1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>SWIG and C++11</title>
<link rel="stylesheet" type="text/css" href="style.css">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body bgcolor="#ffffff">
<H1><a name="CPlusPlus11">7 SWIG and C++11</a></H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#CPlusPlus11_introduction">Introduction</a>
<li><a href="#CPlusPlus11_core_language_changes">Core language changes</a>
<ul>
<li><a href="#CPlusPlus11_rvalue_reference_and_move_semantics">Rvalue reference and move semantics</a>
<ul>
<li><a href="#CPlusPlus11_rvalue_reference_inputs">Rvalue reference inputs</a>
<li><a href="#CPlusPlus11_rvalue_reference_outputs">Rvalue reference outputs</a>
<li><a href="#CPlusPlus11_move_only">Movable and move-only types by value</a>
</ul>
<li><a href="#CPlusPlus11_generalized_constant_expressions">Generalized constant expressions</a>
<li><a href="#CPlusPlus11_extern_template">Extern template</a>
<li><a href="#CPlusPlus11_initializer_lists">Initializer lists</a>
<li><a href="#CPlusPlus11_uniform_initialization">Uniform initialization</a>
<li><a href="#CPlusPlus11_type_inference">Type inference</a>
<li><a href="#CPlusPlus11_range_based_for_loop">Range-based for-loop</a>
<li><a href="#CPlusPlus11_lambda_functions_and_expressions">Lambda functions and expressions</a>
<li><a href="#CPlusPlus11_alternate_function_syntax">Alternate function syntax</a>
<li><a href="#CPlusPlus11_object_construction_improvement">Object construction improvement</a>
<li><a href="#CPlusPlus11_explicit_overrides_final">Explicit overrides and final</a>
<li><a href="#CPlusPlus11_null_pointer_constant">Null pointer constant</a>
<li><a href="#CPlusPlus11_strongly_typed_enumerations">Strongly typed enumerations</a>
<li><a href="#CPlusPlus11_double_angle_brackets">Double angle brackets</a>
<li><a href="#CPlusPlus11_explicit_conversion_operators">Explicit conversion operators</a>
<li><a href="#CPlusPlus11_alias_templates">Type alias and alias templates</a>
<li><a href="#CPlusPlus11_unrestricted_unions">Unrestricted unions</a>
<li><a href="#CPlusPlus11_variadic_templates">Variadic templates</a>
<li><a href="#CPlusPlus11_new_char_literals">New character literals</a>
<li><a href="#CPlusPlus11_new_string_literals">New string literals</a>
<li><a href="#CPlusPlus11_user_defined_literals">User-defined literals</a>
<li><a href="#CPlusPlus11_thread_local_storage">Thread-local storage</a>
<li><a href="#CPlusPlus11_defaulted_deleted">Explicitly defaulted functions and deleted functions</a>
<li><a href="#CPlusPlus11_type_long_long_int">Type long long int</a>
<li><a href="#CPlusPlus11_static_assertions">Static assertions</a>
<li><a href="#CPlusPlus11_sizeof">Allow sizeof to work on members of classes without an explicit object</a>
<li><a href="#CPlusPlus11_noexcept">Exception specifications and noexcept</a>
<li><a href="#CPlusPlus11_alignment">Control and query object alignment</a>
<li><a href="#CPlusPlus11_attributes">Attributes</a>
<li><a href="#CPlusPlus11_ref_qualifiers">Methods with ref-qualifiers</a>
</ul>
<li><a href="#CPlusPlus11_standard_library_changes">Standard library changes</a>
<ul>
<li><a href="#CPlusPlus11_threading_facilities">Threading facilities</a>
<li><a href="#CPlusPlus11_tuple_types">Tuple types</a>
<li><a href="#CPlusPlus11_hash_tables">Hash tables</a>
<li><a href="#CPlusPlus11_regular_expressions">Regular expressions</a>
<li><a href="#CPlusPlus11_general_purpose_smart_pointers">General-purpose smart pointers</a>
<li><a href="#CPlusPlus11_extensible_random_number_facility">Extensible random number facility</a>
<li><a href="#CPlusPlus11_wrapper_reference">Wrapper reference</a>
<li><a href="#CPlusPlus11_polymorphous_wrappers_for_function_objects">Polymorphic wrappers for function objects</a>
<li><a href="#CPlusPlus11_type_traits_for_metaprogramming">Type traits for metaprogramming</a>
<li><a href="#CPlusPlus11_uniform_method_for_computing_return_type_of_function_objects">Uniform method for computing return type of function objects</a>
</ul>
</ul>
</div>
<!-- INDEX -->
<H2><a name="CPlusPlus11_introduction">7.1 Introduction</a></H2>
<p>This chapter gives you a brief overview about the SWIG
implementation of the C++11 standard. This part of SWIG is still a work in
progress.
