_carrays">carrays.i library</a> section.
Please refer to this section for details, but for convenience, the C# usage for the two examples outlined there is shown below.
</p>

<p>
For the <tt>%array_functions</tt> example, the equivalent usage would be:
</p>

<div class="code">
<pre>
SWIGTYPE_p_double a = example.new_doubleArray(10);  // Create an array
for (int i=0; i&lt;10; i++)
  example.doubleArray_setitem(a, i, 2*i);           // Set a value
example.print_array(a);                             // Pass to C
example.delete_doubleArray(a);                      // Destroy array
</pre>
</div>

<p>
and for the <tt>%array_class</tt> example, the equivalent usage would be:
</p>

<div class="code">
<pre>
doubleArray c = new doubleArray(10);    // Create double[10]
for (int i=0; i&lt;10; i++)
  c.setitem(i, 2*i);                    // Assign values
example.print_array(c.cast());          // Pass to C
</pre>
</div>


<H3><a name="CSharp_arrays_pinvoke_default_array_marshalling">22.4.2 Managed arrays using P/Invoke default array marshalling</a></H3>


<p>
In the P/Invoke default marshalling scheme, one needs to designate whether the invoked function will treat a managed
array parameter as input, output, or both. When the function is invoked, the CLR allocates a separate chunk of memory as big as the given managed array, 
which is automatically released at the end of the function call. If the array parameter is marked as being input, the content of the managed array is copied
into this buffer when the call is made. Correspondingly, if the array parameter is marked as being output, the contents of the reserved buffer are copied
back into the managed array after the call returns. A pointer to this buffer
is passed to the native function.
</p>

<p>
The reason for allocating a separate buffer is to leave the CLR free to relocate the managed array object 
during garbage collection. If the overhead caused by the copying is causing a significant performance penalty, consider pinning the managed array and
passing a direct reference as described in the next section.
</p>

<p>
For more information on the subject, see  the
<a href="https://docs.microsoft.com/en-us/dotnet/framework/interop/default-marshaling-for-arrays">Default Marshaling for Arrays</a> article
on MSDN.
</p>


<p>
The P/Invoke default marshalling is supported by the <tt>arrays_csharp.i</tt> library via the INPUT, OUTPUT and INOUT typemaps. 
Let's look at some example usage. Consider the following C function:
</p>
<div class="code">
<pre>
void myArrayCopy(int *sourceArray, int *targetArray, int nitems);
</pre>
</div>

<p>
We can now instruct SWIG to use the default marshalling typemaps by 
</p>

<div class="code">
<pre>
%include "arrays_csharp.i"

%apply int INPUT[]  {int *sourceArray}
%apply int OUTPUT[] {int *targetArray}
</pre>
</div>

<p>
As a result, we get the following method in the module class:
</p>

<div class="code">
<pre>
public static void myArrayCopy(int[] sourceArray, int[] targetArray, int nitems) {
  examplePINVOKE.myArrayCopy(sourceArray, targetArray, nitems);
}
</pre>
</div>

<p>
If we look beneath the surface at the corresponding intermediary class code, we see
that SWIG has generated code that uses attributes 
(from the System.Runtime.InteropServices namespace) to tell the CLR to use default
marshalling for the arrays:
</p>

<div class="code">
<pre>
[global::System.Runtime.InteropServices.DllImport("example", EntryPoint="CSharp_myArrayCopy")]
public static extern void myArrayCopy([global::System.Runtime.InteropServices.In, global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPArray)]int[] jarg1, 
                                      [global::System.Runtime.InteropServices.Out, global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPArray)]int[] jarg2,
                                       int jarg3);
</pre>
</div>

<p>
As an example of passing an inout array (i.e. the target function will both read from and
write to the array), consider this C function that swaps a given number of elements
in the given arrays:
</p>

<div class="code">
<pre>
void myArraySwap(int *array1, int *array2, int nitems);
</pre>
</div>

<p>
Now, we can instruct SWIG to wrap this by
</p>

<div class="code">
<pre>
%include "arrays_csharp.i"

%apply int INOUT[] {int *array1}
%apply int INOUT[] {int *array2}
</pre>
</div>

<p>
This results in the module class method
</p>

<div class="code">
<pre>
  public static void myArraySwap(int[] array1, int[] array2, int nitems) {
    examplePINVOKE.myArraySwap(array1, array2, nitems);
  }
</pre>
</div>

<p>
and intermediary class method
</p>

<div class="code">
<pre>
  [global::System.Runtime.InteropServices.DllImport("example", EntryPoint="CSharp_myArraySwap")]
  public static extern void myArraySwap([global::System.Runtime.InteropServices.In, global::System.Runtime.InteropServices.Out, global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPArray)]int[] jarg1, 
                                        [global::System.Runtime.InteropServices.In, global::System.Runtime.InteropServices.Out, global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPArray)]int[] jarg2,
                                         int jarg3);
</pre>
</div>


<H3><a name="CSharp_arrays_pinning">22.4.3 Managed arrays using pinning</a></H3>


<p>
It is also possible to pin a given array in memory (i.e. fix its location in memory), obtain a
direct pointer to it, and then pass this pointer to the wrapped C/C++ function. This approach
involves no copying, but it makes the work of the garbage collector harder as 
the managed array object can not be relocated before the fix on the array is released. You should avoid 
fixing arrays in memory in cases where the control may re-enter the managed side via a callback and/or
another thread may produce enough garbage to trigger garbage collection.
</p>

<p>
For more information, see the <a href="https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/fixed-statement">fixed statement</a> in the C# language reference.
</p>


<p>
Now let's look at an example using pinning, thus avoiding the CLR making copies
of the arrays passed as parameters. The <tt>arrays_csharp.i</tt> library file again provides the required support via the <tt>FIXED</tt> typemaps.
Let's use the same function from the previous section:
</p>

<div class="code">
<pre>
void myArrayCopy(int *sourceArray, int *targetArray, int nitems);
</pre>
</div>

<p>
We now need to declare the module class method unsafe, as we are using pointers:
</p>

<div class="code">
<pre>
%csmethodmodifiers myArrayCopy "public unsafe";
 </pre>
</div>

<p>
Apply the appropriate typemaps to the array parameters:
</p>

<div class="code">
<pre>
%include "arrays_csharp.i"

%apply int FIXED[] {int *sourceArray}
%apply int FIXED[] {int *targetArray}
</pre>
</div>

<p>
Notice that there is no need for separate in, out or inout typemaps as is the
case when using P/Invoke default marshalling. 
</p>

<p>
As a result, we get the following method in the module class:
</p>

<div class="code">
<pre>
  public unsafe static void myArrayCopy(int[] sourceArray, int[] targetArray, int nitems) {
    fixed ( int *swig_ptrTo_sourceArray = sourceArray ) {
    fixed ( int *swig_ptrTo_targetArray = targetArray ) {
    {
      examplePINVOKE.myArrayCopy((global::System.IntPtr)swig_ptrTo_sourceArray, (global::System.IntPtr)swig_ptrTo_targetArray,
                                 nitems);
    }
    }
    }
  }
</pre>
</div>

<p>
On the method signature level the only difference to the version using P/Invoke default
marshalling is the "unsafe" quantifier, which is required because we are handling pointers.
</p>

<p>
Also the intermediary class method looks a little different from the default marshalling
example - the method is expecting an IntPtr as the parameter type.
</p>

<div class="code">
<pre>
[global::System.Runtime.InteropServices.DllImport("example", EntryPoint="CSharp_myArrayCopy")]
public static extern void myArrayCopy(global::System.IntPtr jarg1, global::System.IntPtr jarg2, int jarg3);
</pre>
</div>



<H2><a name="CSharp_exceptions">22.5 C# Exceptions</a></H2>


<p>
It is possible to throw a C# Exception from C/C++ code.
SWIG already provides the framework for throwing C# exceptions if it is able to detect that a C++ exception could be thrown.
Automatically detecting that a C++ exception could be thrown is only possible when a C++ exception specification is used,
see <a href="SWIGPlus.html#SWIGPlus_exception_specifications">Exception specifications</a>. 
The <a href="Customization.html#Customization_exception">Exception handling with %exception</a> section details the <tt>%exception</tt> feature.
Customised code for handling exceptions with or without a C++ exception specification is possible and the details follow.
However anyone wishing to do this should be familiar with the contents of the sections referred to above.
</p>

<p>
Unfortunately a C# exception cannot simply be thrown from unmanaged code for a variety of reasons.
Most notably being that throwing a C# exception results in exceptions being thrown across the C PInvoke interface and C does not understand exceptions.
The design revolves around a C# exception being constructed and stored as a pending exception, to be thrown only when the unmanaged code has completed.
Implementing this is a tad involved and there are thus some unusual typemap constructs.
Some practical examples follow and they should be read in conjunction with the rest of this section.
</p>