</p>
<p>SWIG supports the new C++ syntax changes with some minor limitations
in some areas such as decltype expressions and variadic templates. Wrappers for the
new STL types (unordered_ containers, result_of, tuples) are incomplete.
The wrappers for the new containers would work much like the C++03 containers and
users are welcome to help by adapting the existing container interface files and submitting them
as a patch for inclusion in future versions of SWIG.
</p>
<H2><a name="CPlusPlus11_core_language_changes">7.2 Core language changes</a></H2>
<H3><a name="CPlusPlus11_rvalue_reference_and_move_semantics">7.2.1 Rvalue reference and move semantics</a></H3>
<p>
SWIG correctly parses the rvalue reference syntax '&&',
for example the typical usage of it in the move constructor and move assignment operator below:
</p>
<div class="code"><pre>
class MyClass {
...
std::vector<int> numbers;
public:
MyClass() : numbers() {}
MyClass(MyClass &&other) : numbers(std::move(other.numbers)) {}
MyClass & operator=(MyClass &&other) {
numbers = std::move(other.numbers);
return *this;
}
};
</pre></div>
<p>
Rvalue references are designed for C++ temporaries and are not particularly useful when used from non-C++ target languages.
One option is to just ignore them via <tt>%ignore</tt>.
For example, ignore the move constructor:
</p>
<div class="code"><pre>
%ignore MyClass::MyClass(MyClass &&);
</pre></div>
<H4><a name="CPlusPlus11_rvalue_reference_inputs">7.2.1.1 Rvalue reference inputs</a></H4>
<p>
Rvalue reference parameters are useful as input parameters in C++ for implementing move semantics, such as,
in the move constructor and move assignment operator.
This type of usage can be useful from target languages too to avoid copying large objects.
</p>
<p>
If you do wrap a function/contructor with an rvalue reference parameter and pass a proxy class to it, SWIG will assume that after the call, the rvalue reference parameter object will have been 'moved'.
The proxy class passed as the rvalue reference, will own the underlying C++ object up until it is used as an rvalue reference parameter.
Afterwards, the proxy class will have the underlying C++ pointer set to the nullptr so that the proxy class instance cannot be used again and the underlying (moved from) C++ object will be deleted after the function/constructor call has returned.
</p>
<p>
In this way, the SWIG proxy class works much like an exclusively owned smart pointer (think of <tt>std::unique_ptr</tt>), passing ownership to the called C++ function/constructor.
Let's consider an example in Java using the wrapped proxy class from above:
</p>
<div class="targetlang"><pre>
MyClass mc = new MyClass();
MyClass mc1 = new MyClass(mc); // move constructor
MyClass mc2 = new MyClass(mc); // move constructor fails
</pre></div>
<p>
The second call to the move constructor will fail as the <tt>mc</tt> proxy instance has been moved.
Each target language handles the moved proxy class slightly differently when attempting to move it again, but typically you'll get an exception such as in Java:
</p>
<div class="shell">
<pre>
Exception in thread "main" java.lang.RuntimeException: Cannot release ownership as memory is not owned
at MyClass.swigRelease(MyClass.java:27)
at MyClass.<init>(MyClass.java:55)
at runme.main(runme.java:18)
</pre>
</div>
<p>
Note that both normal copy assignment operators as well as move assignment operators are ignored by default in the target languages with the following warning:
</p>
<div class="shell">
<pre>
example.i:18: Warning 503: Can't wrap 'operator =' unless renamed to a valid identifier.
</pre>
</div>
<p>
Using a <tt>%rename</tt> will remove the warning and also makes the move assignment operator available from the target language:
</p>
<div class="code"><pre>
%rename(MoveAssign) MyClass::operator=(MyClass &&);
</pre></div>
<p>
You can then use it, but like the move constructor example above, you cannot use
a proxy class once it has already been moved:
</p>
<div class="targetlang"><pre>
MyClass mc = new MyClass();
MyClass mc2 = mc.MoveAssign(mc);
MyClass mc3 = mc.MoveAssign(mc); // Use of mc again will fail
</pre></div>
<p>
It is of course perfectly possible in C++ for a function/constructor to not move an object passed to it in an rvalue reference parameter. The assumption that SWIG makes would then not hold and customisation of the appropriate input typemaps would be required.