<p>
First some details about the design that must be followed.
Each typemap or feature that generates <b>unmanaged code</b> supports an attribute called <tt>canthrow</tt>.
This is simply a flag which when set indicates that the code in the typemap/feature has code which might want to throw a C# exception.
The code in the typemap/feature can then raise a C# exception by calling one of the C functions,
<tt>SWIG_CSharpSetPendingException()</tt> or <tt>SWIG_CSharpSetPendingExceptionArgument()</tt>.
When called, the function makes a callback into the managed world via a delegate.
The callback creates and stores an exception ready for throwing when the unmanaged code has finished.
The typemap/feature unmanaged code is then expected to force an immediate return from the unmanaged wrapper function,
so that the pending managed exception can then be thrown.
The support code has been carefully designed to be efficient as well as thread-safe.
However to achieve the goal of efficiency requires some optional code generation in the <b>managed code</b> typemaps.
Code to check for pending exceptions is generated if and only if the unmanaged code has code to set a pending exception,
that is if the <tt>canthrow</tt> attribute is set.
The optional managed code is generated using the <tt>excode</tt> typemap attribute and <tt>$excode</tt> special variable in the relevant managed code typemaps.
Simply, if any relevant unmanaged code has the <tt>canthrow</tt> attribute set, then any occurrences of <tt>$excode</tt>
is replaced with the code in the <tt>excode</tt> attribute.
If the <tt>canthrow</tt> attribute is not set, then any occurrences of <tt>$excode</tt> are replaced with nothing.
</p>

<p>
The prototypes for the <tt>SWIG_CSharpSetPendingException()</tt> and <tt>SWIG_CSharpSetPendingExceptionArgument()</tt> functions are
</p>

<div class="code">
<pre>
static void SWIG_CSharpSetPendingException(SWIG_CSharpExceptionCodes code,
                                           const char *msg);

static void SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpExceptionArgumentCodes code,
                                                   const char *msg,
                                                   const char *param_name);
</pre>
</div>

<p>
The first parameter defines which .NET exceptions can be thrown:
</p>

<div class="code">
<pre>
typedef enum {
  SWIG_CSharpApplicationException,
  SWIG_CSharpArithmeticException,
  SWIG_CSharpDivideByZeroException,
  SWIG_CSharpIndexOutOfRangeException,
  SWIG_CSharpInvalidCastException,
  SWIG_CSharpInvalidOperationException,
  SWIG_CSharpIOException,
  SWIG_CSharpNullReferenceException,
  SWIG_CSharpOutOfMemoryException,
  SWIG_CSharpOverflowException,
  SWIG_CSharpSystemException
} SWIG_CSharpExceptionCodes;

typedef enum {
  SWIG_CSharpArgumentException,
  SWIG_CSharpArgumentNullException,
  SWIG_CSharpArgumentOutOfRangeException,
} SWIG_CSharpExceptionArgumentCodes;
</pre>
</div>

<p>
where, for example, <tt>SWIG_CSharpApplicationException</tt> corresponds to the .NET exception, <tt>ApplicationException</tt>.
The <tt>msg</tt> and <tt>param_name</tt> parameters contain the C# exception message and parameter name associated with the exception.
</p>


<p>
The <tt>%exception</tt> feature in C# has the <tt>canthrow</tt> attribute set.
The <tt>%csnothrowexception</tt> feature is like <tt>%exception</tt>, but it does not have the <tt>canthrow</tt> attribute
set so should only be used when a C# exception is not created.
</p>


<H3><a name="CSharp_exception_example_check_typemap">22.5.1 C# exception example using "check" typemap</a></H3>


<p>
Let's say we have the following simple C++ method:
</p>


<div class="code">
<pre>
void positivesonly(int number);
</pre>
</div>

<p>
and we want to check that the input <tt>number</tt> is always positive and if not throw a C# <tt>ArgumentOutOfRangeException</tt>.
The "check" typemap is designed for checking input parameters. Below you will see the <tt>canthrow</tt> attribute is set because
the code contains a call to <tt>SWIG_CSharpSetPendingExceptionArgument()</tt>. The full example follows:
</p>

<div class="code">
<pre>
%module example

%typemap(check, canthrow=1) int number %{
if ($1 &lt; 0) {
  SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
                                         "only positive numbers accepted", "number");
  return $null;
}
// SWIGEXCODE is a macro used by many other csout typemaps
%define SWIGEXCODE
 "\n    if ($modulePINVOKE.SWIGPendingException.Pending)"
 "\n      throw $modulePINVOKE.SWIGPendingException.Retrieve();"
%enddef
%typemap(csout, excode=SWIGEXCODE) void {
    $imcall;$excode
  }
%}

%inline %{

void positivesonly(int number) {
}

%}
</pre>
</div>

<p>
When the following C# code is executed:
</p>

<div class="code">
<pre>
public class runme {
  static void Main() {
    example.positivesonly(-1);
  }
}
</pre>
</div>

<p>
The exception is thrown:
</p>

<div class="code">
<pre>
Unhandled Exception: System.ArgumentOutOfRangeException: only positive numbers accepted
Parameter name: number
in &lt;0x00034&gt; example:positivesonly (int)
in &lt;0x0000c&gt; runme:Main ()
</pre>
</div>

<p>
Now let's analyse the generated code to gain a fuller understanding of the typemaps. The generated unmanaged C++ code is:
</p>


<div class="code">
<pre>
SWIGEXPORT void SWIGSTDCALL CSharp_positivesonly(int jarg1) {
  int arg1 ;

  arg1 = (int)jarg1;

  if (arg1 &lt; 0) {
    SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
      "only positive numbers accepted", "number");
    return ;
  }

  positivesonly(arg1);

}
</pre>
</div>

<p>
This largely comes from the "check" typemap. The managed code in the module class is:
</p>

<div class="code">
<pre>
public class example {
  public static void positivesonly(int number) {
    examplePINVOKE.positivesonly(number);
    if (examplePINVOKE.SWIGPendingException.Pending)
      throw examplePINVOKE.SWIGPendingException.Retrieve();
  }

}
</pre>
</div>

<p>
This comes largely from the "csout" typemap. 
</p>

<p>
The "csout" typemap is the same as the default void "csout" typemap so is not strictly necessary for the example.
However, it is shown to demonstrate what managed output code typemaps should contain,
that is, a <tt>$excode</tt> special variable and an <tt>excode</tt> attribute.
Also note that <tt>$excode</tt> is expanded into the code held in the <tt>excode</tt> attribute.
The <tt>$imcall</tt> as always expands into <tt>examplePINVOKE.positivesonly(number)</tt>.
The exception support code in the intermediary class, <tt>examplePINVOKE</tt>, is not shown, but is contained within the inner classes,
<tt>SWIGPendingException</tt> and <tt>SWIGExceptionHelper</tt> and is always generated.
These classes can be seen in any of the generated wrappers.
However, all that is required of a user is as demonstrated in the "csin" typemap above.
That is, is to check <tt>SWIGPendingException.Pending</tt> and to throw the exception returned by <tt>SWIGPendingException.Retrieve()</tt>.
</p>

<p>
If the "check" typemap did not exist, then
the following module class would instead be generated:
</p>

<div class="code">
<pre>
public class example {
  public static void positivesonly(int number) {
    examplePINVOKE.positivesonly(number);
  }

}
</pre>
</div>

<p>
Here we see the pending exception checking code is omitted.
In fact, the code above would be generated if the <tt>canthrow</tt> attribute was not in the "check" typemap, such as:
</p>

<div class="code">
<pre>
%typemap(check) int number %{
if ($1 &lt; 0) {
  SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
                                         "only positive numbers accepted", "number");
  return $null;
}
%}
</pre>
</div>

<p>
Note that if SWIG detects you have used <tt>SWIG_CSharpSetPendingException()</tt> or <tt>SWIG_CSharpSetPendingExceptionArgument()</tt>
without setting the <tt>canthrow</tt> attribute you will get a warning message similar to
</p>

<div class="code">
<pre>
example.i:21: Warning 845: Unmanaged code contains a call to a SWIG_CSharpSetPendingException
method and C# code does not handle pending exceptions via the canthrow attribute.
</pre>
</div>
<p>
Actually it will issue this warning for any function beginning with <tt>SWIG_CSharpSetPendingException</tt>.
</P>

<H3><a name="CSharp_exception_example_percent_exception">22.5.2 C# exception example using %exception</a></H3>


<p>
Let's consider a similar, but more common example that throws a C++ exception from within a wrapped function.
We can use <tt>%exception</tt> as mentioned in <a href="Customization.html#Customization_exception">Exception handling with %exception</a>.
</p>

<div class="code">
<pre>
%exception negativesonly(int value) %{
try {
  $action
} catch (std::out_of_range e) {
  SWIG_CSharpSetPendingException(SWIG_CSharpApplicationException, e.what());
  return $null;
}
%}

%inline %{
#include &lt;stdexcept&gt;
void negativesonly(int value) {
  if (value &gt;= 0)
    throw std::out_of_range("number should be negative");
}
%}
</pre>
</div>

<p>
The generated unmanaged code this time catches the C++ exception and converts it into a C# <tt>ApplicationException</tt>.
</p>