For scripting languages, this would be for the 'in' typemap and for the non-scripting languages additional typemaps such as the 'javain' typemap, which is used to set the memory ownership of the underlying C++ object for Java, would also need copying and modifying appropriately.
</p>
<p>
<b>Compatibility note:</b>
SWIG-4.1.0 changed the way that rvalue reference parameters were handled and implemented typemaps assuming that the
proxy class owns the underlying C++ object and transfers ownership of the object when a function/constructor with an rvalue reference parameter is called.
</p>
<H4><a name="CPlusPlus11_rvalue_reference_outputs">7.2.1.2 Rvalue reference outputs</a></H4>
<p>
While rvalue reference parameter inputs are not uncommon in C++ and can be usefully utilised from target languages, this cannot be said for rvalue reference outputs.
Firstly, it is quite unusual in C++ to have functions that return an rvalue reference.
Secondly, these cases are nigh on impossible to use from a target language.
The main problem is these references are for C++ compiler temporaries used on the stack and the target languages use objects on the heap
and the concept of compiler temporary objects doesn't make sense from another language.
</p>
<p>
Using <tt>MyClass</tt> from earlier and this C++ code:
</p>
<div class="code"><pre>
void use(MyClass &&mc);
MyClass && get1();
MyClass & get2();
</pre></div>
<p>
SWIG wraps the <tt>get1</tt> and <tt>get2</tt> functions more or less identically.
The returned references are converted into pointers that are not owned by the target language.
It means that the following perfectly valid C++ has no equivalent in any of the target languages:
</p>
<div class="code"><pre>
use(get1());
use(std::move(get2()));
</pre></div>
<p>
An attempt to call the equivalent <tt>use(get1())</tt> from one of the target languages will result in the ownership failure mentioned in the previous section as the object being passed to the <tt>use</tt> function is not owned by the proxy class.
In order to own the object, it would need to be cloned for the object to move from the stack to the heap, for which an appropriate clone function would be required, but may not even be available.
Note that a move constructor or copy constructor may slice the object when inheritance is involved.
Alternatively, customising the input rvalue reference typemap, as mentioned in the previous section, could remove the ownership requirement.
Another alternative would be to modify the output rvalue reference typemap to always clone the rvalue reference object.
Fortunately you're highly unlikely to have to solve any of these issues!
</p>
<H4><a name="CPlusPlus11_move_only">7.2.1.3 Movable and move-only types by value</a></H4>
<p>
SWIG has traditionally relied on wrapped C++ types to be copy constructible or copy assignable, either via an explicit or implicit copy constructor and copy assignment operator.
Prior to C++11, a function could not return nor take a type by value that was not copyable.
In C++11 this is no longer the case. A type can also be movable if it has has a move constructor and a move assignment operator.
A move-only type is movable but not copyable; it has both the copy constructor and copy assignment operator deleted.
Movable types can appear in function signatures for passing 'by value' and in C++11 the object can then be moved rather than copied.
</p>
<p>
SWIG has support for both copyable and/or movable types.
Support for move semantics is quite seamless when returning by value from a function.
Support for move semantics is less so and may require some customisation when passing by value to a function.
First let's consider returning by value from a function.
</p>
<p>
The support for function return values is generically implemented in the "out" <tt>SWIGTYPE</tt> typemap which supports any type, including copyable, movable and move-only types.
The typemap code is very simple and written so that the compiler will call the move constructor if possible,
otherwise the copy constructor:
</p>
<div class="code"><pre>
%typemap(out) SWIGTYPE %{
$result = new $1_ltype($1);
%}
</pre></div>
<p>
The above typemap is for C# and when used to wrap a move-only type such as:
</p>
<div class="code"><pre>
struct MoveOnly {
int val;
MoveOnly(): val(0) {}
MoveOnly(const MoveOnly &) = delete;
MoveOnly(MoveOnly &&) = default;
MoveOnly & operator=(const MoveOnly &) = delete;
MoveOnly & operator=(MoveOnly &&) = default;
static MoveOnly create() { return MoveOnly(); }
static void take(MoveOnly mo);
};
</pre></div>
<p>
will generate wrapper code for the <tt>create</tt> factory method:
</p>
<div class="code"><pre>
SWIGEXPORT void * SWIGSTDCALL CSharp_MoveOnly_create() {
void * jresult ;
SwigValueWrapper< MoveOnly > result;
result = MoveOnly::create();
jresult = new MoveOnly(result);
return jresult;
}
</pre></div>
<p>
<tt>SwigValueWrapper</tt> is covered in <a href="SWIGPlus.html#SWIGPlus_nn19">Pass and return by value</a>.