<div class="code">
<pre>
SWIGEXPORT void SWIGSTDCALL CSharp_negativesonly(int jarg1) {
  int arg1 ;

  arg1 = (int)jarg1;

  try {
    negativesonly(arg1);

  } catch (std::out_of_range e) {
    SWIG_CSharpSetPendingException(SWIG_CSharpApplicationException, e.what());
    return ;
  }
}
</pre>
</div>

<p>
The managed code generated does check for the pending exception as mentioned earlier as the C# version of <tt>%exception</tt> has the <tt>canthrow</tt> attribute set by default:
</p>

<div class="code">
<pre>
  public static void negativesonly(int value) {
    examplePINVOKE.negativesonly(value);
    if (examplePINVOKE.SWIGPendingException.Pending)
      throw examplePINVOKE.SWIGPendingException.Retrieve();
  }
</pre>
</div>

<H3><a name="CSharp_exception_example_exception_specifications">22.5.3 C# exception example using exception specifications</a></H3>


<p>
When C++ exception specifications are used, SWIG is able to detect that the method might throw an exception.
By default SWIG will automatically generate code to catch the exception and convert it into a managed <tt>ApplicationException</tt>,
as defined by the default "throws" typemaps.
The following example has a user supplied "throws" typemap which is used whenever an exception specification contains a <tt>std::out_of_range</tt>,
such as the <tt>evensonly</tt> method below.
</p>

<div class="code">
<pre>
%typemap(throws, canthrow=1) std::out_of_range {
  SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentException, $1.what(), NULL);
  return $null;
}

%inline %{
#include &lt;stdexcept&gt;
void evensonly(int input) throw (std::out_of_range) {
  if (input%2 != 0)
    throw std::out_of_range("number is not even");
}
%}
</pre>
</div>

<p>
Note that the type for the throws typemap is the type in the exception specification.
SWIG generates a try catch block with the throws typemap code in the catch handler.
</p>

<div class="code">
<pre>
SWIGEXPORT void SWIGSTDCALL CSharp_evensonly(int jarg1) {
  int arg1 ;

  arg1 = (int)jarg1;
  try {
    evensonly(arg1);
  }
  catch(std::out_of_range &amp;_e) {
    {
      SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentException, (&amp;_e)-&gt;what(), NULL);
      return ;
    }
  }
}
</pre>
</div>

<p>
Multiple catch handlers are generated should there be more than one exception specifications declared.
</p>

<H3><a name="CSharp_custom_application_exception">22.5.4 Custom C# ApplicationException example</a></H3>


<p>
This example involves a user defined exception.
The conventional .NET exception handling approach is to create a custom <tt>ApplicationException</tt> and throw it in your application.
The goal in this example is to convert the STL <tt>std::out_of_range</tt> exception into one of these custom .NET exceptions.
</p>


<p>
The default exception handling is quite easy to use as the <tt>SWIG_CSharpSetPendingException()</tt> and <tt>SWIG_CSharpSetPendingExceptionArgument()</tt>
methods are provided by SWIG.
However, for a custom C# exception, the boiler plate code that supports these functions needs replicating.
In essence this consists of some C/C++ code and C# code.
The C/C++ code can be generated into the wrapper file using the <tt>%insert(runtime)</tt> directive and
the C# code can be generated into the intermediary class using the <tt>imclasscode</tt> pragma as follows:

</p>

<div class="code">
<pre>
%insert(runtime) %{
  // Code to handle throwing of C# CustomApplicationException from C/C++ code.
  // The equivalent delegate to the callback, CSharpExceptionCallback_t, is CustomExceptionDelegate
  // and the equivalent customExceptionCallback instance is customDelegate
  typedef void (SWIGSTDCALL* CSharpExceptionCallback_t)(const char *);
  CSharpExceptionCallback_t customExceptionCallback = NULL;

  extern "C" SWIGEXPORT
  void SWIGSTDCALL CustomExceptionRegisterCallback(CSharpExceptionCallback_t customCallback) {
    customExceptionCallback = customCallback;
  }

  // Note that SWIG detects any method calls named starting with
  // SWIG_CSharpSetPendingException for warning 845
  static void SWIG_CSharpSetPendingExceptionCustom(const char *msg) {
    customExceptionCallback(msg);
  }
%}

%pragma(csharp) imclasscode=%{
  class CustomExceptionHelper {
    // C# delegate for the C/C++ customExceptionCallback
    public delegate void CustomExceptionDelegate(string message);
    static CustomExceptionDelegate customDelegate =
                                   new CustomExceptionDelegate(SetPendingCustomException);

    [global::System.Runtime.InteropServices.DllImport("$dllimport", EntryPoint="CustomExceptionRegisterCallback")]
    public static extern
           void CustomExceptionRegisterCallback(CustomExceptionDelegate customCallback);

    static void SetPendingCustomException(string message) {
      SWIGPendingException.Set(new CustomApplicationException(message));
    }

    static CustomExceptionHelper() {
      CustomExceptionRegisterCallback(customDelegate);
    }
  }
  static CustomExceptionHelper exceptionHelper = new CustomExceptionHelper();
%}
</pre>
</div>

<p>
The method stored in the C# delegate instance, <tt>customDelegate</tt> is what gets called by the C/C++ callback.
However, the equivalent to the C# delegate, that is the C/C++ callback, needs to be assigned before any unmanaged code is executed.
This is achieved by putting the initialisation code in the intermediary class.
Recall that the intermediary class contains all the PInvoke methods, so the static variables in the intermediary class will be initialised
before any of the PInvoke methods in this class are called.
The <tt>exceptionHelper</tt> static variable ensures the C/C++ callback is initialised with the value in <tt>customDelegate</tt> by calling
the <tt>CustomExceptionRegisterCallback</tt> method in the <tt>CustomExceptionHelper</tt> static constructor.
Once this has been done, unmanaged code can make callbacks into the managed world as <tt>customExceptionCallback</tt> will be initialised with a valid callback/delegate.
Any calls to <tt>SWIG_CSharpSetPendingExceptionCustom()</tt> will make the callback to create the pending exception in the same way that
<tt>SWIG_CSharpSetPendingException()</tt> and <tt>SWIG_CSharpSetPendingExceptionArgument()</tt> does.
In fact the method has been similarly named so that SWIG can issue the warning about missing <tt>canthrow</tt> attributes as discussed earlier.
It is an invaluable warning as it is easy to forget the <tt>canthrow</tt> attribute when writing typemaps/features.
</p>

<p>
The <tt>SWIGPendingException</tt> helper class is not shown, but is generated as an inner class into the intermediary class.
It stores the pending exception in Thread Local Storage so that the exception handling mechanism is thread safe.
</p>

<p>
The boiler plate code above must be used in addition to a handcrafted <tt>CustomApplicationException</tt>:
</p>

<div class="code">
<pre>
// Custom C# Exception
class CustomApplicationException : global::System.ApplicationException {
  public CustomApplicationException(string message) 
    : base(message) {
  }
}
</pre>
</div>

<p>
and the SWIG interface code:
</p>

<div class="code">
<pre>
%typemap(throws, canthrow=1) std::out_of_range {
  SWIG_CSharpSetPendingExceptionCustom($1.what());
  return $null;
}

%inline %{
void oddsonly(int input) throw (std::out_of_range) {
  if (input%2 != 1)
    throw std::out_of_range("number is not odd");
}
%}
</pre>
</div>

<p>
The "throws" typemap now simply calls our new <tt>SWIG_CSharpSetPendingExceptionCustom()</tt> function so that the exception can be caught, as such:
</p>

<div class="code">
<pre>
try {
  example.oddsonly(2);
} catch (CustomApplicationException e) {
  ...
}
</pre>
</div>

<H2><a name="CSharp_directors">22.6 C# Directors</a></H2>


<p>
The SWIG directors feature adds extra code to the generated C# proxy classes that enable these classes to be used in cross-language polymorphism.
Essentially, it enables unmanaged C++ code to call back into managed code for virtual methods so that a C# class can derive from a wrapped C++ class.
</p>

<p>
The following sections provide information on the C# director implementation and contain most of the information required to use the C# directors.
However, the <a href="Java.html#Java_directors">Java directors</a> section should also be read in order to gain more insight into directors.
</p>

<H3><a name="CSharp_directors_example">22.6.1 Directors example</a></H3>


<p>
Imagine we are wrapping a C++ base class, <tt>Base</tt>, from which we would like to inherit in C#.
Such a class is shown below as well as another class, <tt>Caller</tt>, which calls the virtual method <tt>UIntMethod</tt>
from pure unmanaged C++ code.
</p>


<div class="code">
<pre>
// file: example.h
class Base {
public:
  virtual ~Base() {}

  virtual unsigned int UIntMethod(unsigned int x) {
    std::cout &lt;&lt; "Base - UIntMethod(" &lt;&lt; x &lt;&lt; ")" &lt;&lt; std::endl;
    return x;
  }
  virtual void BaseBoolMethod(const Base &amp;b, bool flag) {}
};

class Caller {
public:
  Caller(): m_base(0) {}
  ~Caller() { delBase(); }
  void set(Base *b) { delBase(); m_base = b; }
  void reset() { m_base = 0; }
  unsigned int UIntMethodCall(unsigned int x) { return m_base-&gt;UIntMethod(x); }

private:
  Base *m_base;
  void delBase() { delete m_base; m_base = 0; }
};
</pre>
</div>