Note that the generated code could be optimised further using the <a href="Typemaps.html#Typemaps_optimal">"optimal" attribute</a>
in the "out" typemap, so if the above typemap is customised as follows (note that this is C# specific):
</p>
<div class="code"><pre>
%typemap(out, optimal="1") MoveOnly %{
$result = new $1_ltype($1);
%}
</pre></div>
<p>
then the generated code will result in the object being optimally moved:
</p>
<div class="code"><pre>
SWIGEXPORT void * SWIGSTDCALL CSharp_MoveOnly_create() {
void * jresult ;
jresult = new MoveOnly(MoveOnly::create());
return jresult;
}
</pre></div>
<p>
Now let's consider passing by value.
We'll consider three cases; namely types that are:
</p>
<ol>
<li> Copyable and not movable - <tt>CopyOnly</tt>.</li>
<li> Copyable and movable - <tt>MovableCopyable</tt>.</li>
<li> Movable and not copyable - <tt>MoveOnly</tt>.</li>
</ol>
<p>
and for clarification, define these two additional types as follows:
</p>
<div class="code"><pre>
struct CopyOnly {
int val;
CopyOnly(): val(0) {}
CopyOnly(const CopyOnly &) = default;
CopyOnly & operator=(const CopyOnly &) = default;
static CopyOnly create() { return CopyOnly(); }
static void take(CopyOnly co);
};
struct MovableCopyable {
int val;
MovableCopyable(): val(0) {}
MovableCopyable(const MovableCopyable &) = default;
MovableCopyable(MovableCopyable &&) = default;
MovableCopyable & operator=(const MovableCopyable &) = default;
MovableCopyable & operator=(MovableCopyable &&) = default;
static MovableCopyable create() { return MovableCopyable(); }
static void take(MovableCopyable mc);
};
</pre></div>
<p>
The generated code is shown below for <tt>CopyOnly::take</tt> (with additional comments for when constructors and assignment operators are called).
While the code shown is C# specific, the generated constructor and/or assignment operator calls are ultimately the same for all target languages.
</p>
<div class="code"><pre>
SWIGEXPORT void SWIGSTDCALL CSharp_CopyOnly_take(void * jarg1) {
CopyOnly arg1 ; // (a) Default constructor
CopyOnly *argp1 ;
argp1 = (CopyOnly *)jarg1;
if (!argp1) {
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentNullException, "Attempt to dereference null CopyOnly", 0);
return ;
}
arg1 = *argp1; // (b) Copy assignment
CopyOnly::take(SWIG_STD_MOVE(arg1)); // (c) Copy constructor
}
</pre></div>
<p>
Note that <tt>SWIG_STD_MOVE</tt> is a macro defined as shown below to use <tt>std::move</tt> which is only available from C++11 onwards:
</p>
<div class="code"><pre>
#if __cplusplus >=201103L
# define SWIG_STD_MOVE(OBJ) std::move(OBJ)
#else
# define SWIG_STD_MOVE(OBJ) OBJ
#endif
</pre></div>
<p>
Also note: <i>(c) Copy constructor</i>.
Yes, when passing by value the copy constructor is called for all versions of C++, even C++11 and later even though std::move is specified.
It's a C++ language feature for types that don't have move semantics!
</p>
<p>
The generated code for <tt>MovableCopyable::take</tt> is the same as for <tt>CopyOnly::take</tt>, however, the C++ compiler will choose the move constructor this time where commented <i>(c) Move constructor</i>:
</p>
<div class="code"><pre>
SWIGEXPORT void SWIGSTDCALL CSharp_MovableCopyable_take(void * jarg1) {
MovableCopyable arg1 ; // (a) Default constructor
MovableCopyable *argp1 ;
argp1 = (MovableCopyable *)jarg1;
if (!argp1) {
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentNullException, "Attempt to dereference null MovableCopyable", 0);
return ;
}
arg1 = *argp1; // (b) Copy assignment
MovableCopyable::take(SWIG_STD_MOVE(arg1)); // (c) Move constructor
}
</pre></div>
<p>
There are two optimisation opportunities available.
</p>
<ol>
<li> Remove the default constructor call with the <tt>%feature("valuewrapper")</tt> covered in <a href="SWIGPlus.html#SWIGPlus_nn19">Pass and return by value</a> and replace it with <tt>SwigValueWrapper</tt>.