<p>
The director feature is turned off by default and the following simple interface file shows how directors are enabled
for the class <tt>Base</tt>.
</p>

<div class="code">
<pre>
/* File : example.i */
%module(directors="1") example
%{
#include "example.h"
%}

%feature("director") Base;

%include "example.h"
</pre>
</div>

<p>
The following is a C# class inheriting from <tt>Base</tt>:
</p>

<div class="code">
<pre>
public class CSharpDerived : Base
{
  public override uint UIntMethod(uint x)
  {
    Console.WriteLine("CSharpDerived - UIntMethod({0})", x);
    return x;
  }
}
</pre>
</div>

<p>
The <tt>Caller</tt> class can demonstrate the <tt>UIntMethod</tt> method being called from unmanaged code using the following C# code:
</p>

<div class="targetlang">
<pre>
public class runme
{
  static void Main() 
  {
    Caller myCaller = new Caller();

    // Test pure C++ class
    using (Base myBase = new Base())
    {
      makeCalls(myCaller, myBase);
    }

    // Test director / C# derived class
    using (Base myBase = new CSharpDerived())
    {
      makeCalls(myCaller, myBase);
    }
  }

  static void makeCalls(Caller myCaller, Base myBase)
  {
    myCaller.set(myBase);
    myCaller.UIntMethodCall(123);
    myCaller.reset();
  }
}
</pre>
</div>

<p>
If the above is run, the output is then:
</p>

<div class="shell">
<pre>
Base - UIntMethod(123)
CSharpDerived - UIntMethod(123)
</pre>
</div>

<H3><a name="CSharp_directors_implementation">22.6.2 Directors implementation</a></H3>


<p>
The previous section demonstrated a simple example where the virtual <tt>UIntMethod</tt> method was called from
C++ code, even when the overridden method is implemented in C#.
The intention of this section is to gain an insight into how the director feature works. 
It shows the generated code for the two virtual methods, <tt>UIntMethod</tt> and <tt>BaseBoolMethod</tt>,
when the director feature is enabled for the <tt>Base</tt> class.
</p>

<p>
Below is the generated C# <tt>Base</tt> director class.
</p>

<div class="code">
<pre>
public class Base : global::System.IDisposable {
  private global::System.Runtime.InteropServices.HandleRef swigCPtr;
  protected bool swigCMemOwn;

  internal Base(global::System.IntPtr cPtr, bool cMemoryOwn) {
    swigCMemOwn = cMemoryOwn;
    swigCPtr = new global::System.Runtime.InteropServices.HandleRef(this, cPtr);
  }

  internal static global::System.Runtime.InteropServices.HandleRef getCPtr(Base obj) {
    return (obj == null) ? new global::System.Runtime.InteropServices.HandleRef(null, global::System.IntPtr.Zero) : obj.swigCPtr;
  }

  ~Base() {
    Dispose();
  }

  public virtual void Dispose() {
    lock(this) {
      if(swigCPtr.Handle != global::System.IntPtr.Zero &amp;&amp; swigCMemOwn) {
        swigCMemOwn = false;
        examplePINVOKE.delete_Base(swigCPtr);
      }
      swigCPtr = new global::System.Runtime.InteropServices.HandleRef(null, global::System.IntPtr.Zero);
      global::System.GC.SuppressFinalize(this);
    }
  }

  public virtual uint UIntMethod(uint x) {
    uint ret = examplePINVOKE.Base_UIntMethod(swigCPtr, x);
    return ret;
  }

  public virtual void BaseBoolMethod(Base b, bool flag) {
    examplePINVOKE.Base_BaseBoolMethod(swigCPtr, Base.getCPtr(b), flag);
    if (examplePINVOKE.SWIGPendingException.Pending)
      throw examplePINVOKE.SWIGPendingException.Retrieve();
  }

  public Base() : this(examplePINVOKE.new_Base(), true) {
    SwigDirectorConnect();
  }

  private void SwigDirectorConnect() {
    if (SwigDerivedClassHasMethod("UIntMethod", swigMethodTypes0))
      swigDelegate0 = new SwigDelegateBase_0(SwigDirectorMethodUIntMethod);
    if (SwigDerivedClassHasMethod("BaseBoolMethod", swigMethodTypes1))
      swigDelegate1 = new SwigDelegateBase_1(SwigDirectorMethodBaseBoolMethod);
    examplePINVOKE.Base_director_connect(swigCPtr, swigDelegate0, swigDelegate1);
  }

  private bool SwigDerivedClassHasMethod(string methodName, global::System.global::System.Type[] methodTypes) {
    System.Reflection.MethodInfo methodInfo = this.GetType().GetMethod(methodName, methodTypes);
    bool hasDerivedMethod = methodInfo.DeclaringType.IsSubclassOf(typeof(Base));
    return hasDerivedMethod;
  }

  private uint SwigDirectorMethodUIntMethod(uint x) {
    return UIntMethod(x);
  }

  private void SwigDirectorMethodBaseBoolMethod(global::System.IntPtr b, bool flag) {
    BaseBoolMethod(new Base(b, false), flag);
  }

  public delegate uint SwigDelegateBase_0(uint x);
  public delegate void SwigDelegateBase_1(global::System.IntPtr b, bool flag);

  private SwigDelegateBase_0 swigDelegate0;
  private SwigDelegateBase_1 swigDelegate1;

  private static global::System.Type[] swigMethodTypes0 = new global::System.Type[] { typeof(uint) };
  private static global::System.Type[] swigMethodTypes1 = new global::System.Type[] { typeof(Base), typeof(bool) };
}
</pre>
</div>

<p>
Everything from the <tt>SwigDirectorConnect()</tt> method and below is code that is only generated when
directors are enabled.
The design comprises a C# delegate being initialised for each virtual method on construction of the class.
Let's examine the <tt>BaseBoolMethod</tt>.
</p>

<p>
In the <tt>Base</tt> constructor a call is made to <tt>SwigDirectorConnect()</tt> which contains the initialisation code for all the virtual methods.
It uses a support method, <tt>SwigDerivedClassHasMethod()</tt>, which simply uses reflection to determine if the named method,
BaseBoolMethod, with the list of required parameter types, exists in a subclass.
If it does not exist, the delegate is not initialised as there is no need for unmanaged code to call back into managed C# code.
However, if there is an overridden method in any subclass, the delegate is required. 
It is then initialised to the <tt>SwigDirectorMethodBaseBoolMethod</tt> which in turn will call <tt>BaseBoolMethod</tt> if invoked.
The delegate is not initialised to the <tt>BaseBoolMethod</tt> directly as quite often types will need marshalling from the unmanaged type
to the managed type in which case an intermediary method (<tt>SwigDirectorMethodBaseBoolMethod</tt>) is required for the marshalling.
In this case, the C# <tt>Base</tt> class needs to be created from the unmanaged <tt>IntPtr</tt> type.
</p>

<p>
The last thing that <tt>SwigDirectorConnect()</tt> does is to pass the delegates to the unmanaged code.
It calls the intermediary method <tt>Base_director_connect()</tt> which is really a call to the C function <tt>CSharp_Base_director_connect()</tt>.
This method simply maps each C# delegate onto a C function pointer.
</p>

<div class="code">
<pre>
SWIGEXPORT void SWIGSTDCALL CSharp_Base_director_connect(void *objarg, 
                                        SwigDirector_Base::SWIG_Callback0_t callback0,
                                        SwigDirector_Base::SWIG_Callback1_t callback1) {
  Base *obj = (Base *)objarg;
  SwigDirector_Base *director = dynamic_cast&lt;SwigDirector_Base *&gt;(obj);
  if (director) {
    director-&gt;swig_connect_director(callback0, callback1);
  }
}

class SwigDirector_Base : public Base, public Swig::Director {
public:
  SwigDirector_Base();
  virtual unsigned int UIntMethod(unsigned int x);
  virtual ~SwigDirector_Base();
  virtual void BaseBoolMethod(Base const &amp;b, bool flag);

  typedef unsigned int (SWIGSTDCALL* SWIG_Callback0_t)(unsigned int);
  typedef void (SWIGSTDCALL* SWIG_Callback1_t)(void *, unsigned int);
  void swig_connect_director(SWIG_Callback0_t callbackUIntMethod,
                             SWIG_Callback1_t callbackBaseBoolMethod);

private:
  SWIG_Callback0_t swig_callbackUIntMethod;
  SWIG_Callback1_t swig_callbackBaseBoolMethod;
  void swig_init_callbacks();
};

void SwigDirector_Base::swig_connect_director(SWIG_Callback0_t callbackUIntMethod, 
                                              SWIG_Callback1_t callbackBaseBoolMethod) {
  swig_callbackUIntMethod = callbackUIntMethod;
  swig_callbackBaseBoolMethod = callbackBaseBoolMethod;
}
</pre>
</div>

<p>
Note that for each director class SWIG creates an unmanaged director class for making the callbacks. For example <tt>Base</tt> has <tt>SwigDirector_Base</tt> and <tt>SwigDirector_Base</tt>
is derived from <tt>Base</tt>.
Should a C# class be derived from <tt>Base</tt>, the underlying C++ <tt>SwigDirector_Base</tt> is created rather than <tt>Base</tt>.
The <tt>SwigDirector_Base</tt> class then implements all the virtual methods, redirecting calls up to managed code if the callback/delegate is non-zero.
The implementation of <tt>SwigDirector_Base::BaseBoolMethod</tt> shows this - the callback is made by invoking the <tt>swig_callbackBaseBoolMethod</tt> function pointer:
</p>

<div class="code">
<pre>
void SwigDirector_Base::BaseBoolMethod(Base const &amp;b, bool flag) {
  void * jb = 0 ;
  unsigned int jflag  ;
  
  if (!swig_callbackBaseBoolMethod) {
    Base::BaseBoolMethod(b, flag);
    return;
  } else {
    jb = (Base *) &amp;b; 
    jflag = flag;
    swig_callbackBaseBoolMethod(jb, jflag);
  }
}
</pre>
</div>

<p>
The delegates from the above example are <tt>public</tt> by default:
</p>

<div class="code">
<pre>
  public delegate uint SwigDelegateBase_0(uint x);
  public delegate void SwigDelegateBase_1(global::System.IntPtr b, bool flag);
</pre>
</div>

<p>
These can be changed if desired via the <tt>csdirectordelegatemodifiers</tt>
<a href="Customization.html#Customization_features">%feature directive</a>.
For example, using <tt>%feature("csdirectordelegatemodifiers") "internal"</tt>
before SWIG parses the Base class will change all the delegates to <tt>internal</tt>:
</p>

<div class="code">
<pre>
  internal delegate uint SwigDelegateBase_0(uint x);
  internal delegate void SwigDelegateBase_1(global::System.IntPtr b, bool flag);
</pre>
</div>

<H3><a name="CSharp_director_caveats">22.6.3 Director caveats</a></H3>


<p>
There is a subtle gotcha with directors.
If default parameters are used, it is recommended to follow a pattern of always calling a single method in any C# derived class.
An example will clarify this and the reasoning behind the recommendation. Consider the following C++ class wrapped as a director class:
</p>

<div class="code">
<pre>
class Defaults {
public:
  virtual ~Defaults();
  virtual void DefaultMethod(int a=-100);
};
</pre>
</div>

<p>
Recall that C++ methods with default parameters generate overloaded methods for each defaulted parameter, so a C# derived class can be created
with two <tt>DefaultMethod</tt> override methods:
</p>

<div class="code">
<pre>
public class CSharpDefaults : Defaults
{
  public override void DefaultMethod()
  {
    DefaultMethod(-100); // note C++ default value used
  }
  public override void DefaultMethod(int x)
  {
  }
}
</pre>
</div>

<p>
It may not be clear at first, but should a user intend to call <tt>CSharpDefaults.DefaultMethod()</tt> from C++, a call is actually made to <tt>CSharpDefaults.DefaultMethod(int)</tt>.
This is because the initial call is made in C++ and therefore the <tt>DefaultMethod(int)</tt> method will be called as is expected with C++ calls to methods with defaults,
with the default being set to -100.
The callback/delegate matching this method is of course the overloaded method <tt>DefaultMethod(int)</tt>.
However, a call from C# to <tt>CSharpDefaults.DefaultMethod()</tt> will of course call this exact method and in order for behaviour to be consistent with calls from C++, the implementation
should pass the call on to <tt>CSharpDefaults.DefaultMethod(int)</tt>using the C++ default value, as shown above.
</p>

<H2><a name="CSharp_multiple_modules">22.7 Multiple modules</a></H2>


<p>
When using <a href="Modules.html#Modules">multiple modules</a> it is possible to compile each SWIG generated wrapper
into a different assembly.
However, by default the generated code may not compile if 
generated classes in one assembly use generated classes in another assembly.
The visibility of the
<tt>getCPtr()</tt> and pointer constructor generated from the <tt>csbody</tt> typemaps needs changing.
The default visibility is <tt>internal</tt> but it needs to be <tt>public</tt> for access from a different assembly.
Just changing 'internal' to 'public' in the typemap achieves this.
Two macros are available in <tt>csharp.swg</tt> to make this easier and using them is the preferred approach
over simply copying the typemaps and modifying as this is forward compatible with any changes in
the <tt>csbody</tt> typemap in future versions of SWIG.
The macros are for the proxy and typewrapper classes and can respectively be used to
to make the method and constructor public:
</p>

<div class="code">
<pre>
  SWIG_CSBODY_PROXY(public, public, SWIGTYPE)
  SWIG_CSBODY_TYPEWRAPPER(public, public, public, SWIGTYPE)
</pre>
</div>

<p>
Alternatively, instead of exposing these as public, consider 
using the <tt>[assembly:InternalsVisibleTo("Name")]</tt> attribute available in the .NET framework when you
know which assemblies these can be exposed to.
Another approach would be to make these public, but also to hide them from intellisense by using
the <tt>[System.ComponentModel.EditorBrowsable(System.ComponentModel.EditorBrowsableState.Never)]</tt> attribute
if you don't want users to easily stumble upon these so called 'internal workings' of the wrappers.
</p>

<H2><a name="CSharp_typemap_examples">22.8 C# Typemap examples</a></H2>


This section includes a few examples of typemaps.  For more examples, you
might look at the files "<tt>csharp.swg</tt>" and "<tt>typemaps.i</tt>" in
the SWIG library.


<H3><a name="CSharp_memory_management_member_variables">22.8.1 Memory management when returning references to member variables</a></H3>


<p>
This example shows how to prevent premature garbage collection of objects when the underlying C++ class returns a pointer or reference to a member variable.
The example is a direct equivalent to this <a href="Java.html#Java_memory_management_objects">Java equivalent</a>.
</p>

<p>
Consider the following C++ code:
</p>

<div class="code">
<pre>
struct Wheel {
  int size;
  Wheel(int sz = 0) : size(sz) {}
};

class Bike {
  Wheel wheel;
public:
  Bike(int val) : wheel(val) {}
  Wheel&amp; getWheel() { return wheel; }
};
</pre>
</div>

<p>
and the following usage from C# after running the code through SWIG:
</p>


<div class="code">
<pre>
  Wheel wheel = new Bike(10).getWheel();
  Console.WriteLine("wheel size: " + wheel.size);
  // Simulate a garbage collection
  global::System.GC.Collect();
  global::System.GC.WaitForPendingFinalizers();
  global::System.Console.WriteLine("wheel size: " + wheel.size);
</pre>
</div>

<p>
Don't be surprised that if the resulting output gives strange results such as...
</p>

<div class="shell">
<pre>
wheel size: 10
wheel size: 135019664
</pre>
</div>

<p>
What has happened here is the garbage collector has collected the <tt>Bike</tt> instance as it doesn't think it is needed any more.
The proxy instance, <tt>wheel</tt>, contains a reference to memory that was deleted when the <tt>Bike</tt> instance was collected.
In order to prevent the garbage collector from collecting the <tt>Bike</tt> instance a reference to the <tt>Bike</tt> must
be added to the <tt>wheel</tt> instance. You can do this by adding the reference when the <tt>getWheel()</tt> method
is called using the following typemaps.
</p>


<div class="code">
<pre>
%typemap(cscode) Wheel %{
  // Ensure that the GC doesn't collect any Bike instance set from C#
  private Bike bikeReference;
  internal void addReference(Bike bike) {
    bikeReference = bike;
  }
%}

// Add a C# reference to prevent premature garbage collection and resulting use
// of dangling C++ pointer. Intended for methods that return pointers or
// references to a member variable.
%typemap(csout, excode=SWIGEXCODE) Wheel&amp; getWheel {
    global::System.IntPtr cPtr = $imcall;$excode
    $csclassname ret = null;
    if (cPtr != global::System.IntPtr.Zero) {
      ret = new $csclassname(cPtr, $owner);
      ret.addReference(this);
    }
    return ret;
  }
</pre>
</div>

<p>
The code in the first typemap gets added to the <tt>Wheel</tt> proxy class.
The code in the second typemap constitutes the bulk of the code in the generated <tt>getWheel()</tt> function:
</p>

<div class="code">
<pre>
public class Wheel : global::System.IDisposable {
  ...
  // Ensure that the GC doesn't collect any Bike instance set from C#
  private Bike bikeReference;
  internal void addReference(Bike bike) {
    bikeReference = bike;
  }
}

public class Bike : global::System.IDisposable {
  ...
  public Wheel getWheel() {
    global::System.IntPtr cPtr = examplePINVOKE.Bike_getWheel(swigCPtr);
    Wheel ret = null;
    if (cPtr != global::System.IntPtr.Zero) {
      ret = new Wheel(cPtr, false);
      ret.addReference(this);
    }
    return ret;
  }
}
</pre>
</div>