</li>
<li> Apply the SWIGTYPE MOVE typemaps which are designed specifically to implement full move semantics when passing parameters by value.
They replace the copy assignment with a call to <tt>SwigValueWrapper::reset</tt>, which works much like <tt>std::unique_ptr::reset</tt>.
These typemaps could alternatively have replaced the copy assignment with a move assignment, but this is not maximally optimal.
</li>
</ol>
<p>
Simply add the following before the <tt>MovableCopyable::take</tt> method is parsed:
</p>
<div class="code"><pre>
%valuewrapper MovableCopyable;
%include <swigmove.i>
%apply SWIGTYPE MOVE { MovableCopyable }
</pre></div>
<p>
will result in this optimal code where just one move constructor is invoked:
</p>
<div class="code"><pre>
SWIGEXPORT void SWIGSTDCALL CSharp_MovableCopyable_take(void * jarg1) {
SwigValueWrapper< MovableCopyable > arg1 ; // (a) No constructors invoked
MovableCopyable *argp1 ;
argp1 = (MovableCopyable *)jarg1;
if (!argp1) {
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentNullException, "Attempt to dereference null MovableCopyable", 0);
return ;
}
SwigValueWrapper< MovableCopyable >::reset(arg1, argp1); // (b) No constructor or assignment operator invoked
MovableCopyable::take(SWIG_STD_MOVE(arg1)); // (c) Move constructor
}
</pre></div>
<p>
Note that <tt>SwigValueWrapper</tt> will call the destructor for the pointer passed to it in the <tt>reset</tt> function.
This pointer is the underlying C++ object that the proxy class owns.
The details aren't shown, but the 'csin' typemap also generates C# code to ensure that the proxy class releases ownership of the object.
Please see the 'SWIGTYPE MOVE' typemaps in the swigmove.i file provided for each target language.
Therefore full move semantics are implemented; ownership is moved from the proxy class into the C++ layer and the net effect
is the same as using an <a href="#CPlusPlus11_rvalue_reference_inputs">rvalue reference parameter</a> discussed earlier.
</p>
<p>
Lastly, let's consider the <tt>MoveOnly::take</tt> function defined earlier.
By default the generated code fails to compile as <tt>MoveOnly</tt> does not have a copy assignment operator.
SWIG is not designed to select a different typemap automatically for move-only types and the user
must apply the SWIGTYPE MOVE typemaps to ensure that only move-only semantics are used.
However, SWIG is able to automatically use <tt>%feature("valuewrapper")</tt> for move-only
types so it is not necessary to explicitly use this feature.
So in this move-only case, simply add the following before <tt>MoveOnly::take</tt> is parsed, which results in the same optimal code shown above for <tt>MovableCopyable</tt>:
</p>
<div class="code"><pre>
%include <swigmove.i>
%apply SWIGTYPE MOVE { MoveOnly }
</pre></div>
<p>
<b>Compatibility note:</b>
SWIG-4.1.0 introduced support for taking advantage of types with move semantics and making it possible to easily use move only types.
</p>
<H3><a name="CPlusPlus11_generalized_constant_expressions">7.2.2 Generalized constant expressions</a></H3>
<p>SWIG parses and identifies the keyword <tt>constexpr</tt>, but cannot fully utilise it.
These C++ compile time constants are usable as runtime constants from the target languages.
Below shows example usage for assigning a C++ compile time constant from a compile time constant function:
</p>
<div class="code"><pre>
constexpr int XXX() { return 10; }
constexpr int YYY = XXX() + 100;
</pre></div>
<p>
When either of these is used from a target language, a runtime call is made to obtain the underlying constant.
</p>
<H3><a name="CPlusPlus11_extern_template">7.2.3 Extern template</a></H3>
<p>SWIG correctly parses <tt>extern template</tt> explicit instantiation declarations.
However, this template instantiation suppression in a translation unit has no relevance outside of the C++ compiler and so is not used by SWIG.
SWIG only uses <tt>%template</tt> for instantiating and wrapping templates.
Consider the class template below:
</p>
<div class="code"><pre>
// Class template
template class std::vector<int>; // C++03 template explicit instantiation definition in C++
extern template class std::vector<int>; // C++11 template explicit instantiation declaration (extern template)
%template(VectorInt) std::vector<int>; // SWIG template instantiation
</pre></div>
<p>
The above result in warnings:
</p>
<div class="shell">
<pre>
example.i:2: Warning 320: Explicit template instantiation ignored.
example.i:3: Warning 327: Extern template ignored.