<p>
Note the <tt>addReference</tt> call.
</p>

<H3><a name="CSharp_memory_management_objects">22.8.2 Memory management for objects passed to the C++ layer</a></H3>


<p>
The example is a direct equivalent to this <a href="Java.html#Java_memory_management_objects">Java equivalent</a>.
Managing memory can be tricky when using C++ and C# proxy classes.
The previous example shows one such case and this example looks at memory management for a class passed to a C++ method which expects the object to remain in scope
after the function has returned. Consider the following two C++ classes:
</p>

<div class="code">
<pre>
struct Element {
  int value;
  Element(int val) : value(val) {}
};
class Container {
  Element* element;
public:
  Container() : element(0) {}
  void setElement(Element* e) { element = e; }
  Element* getElement() { return element; }
};
</pre>
</div>

<p>
and usage from C++
</p>

<div class="code">
<pre>
  Container container;
  Element element(20);
  container.setElement(&amp;element);
  cout &lt;&lt; "element.value: " &lt;&lt; container.getElement()-&gt;value &lt;&lt; endl;
</pre>
</div>

<p>
and more or less equivalent usage from C#
</p>

<div class="code">
<pre>
  Container container = new Container();
  Element element = new Element(20);
  container.setElement(element);
</pre>
</div>

<p>
The C++ code will always print out 20, but the value printed out may not be this in the C# equivalent code.
In order to understand why, consider a garbage collection occurring...
</p>

<div class="code">
<pre>
  Container container = new Container();
  Element element = new Element(20);
  container.setElement(element);
  Console.WriteLine("element.value: " + container.getElement().value);
  // Simulate a garbage collection
  global::System.GC.Collect();
  global::System.GC.WaitForPendingFinalizers();
  global::System.Console.WriteLine("element.value: " + container.getElement().value);
</pre>
</div>

<p>
The temporary element created with <tt>new Element(20)</tt> could get garbage collected
which ultimately means the <tt>container</tt> variable is holding a dangling pointer, thereby printing out any old random value instead of the expected value of 20.
One solution is to add in the appropriate references in the C# layer...
</p>

<div class="code">
<pre>
public class Container : global::System.IDisposable {

  ...

  // Ensure that the GC doesn't collect any Element set from C#
  // as the underlying C++ class stores a shallow copy
  private Element elementReference;

  public void setElement(Element e) {
    examplePINVOKE.Container_setElement(swigCPtr, Element.getCPtr(e));
    elementReference = e;
  }
}
</pre>
</div>

<p>
The following typemaps can be used to generate this code:
</p>

<div class="code">
<pre>
%typemap(cscode) Container %{
  // Ensure that the GC doesn't collect any Element set from C#
  // as the underlying C++ class stores a shallow copy
  private Element elementReference;
%}

%typemap(csin,
         post="      elementReference = $csinput;"
         ) Element *e "Element.getCPtr($csinput)"
</pre>
</div>

<p>
The 'cscode' typemap simply adds in the specified code into the C# proxy class.
The 'csin' typemap matches the input parameter type and name for the <tt>setElement</tt> method and
the 'post' typemap attribute allows adding code after the PInvoke call.
The 'post' code is generated into a finally block after the PInvoke call so the resulting code isn't quite
as mentioned earlier, <tt>setElement</tt> is actually:
</p>

<div class="code">
<pre>
  public void setElement(Element e) {
    try {
      examplePINVOKE.Container_setElement(swigCPtr, Element.getCPtr(e));
    } finally {
      elementReference = e;
    }
  }
</pre>
</div>


<H3><a name="CSharp_date_marshalling">22.8.3 Date marshalling using the csin typemap and associated attributes</a></H3>


<p>
The <a href="Java.html#Java_nan_exception_typemap">NaN Exception example</a> is a simple example of the "javain" typemap and its 'pre' attribute.
This example demonstrates how a C++ date class, say <tt>CDate</tt>, can be mapped onto the standard .NET date class,
<tt>System.DateTime</tt> by using the 'pre', 'post' and 'pgcppname' attributes of the "csin" typemap (the C# equivalent to the "javain" typemap).
The example is an equivalent to the <a href="Java.html#Java_date_marshalling">Java Date marshalling example</a>.
The idea is that the <tt>System.DateTime</tt> is used wherever the C++ API uses a <tt>CDate</tt>.
Let's assume the code being wrapped is as follows:
</p>

<div class="code">
<pre>
class CDate {
public:
  CDate();
  CDate(int year, int month, int day);
  int getYear();
  int getMonth();
  int getDay();
  ...
};
struct Action {
  static int doSomething(const CDate &amp;dateIn, CDate &amp;dateOut);
  Action(const CDate &amp;date, CDate &amp;dateOut);
};
</pre>
</div>

<p>
Note that <tt>dateIn</tt> is const and therefore read only and <tt>dateOut</tt> is a non-const output type.
</p>

<p>
First let's look at the code that is generated by default, where the C# proxy class <tt>CDate</tt> is used in the proxy interface:
</p>

<div class="code">
<pre>
public class Action : global::System.IDisposable {
  ...
  public Action(CDate dateIn, CDate dateOut) 
      : this(examplePINVOKE.new_Action(CDate.getCPtr(dateIn), CDate.getCPtr(dateOut)), true) {
    if (examplePINVOKE.SWIGPendingException.Pending) 
      throw examplePINVOKE.SWIGPendingException.Retrieve();
  }

  public int doSomething(CDate dateIn, CDate dateOut) {
    int ret = examplePINVOKE.Action_doSomething(swigCPtr, 
                                                CDate.getCPtr(dateIn), 
                                                CDate.getCPtr(dateOut));
    if (examplePINVOKE.SWIGPendingException.Pending) 
      throw examplePINVOKE.SWIGPendingException.Retrieve();
    return ret;
  }
}
</pre>
</div>

<p>
The <tt>CDate &amp;</tt> and <tt>const CDate &amp;</tt> C# code is generated from the following two default typemaps:
</p>

<div class="code">
<pre>
%typemap(cstype) SWIGTYPE &amp; "$csclassname"
%typemap(csin) SWIGTYPE &amp; "$csclassname.getCPtr($csinput)"
</pre>
</div>

<p>
where '$csclassname' is translated into the proxy class name, <tt>CDate</tt> and '$csinput' is translated into the name of the parameter, eg <tt>dateIn</tt>.
From C#, the intention is then to call into a modified API with something like:
</p>

<div class="code">
<pre>
System.DateTime dateIn = new System.DateTime(2011, 4, 13);
System.DateTime dateOut = new System.DateTime();

// Note in calls below, dateIn remains unchanged and dateOut 
// is set to a new value by the C++ call
Action action = new Action(dateIn, out dateOut);
dateIn = new System.DateTime(2012, 7, 14);
</pre>
</div>

<p>
To achieve this mapping, we need to alter the default code generation slightly so that at the C# layer, 
a <tt>System.DateTime</tt> is converted into a <tt>CDate</tt>. 
The intermediary layer will still take a pointer to the underlying <tt>CDate</tt> class.
The typemaps to achieve this are shown below.
</p>

<div class="code">
<pre>
%typemap(cstype) const CDate &amp; "System.DateTime"
%typemap(csin, 
         pre="    CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);"
        ) const CDate &amp;
         "$csclassname.getCPtr(temp$csinput)"

%typemap(cstype) CDate &amp; "out System.DateTime"
%typemap(csin, 
         pre="    CDate temp$csinput = new CDate();", 
         post="      $csinput = new System.DateTime(temp$csinput.getYear(),"
              " temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
         cshin="out $csinput"
        ) CDate &amp;
         "$csclassname.getCPtr(temp$csinput)"

</pre>
</div>

<p>
The resulting generated proxy code in the <tt>Action</tt> class follows:
 </p>

<div class="code">
<pre>
public class Action : global::System.IDisposable {
  ...
  public int doSomething(System.DateTime dateIn, out System.DateTime dateOut) {
    CDate tempdateIn = new CDate(dateIn.Year, dateIn.Month, dateIn.Day);
    CDate tempdateOut = new CDate();
    try {
      int ret = examplePINVOKE.Action_doSomething(swigCPtr, 
                                                  CDate.getCPtr(tempdateIn), 
                                                  CDate.getCPtr(tempdateOut));
      if (examplePINVOKE.SWIGPendingException.Pending) 
        throw examplePINVOKE.SWIGPendingException.Retrieve();
      return ret;
    } finally {
      dateOut = new System.DateTime(tempdateOut.getYear(), 
                                    tempdateOut.getMonth(), tempdateOut.getDay(), 0, 0, 0);
    }
  }

  static private global::System.IntPtr SwigConstructAction(System.DateTime dateIn, out System.DateTime dateOut) {
    CDate tempdateIn = new CDate(dateIn.Year, dateIn.Month, dateIn.Day);
    CDate tempdateOut = new CDate();
    try {
      return examplePINVOKE.new_Action(CDate.getCPtr(tempdateIn), CDate.getCPtr(tempdateOut));
    } finally {
      dateOut = new System.DateTime(tempdateOut.getYear(), 
                                    tempdateOut.getMonth(), tempdateOut.getDay(), 0, 0, 0);
    }
  }

  public Action(System.DateTime dateIn, out System.DateTime dateOut) 
      : this(Action.SwigConstructAction(dateIn, out dateOut), true) {
    if (examplePINVOKE.SWIGPendingException.Pending) 
      throw examplePINVOKE.SWIGPendingException.Retrieve();
  }
}
</pre>
</div>

<p>
A few things to note:
</p>
<ul>
  <li> The "cstype" typemap has changed the parameter type to <tt>System.DateTime</tt> instead of the default generated <tt>CDate</tt> proxy.
  <li> The non-const <tt>CDate &amp;</tt> type is marshalled as a reference parameter in C# as the date cannot be explicitly set once the object has been created, so a new object is created instead.
  <li> The code in the 'pre' attribute appears before the intermediary call (<tt>examplePINVOKE.new_Action</tt> / <tt>examplePINVOKE.Action_doSomething</tt>).
  <li> The code in the 'post' attribute appears after the intermediary call.
  <li> A try .. finally block is generated with the intermediary call in the try block and 'post' code in the finally block.
  The alternative of just using a temporary variable for the return value from the intermediary call and the 'post' code being inserted before the
  return statement is not possible given that the intermediary call and method return comes from a single source (the "csout" typemap).
  <li> The temporary variables in the "csin" typemaps are called <tt>temp$csin</tt>, where "$csin" is replaced with the parameter name.
  "$csin" is used to mangle the variable name so that more than one <tt>CDate &amp;</tt> type can be used as a parameter in a method, otherwise two or 
  more local variables with the same name would be generated.
  <li> The use of the "csin" typemap causes a constructor helper function (<tt>SwigConstructAction</tt>) to be generated.
  This allows C# code to be called before the intermediary call made in the constructor initialization list.
  <li> The 'cshin' attribute is required for the <tt>SwigConstructAction</tt> constructor helper function so that the 2nd parameter is declared as <tt>out dateOut</tt> instead of just <tt>dateOut</tt>.
</ul>

<p>
So far we have considered the date as an input only and an output only type.
Now let's consider <tt>CDate *</tt> used as an input/output type. Consider the following C++ function which modifies the date passed in:
</p>

<div class="code">
<pre>
void addYears(CDate *pDate, int years) {
  *pDate = CDate(pDate-&gt;getYear() + years, pDate-&gt;getMonth(), pDate-&gt;getDay());
}
</pre>
</div>

<p>
If usage of <tt>CDate *</tt> commonly follows this input/output pattern, usage from C# like the following
</p>

<div class="code">
<pre>
System.DateTime christmasEve = new System.DateTime(2000, 12, 24);
example.addYears(ref christmasEve, 10); // christmasEve now contains 2010-12-24
</pre>
</div>

<p>
will be possible with the following <tt>CDate *</tt> typemaps
</p>

<div class="code">
<pre>
%typemap(cstype, out="System.DateTime") CDate * "ref System.DateTime"

%typemap(csin,
         pre="    CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);",
         post="      $csinput = new System.DateTime(temp$csinput.getYear(),"
              " temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
         cshin="ref $csinput"
        ) CDate *
         "$csclassname.getCPtr(temp$csinput)"
</pre>
</div>

<p>
Globals are wrapped by the module class and for a module called example, the typemaps result in the following code:
</p>

<div class="code">
<pre>
public class example {
  public static void addYears(ref System.DateTime pDate, int years) {
    CDate temppDate = new CDate(pDate.Year, pDate.Month, pDate.Day);
    try {
      examplePINVOKE.addYears(CDate.getCPtr(temppDate), years);
    } finally {
      pDate = new System.DateTime(temppDate.getYear(), temppDate.getMonth(), temppDate.getDay(),
                                  0, 0, 0);
    }
  }
  ...
}
</pre>
</div>

<p>
The following typemap is the same as the previous but demonstrates how a using block can be used for the temporary variable.
The only change to the previous typemap is the introduction of the 'terminator' attribute to terminate the <tt>using</tt> block.
The <tt>subtractYears</tt> method is nearly identical to the above <tt>addYears</tt> method.
</p>

<div class="code">
<pre>
%typemap(csin,
  pre="    using (CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day)) {",
  post="      $csinput = new System.DateTime(temp$csinput.getYear(),"
       " temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
  terminator="    } // terminate temp$csinput using block",
  cshin="ref $csinput"
 ) CDate *
  "$csclassname.getCPtr(temp$csinput)"

void subtractYears(CDate *pDate, int years) {
  *pDate = CDate(pDate-&gt;getYear() - years, pDate-&gt;getMonth(), pDate-&gt;getDay());
}
</pre>
</div>

<p>
The resulting generated code shows the termination of the <tt>using</tt> block:
</p>

<div class="code">
<pre>
public class example {
  public static void subtractYears(ref System.DateTime pDate, int years) {
    using (CDate temppDate = new CDate(pDate.Year, pDate.Month, pDate.Day)) {
    try {
      examplePINVOKE.subtractYears(CDate.getCPtr(temppDate), years);
    } finally {
      pDate = new System.DateTime(temppDate.getYear(), temppDate.getMonth(), temppDate.getDay(),
                                  0, 0, 0);
    }
    } // terminate temppDate using block
  }
  ...
}
</pre>
</div>

<H3><a name="CSharp_date_properties">22.8.4 A date example demonstrating marshalling of C# properties</a></H3>


<p>
The previous section looked at converting a C++ date class to <tt>System.DateTime</tt> for parameters.
This section extends this idea so that the correct marshalling is obtained when wrapping C++ variables.
Consider the same <tt>CDate</tt> class from the previous section and a global variable:
</p>

<div class="code">
<pre>
CDate ImportantDate = CDate(1999, 12, 31);
</pre>
</div>

<p>
The aim is to use <tt>System.DateTime</tt> from C# when accessing this date as shown in the following usage where the module name is 'example':
</p>

<div class="code">
<pre>
example.ImportantDate = new System.DateTime(2000, 11, 22);
System.DateTime importantDate = example.ImportantDate;
Console.WriteLine("Important date: " + importantDate);
</pre>
</div>

<p>
When SWIG wraps a variable that is a class/struct/union, it is wrapped using a pointer to the type for the reasons given in <a href="SWIG.html#SWIG_structure_data_members">Structure data members</a>.
The typemap type required is thus <tt>CDate *</tt>. Given that the previous section already designed <tt>CDate *</tt> typemaps, we'll use those same typemaps plus the 'csvarin' and 'csvarout' typemaps.

<div class="code">
<pre>
%typemap(cstype, out="System.DateTime") CDate * "ref System.DateTime"

%typemap(csin,
         pre="    CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);",
         post="      $csinput = new System.DateTime(temp$csinput.getYear(),"
              " temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
         cshin="ref $csinput"
        ) CDate *
         "$csclassname.getCPtr(temp$csinput)"

%typemap(csvarin, excode=SWIGEXCODE2) CDate * %{
    /* csvarin typemap code */
    set {
      CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);
      $imcall;$excode
    } %}

%typemap(csvarout, excode=SWIGEXCODE2) CDate * %{
    /* csvarout typemap code */
    get {
      global::System.IntPtr cPtr = $imcall;
      CDate tempDate = (cPtr == global::System.IntPtr.Zero) ? null : new CDate(cPtr, $owner);$excode
      return new System.DateTime(tempDate.getYear(), tempDate.getMonth(), tempDate.getDay(),
                                 0, 0, 0);
    } %}
</pre>
</div>

<p>
For a module called example, the typemaps result in the following code:
</p>

<div class="code">
<pre>
public class example {
  public static System.DateTime ImportantDate {
    /* csvarin typemap code */
    set {
      CDate tempvalue = new CDate(value.Year, value.Month, value.Day);
      examplePINVOKE.ImportantDate_set(CDate.getCPtr(tempvalue));
    } 
    /* csvarout typemap code */
    get {
      global::System.IntPtr cPtr = examplePINVOKE.ImportantDate_get();
      CDate tempDate = (cPtr == global::System.IntPtr.Zero) ? null : new CDate(cPtr, false);
      return new System.DateTime(tempDate.getYear(), tempDate.getMonth(), tempDate.getDay(),
                                 0, 0, 0);
    } 
  }
  ...
}
</pre>
</div>