</pre>
</div>
<p>
Similarly for the function template below:
</p>
<div class="code"><pre>
// Function template
template void Func<int>(); // C++03 template explicit instantiation definition in C++
extern template void Func<int>(); // C++11 template explicit instantiation declaration (extern template)
%template(FuncInt) Func<int>; // SWIG template instantiation
</pre></div>
<H3><a name="CPlusPlus11_initializer_lists">7.2.4 Initializer lists</a></H3>
<p>
Initializer lists are very much a C++ compiler construct and are not very accessible from wrappers as
they are intended for compile time initialization of classes using the special <tt>std::initializer_list</tt> type.
SWIG detects usage of initializer lists and will emit a special informative warning each time one is used:
</p>
<div class="shell">
<pre>
example.i:33: Warning 476: Initialization using std::initializer_list.
</pre>
</div>
<p>
Initializer lists usually appear in constructors but can appear in any function or method.
They often appear in constructors which are overloaded with alternative approaches to initializing a class,
such as the std container's push_back method for adding elements to a container.
The recommended approach then is to simply ignore the initializer-list constructor, for example:
</p>
<div class="code"><pre>
%ignore Container::Container(std::initializer_list<int>);
class Container {
public:
Container(std::initializer_list<int>); // initializer-list constructor
Container();
void push_back(const int &);
...
};
</pre></div>
<p>Alternatively you could modify the class and add another constructor for initialization by some other means,
for example by a <tt>std::vector</tt>:</p>
<div class="code"><pre>
%include <std_vector.i>
class Container {
public:
Container(const std::vector<int> &);
Container(std::initializer_list<int>); // initializer-list constructor
Container();
void push_back(const int &);
...
};
</pre></div>
<p>And then call this constructor from your target language, for example, in Python, the following will call the constructor taking the <tt>std::vector</tt>:</p>
<div class="targetlang"><pre>
>>> c = Container( [1, 2, 3, 4] )
</pre></div>
<p>
If you are unable to modify the class being wrapped, consider ignoring the initializer-list constructor and using
%extend to add in an alternative constructor:
</p>
<div class="code"><pre>
%include <std_vector.i>
%extend Container {
Container(const std::vector<int> &elements) {
Container *c = new Container();
for (int element : elements)
c->push_back(element);
return c;
}
}
%ignore Container::Container(std::initializer_list<int>);
class Container {
public:
Container(std::initializer_list<int>); // initializer-list constructor
Container();
void push_back(const int &);
...
};
</pre></div>
<p>
The above makes the wrappers look is as if the class had been declared as follows:
</p>
<div class="code"><pre>
%include <std_vector.i>
class Container {
public:
Container(const std::vector<int> &);
// Container(std::initializer_list<int>); // initializer-list constructor (ignored)
Container();
void push_back(const int &);
...
};
</pre></div>
<p>
<tt>std::initializer_list</tt> is simply a container that can only be initialized at compile time.
As it is just a C++ type, it is possible to write typemaps for a target language container to map onto
<tt>std::initializer_list</tt>. However, this can only be done for a fixed number of elements as
initializer lists are not designed to be constructed with a variable number of arguments at runtime.
The example below is a very simple approach which ignores any parameters passed in and merely initializes
with a fixed list of fixed integer values chosen at compile time:
</p>
<div class="code"><pre>
%typemap(in) std::initializer_list<int> {
$1 = {10, 20, 30, 40, 50};
}
class Container {
public:
Container(std::initializer_list<int>); // initializer-list constructor
Container();
void push_back(const int &);
...
};
</pre></div>
<p>
Any attempt at passing in values from the target language will be ignored and be replaced by <tt>{10, 20, 30, 40, 50}</tt>.
Needless to say, this approach is very limited, but could be improved upon, but only slightly.
A typemap could be written to map a fixed number of elements on to the <tt>std::initializer_list</tt>,
but with values decided at runtime.
The typemaps would be target language specific.
</p>
<p>
Note that the default typemap for <tt>std::initializer_list</tt> does nothing but issue the warning
and hence any user supplied typemaps will override it and suppress the warning.