<p>
Some points to note:
</p>

<ul>
  <li>The property set comes from the 'csvarin' typemap and the property get comes from the 'csvarout' typemap.
  <li>The type used for the property comes from the 'cstype' typemap. This particular example has the 'out' attribute set in the typemap and as it is specified, it is used in preference to the type in the typemap body. This is because the type in the 'out' attribute can never include modifiers such as 'ref', thereby avoiding code such as <tt>public static ref System.DateTime ImportantDate { ...</tt>, which would of course not compile.
  <li>The <tt>$excode</tt> special variable expands to nothing as there are no exception handlers specified in any of the unmanaged code typemaps (in fact the marshalling was done using the default unmanaged code typemaps.)
  <li>The <tt>$imcall</tt> typemap expands to the appropriate intermediary method call in the <tt>examplePINVOKE</tt> class.
  <li>The <tt>$csinput</tt> special variable in the 'csin' typemap always expands to <tt>value</tt> for properties. In this case <tt>$csclassname.getCPtr(temp$csinput)</tt> expands to <tt>CDate.getCPtr(tempvalue)</tt>.
  <li>The 'csin' typemap has 'pre', 'post' and 'cshin' attributes, and these are all ignored in the property set. The code in these attributes must instead be replicated within the 'csvarin' typemap. The line creating the <tt>temp$csinput</tt> variable is such an example; it is identical to what is in the 'pre' attribute.
</ul>

<H3><a name="CSharp_date_pre_post_directors">22.8.5 Date example demonstrating the 'pre' and 'post' typemap attributes for directors</a></H3>


<p>
The 'pre' and 'post' attributes in the "csdirectorin" typemap act like the attributes of the same name in the "csin" typemap.
For example if we modify the <a href="#CSharp_date_marshalling">Date marshalling example</a> like this:
</p>

<div class="code"><pre>
class CDate {
  ...
  void setYear(int);
  void setMonth(int);
  void setDay(int);
};
struct Action {
  virtual void someCallback(CDate &amp;date);
  virtual ~Action();
  ...
};
</pre></div>

<p>
and declare <tt>%feature ("director")</tt> for the <tt>Action</tt> class, we would have to define additional
marshalling rules for <tt>CDate &amp;</tt> parameter. The typemap may look like this:
</p>

<div class="code"><pre>
%typemap(csdirectorin,
         pre="System.DateTime temp$iminput = new System.DateTime();",
         post="CDate temp2$iminput = new CDate($iminput, false);\n"
              "temp2$iminput.setYear(tempdate.Year);\n"
              "temp2$iminput.setMonth(tempdate.Month);\n"
              "temp2$iminput.setDay(tempdate.Day);"
         ) CDate &amp;date "out temp$iminput"
</pre></div>

<p>
The generated proxy class code will then contain the following wrapper for calling user-overloaded <tt>someCallback()</tt>:
</p>

<div class="code"><pre>
...
  private void SwigDirectorMethodsomeCallback(global::System.IntPtr date) {
    System.DateTime tempdate = new System.DateTime();
    try {
      someCallback(out tempdate);
    } finally {
      // we create a managed wrapper around the existing C reference, just for convenience
      CDate temp2date = new CDate(date, false);
      temp2date.setYear(tempdate.Year);
      temp2date.setMonth(tempdate.Month);
      temp2date.setDay(tempdate.Day);
    }
  }
...
</pre></div>
<p>
Pay special attention to the memory management issues, using these attributes.
</p>


<H3><a name="CSharp_partial_classes">22.8.6 Turning proxy classes into partial classes</a></H3>


<p>
C# supports the notion of partial classes whereby a class definition can be split into more than one file.
It is possible to turn the wrapped C++ class into a partial C# class using the <tt>csclassmodifiers</tt> typemap.
Consider a C++ class called <tt>ExtendMe</tt>:
</p>

<div class="code">
<pre>
class ExtendMe {
public:
  int Part1() { return 1; }
};
</pre>
</div>

<p>
The default C# proxy class generated is:
</p>

<div class="code">
<pre>
public class ExtendMe : global::System.IDisposable {
  ...
  public int Part1() {
    ...
  }
}
</pre>
</div>

<p>
The default csclassmodifiers typemap shipped with SWIG is
</p>

<div class="code">
<pre>
%typemap(csclassmodifiers) SWIGTYPE "public class"
</pre>
</div>

<p>
Note that the type used is the special catch all type <tt>SWIGTYPE</tt>.
If instead we use the following typemap to override this for just the <tt>ExtendMe</tt> class:
</p>

<div class="code">
<pre>
%typemap(csclassmodifiers) ExtendMe "public partial class"
</pre>
</div>

<p>
The C# proxy class becomes a partial class:
</p>

<div class="code">
<pre>
public partial class ExtendMe : global::System.IDisposable {
  ...
  public int Part1() {
    ...
  }
}
</pre>
</div>

<p>
You can then of course declare another part of the partial class elsewhere, for example:
</p>

<div class="code">
<pre>
public partial class ExtendMe : global::System.IDisposable {
  public int Part2() {
    return 2;
  }
}
</pre>
</div>

<p>
and compile the following code:
</p>

<div class="code">
<pre>
ExtendMe em = new ExtendMe();
Console.WriteLine("part1: {0}", em.Part1());
Console.WriteLine("part2: {0}", em.Part2());
</pre>
</div>

<p>
demonstrating that the class contains methods calling both unmanaged code - <tt>Part1()</tt> and managed code - <tt>Part2()</tt>.
The following example is an alternative approach to adding managed code to the generated proxy class.
</p>

<H3><a name="CSharp_sealed_proxy_class">22.8.7 Turning proxy classes into sealed classes</a></H3>


<p>
The technique in the previous section can be used to make the proxy class a sealed class.
Consider a C++ class <tt>NotABaseClass</tt> that you don't want to be derived from in C#:
</p>

<div class="code">
<pre>
struct NotABaseClass {
  NotABaseClass();
  ~NotABaseClass();
};
</pre>
</div>

<p>
The default C# proxy class method generated with Dispose method is:
</p>

<div class="code">
<pre>
public class NotABaseClass : global::System.IDisposable {
  ...
  public virtual void Dispose() {
    ...
  }
}
</pre>
</div>

<p>
The <tt>csclassmodifiers</tt> typemap can be used to modify the class modifiers and
the <tt>csmethodmodifiers</tt> feature can be used on the destructor to modify the proxy's <tt>Dispose</tt> method:
</p>

<div class="code">
<pre>
%typemap(csclassmodifiers) NotABaseClass "public sealed class"
%csmethodmodifiers NotABaseClass::~NotABaseClass "public /*virtual*/";
</pre>
</div>

<p>
The relevant generated code is thus:
</p>

<div class="code">
<pre>
public sealed class NotABaseClass : global::System.IDisposable {
  ...
  public /*virtual*/ void Dispose() {
    ...
  }
}
</pre>
</div>

<p>
Any attempt to derive from the <tt>NotABaseClass</tt> in C# will result in a C# compiler error, for example:
</p>

<div class="code">
<pre>
public class Derived : NotABaseClass {
};
</pre>
</div>
<div class="shell">
<pre>
runme.cs(6,14): error CS0509: `Derived': cannot derive from sealed type `NotABaseClass'
</pre>
</div>

<p>
Finally, if you get a warning about use of 'protected' in the generated base class:
</p>

<div class="shell">
<pre>
NotABaseClass.cs(14,18): warning CS0628: `NotABaseClass.swigCMemOwn': new protected member declared in sealed class
</pre>
</div>

<p>
Either suppress the warning or modify the generated code by copying and tweaking the default
'csbody' typemap code in csharp.swg by modifying swigCMemOwn to not be protected.
</p>

<H3><a name="CSharp_extending_proxy_class">22.8.8 Extending proxy classes with additional C# code</a></H3>


<p>
The previous example showed how to use partial classes to add functionality to a generated C# proxy class.
It is also possible to extend a wrapped struct/class with C/C++ code by using the <a href="SWIGPlus.html#SWIGPlus_class_extension">%extend directive</a>.
A third approach is to add some C# methods into the generated proxy class with the <tt>cscode</tt> typemap.
If we declare the following typemap before SWIG parses the <tt>ExtendMe</tt> class used in the previous example
</p>

<div class="code">
<pre>
%typemap(cscode) ExtendMe %{
  public int Part3() {
    return 3;
  }
%}

</pre>
</div>

<p>
The generated C# proxy class will instead be:
</p>

<div class="code">
<pre>
public class ExtendMe : global::System.IDisposable {
  ...
  public int Part3() {
    return 3;
  }
  public int Part1() {
    ...
  }
}
</pre>
</div>

<H3><a name="CSharp_enum_underlying_type">22.8.9 Underlying type for enums</a></H3>


<P>
C# enums use int as the underlying type for each enum item.
If you wish to change the underlying type to something else, then use the <tt>csbase</tt> typemap.
For example when your C++ code uses a value larger than int, this is necessary as the C# compiler will not compile values which are too large to fit into an int.
Here is an example:
</p>

<div class="code">
<pre>
%typemap(csbase) BigNumbers "uint"
%inline %{
  enum BigNumbers { big=0x80000000, bigger };
%}
</pre>
</div>

<p>
The generated enum will then use the given underlying type and compile correctly:
</p>

<div class="code">
<pre>
public enum BigNumbers : uint {
  big = 0x80000000,
  bigger
}
</pre>
</div>

</body>
</html>