</p>
<H3><a name="CPlusPlus11_uniform_initialization">7.2.5 Uniform initialization</a></H3>
<p>The curly brackets {} for member initialization are fully
supported by SWIG:</p>
<div class="code"><pre>
struct BasicStruct {
int x;
double y;
};
struct AltStruct {
AltStruct(int x, double y) : x_{x}, y_{y} {}
int x_;
double y_;
};
BasicStruct var1{5, 3.2}; // only fills the struct components
AltStruct var2{2, 4.3}; // calls the constructor
</pre></div>
<p>Uniform initialization does not affect usage from the target language, for example in Python:</p>
<div class="targetlang"><pre>
>>> a = AltStruct(10, 142.15)
>>> a.x_
10
>>> a.y_
142.15
</pre></div>
<H3><a name="CPlusPlus11_type_inference">7.2.6 Type inference</a></H3>
<p>SWIG supports <tt>decltype()</tt> with some limitations. Single
variables are allowed, however, expressions are not supported yet. For
example, the following code will work:</p>
<div class="code"><pre>
int i;
decltype(i) j;
</pre></div>
<p>However, using an expression inside the decltype results in syntax error:</p>
<div class="code"><pre>
int i; int j;
decltype(i+j) k; // syntax error
</pre></div>
<p>SWIG does not support <tt>auto</tt> as a type specifier for variables, only
for specifying the return type of <a href="#CPlusPlus11_lambda_functions_and_expressions">lambdas</a>
and <a href="#CPlusPlus11_alternate_function_syntax">functions</a>.</p>
<H3><a name="CPlusPlus11_range_based_for_loop">7.2.7 Range-based for-loop</a></H3>
<p>This feature is part of the implementation block only. SWIG
ignores it.</p>
<H3><a name="CPlusPlus11_lambda_functions_and_expressions">7.2.8 Lambda functions and expressions</a></H3>
<p>SWIG correctly parses most of the Lambda functions syntax. For example:</p>
<div class="code"><pre>
auto val = [] { return something; };
auto sum = [](int x, int y) { return x+y; };
auto sum = [](int x, int y) -> int { return x+y; };
</pre></div>
<p>The lambda functions are removed from the wrappers for now, because of the lack of support
for closures (scope of the lambda functions) in the target languages.</p>
<p>
Lambda functions used to create variables can also be parsed, but due to limited support of <tt>auto</tt> when
the type is deduced from the expression, the variables are simply ignored.
</p>
<div class="code"><pre>
auto six = [](int x, int y) { return x+y; }(4, 2);
</pre></div>
<p>
Better support should be available in a later release.
</p>
<H3><a name="CPlusPlus11_alternate_function_syntax">7.2.9 Alternate function syntax</a></H3>
<p>SWIG fully supports the new definition of functions. For example:</p>
<div class="code"><pre>
struct SomeStruct {
int FuncName(int x, int y);
};
</pre></div>
<p>can now be written as in C++11:</p>
<div class="code"><pre>
struct SomeStruct {
auto FuncName(int x, int y) -> int;
};
auto SomeStruct::FuncName(int x, int y) -> int {
return x + y;
}
</pre></div>
<p>The usage in the target languages remains the same, for example in Python:</p>
<div class="targetlang"><pre>
>>> a = SomeStruct()
>>> a.FuncName(10, 5)
15
</pre></div>
<p>SWIG will also deal with type inference for the return type, as per the limitations described earlier. For example:</p>
<div class="code"><pre>
auto square(float a, float b) -> decltype(a);
</pre></div>
<H3><a name="CPlusPlus11_object_construction_improvement">7.2.10 Object construction improvement</a></H3>
<p>
There are three parts to object construction improvement.
The first improvement is constructor delegation such as the following:
</p>
<div class="code"><pre>
class A {
public:
int a;
int b;
int c;
A() : A(10) {}
A(int aa) : A(aa, 20) {}
A(int aa, int bb) : A(aa, bb, 30) {}
A(int aa, int bb, int cc) { a=aa; b=bb; c=cc; }
};
</pre></div>
<p>
where peer constructors can be called. SWIG handles this without any issue.
</p>
<p>
The second improvement is constructor inheritance via a <tt>using</tt> declaration.
This is parsed correctly, but the additional constructors are not currently added to the derived proxy class in the target language.
An example is shown below:
<!--
The extra constructors provided by the <tt>using</tt> syntax will add the appropriate constructors into the target language proxy derived classes.
In the example below a wrapper for the <tt>DerivedClass(int)</tt> is added to <tt>DerivedClass</tt>:
-->
</p>
<div class="code"><pre>
class BaseClass {
public:
BaseClass(int iValue);
};
class DerivedClass: public BaseClass {
public:
using BaseClass::BaseClass; // Adds DerivedClass(int) constructor
};
</pre></div>
<p>
The final part is member initialization at the site of the declaration.
This kind of initialization is handled by SWIG.
</p>
<div class="code"><pre>
class SomeClass {
public:
SomeClass() {}
explicit SomeClass(int new_value) : value(new_value) {}
int value = 5;
};
</pre></div>
<H3><a name="CPlusPlus11_explicit_overrides_final">7.2.11 Explicit overrides and final</a></H3>
<p>
The special identifiers <tt>final</tt> and <tt>override</tt> can be used on methods and destructors,
such as in the following example:
</p>
<div class="code"><pre>
struct BaseStruct {
virtual void ab() const = 0;
virtual void cd();
virtual void ef();
virtual ~BaseStruct();
};
struct DerivedStruct : BaseStruct {
virtual void ab() const override;
virtual void cd() final;
virtual void ef() final override;
virtual ~DerivedStruct() override;
};
</pre></div>
<p>
Classes can also be marked as final, such as
</p>
<div class="code"><pre>
struct FinalDerivedStruct final : BaseStruct {
virtual void ab() const override;
};
</pre></div>
<p>
<b>Compatibility note:</b> Final methods were supported much earlier than final classes. SWIG-4.1.0 was the first version to support classes marked as final.
</p>
<H3><a name="CPlusPlus11_null_pointer_constant">7.2.12 Null pointer constant</a></H3>
<p>The <tt>nullptr</tt> constant is mostly unimportant in wrappers. In the few places it has an effect, it is treated like <tt>NULL</tt>.</p>
<H3><a name="CPlusPlus11_strongly_typed_enumerations">7.2.13 Strongly typed enumerations</a></H3>
<p>SWIG supports strongly typed enumerations and parses the new <tt>enum class</tt> syntax and forward declarator for the enums, such as:</p>
<div class="code"><pre>
enum class MyEnum : unsigned int;
</pre></div>
<p>
Strongly typed enums are often used to avoid name clashes such as the following:
</p>
<div class="code"><pre>
struct Color {
enum class RainbowColors : unsigned int {
Red, Orange, Yellow, Green, Blue, Indigo, Violet
};
enum class WarmColors {
Yellow, Orange, Red
};
// Note normal enum
enum PrimeColors {
Red=100, Green, Blue
};
};
</pre></div>
<p>
There are various ways that the target languages handle enums, so it is not possible to precisely state how they are handled in this section.
However, generally, most scripting languages mangle in the strongly typed enumeration's class name,
but do not use any additional mangling for normal enumerations. For example, in Python, the following code
</p>
<div class="targetlang"><pre>
print Color.RainbowColors_Red, Color.WarmColors_Red, Color.Red
</pre></div>
<p>
results in
</p>
<div class="shell"><pre>
0 2 100
</pre></div>
<p>
The strongly typed languages often wrap normal enums into an enum class and so treat normal enums and strongly typed enums the same.
The equivalent in Java is:
</p>
<div class="targetlang"><pre>
System.out.println(Color.RainbowColors.Red.swigValue() + " " + Color.WarmColors.Red.swigValue() + " " + Color.PrimeColors.Red.swigValue());
</pre></div>
<H3><a name="CPlusPlus11_double_angle_brackets">7.2.14 Double angle brackets</a></H3>
<p>SWIG correctly parses the symbols >> as closing the
template block, if found inside it at the top level, or as the right
shift operator >> otherwise.</p>
<div class="code"><pre>
std::vector<std::vector<int>> myIntTable;
</pre></div>
<H3><a name="CPlusPlus11_explicit_conversion_operators">7.2.15 Explicit conversion operators</a></H3>
<p>SWIG correctly parses the keyword <tt>explicit</tt> for operators in addition to constructors now.
For example:</p>
<div class="code"><pre>
class U {
public:
int u;
};
class V {
public:
int v;
};
class TestClass {
public:
//implicit converting constructor
TestClass(U const &val) { t=val.u; }
// explicit constructor
explicit TestClass(V const &val) { t=val.v; }
int t;
};
struct Testable {
// explicit conversion operator
explicit operator bool() const {
return false;
}
};
</pre></div>
<p>
The effect of explicit constructors and operators has little relevance for the proxy classes as target
languages don't have the same concepts of implicit conversions as C++.
Conversion operators either with or without <tt>explicit</tt> need renaming to a valid identifier name in order to make
them available as a normal proxy method.
</p>
<H3><a name="CPlusPlus11_alias_templates">7.2.16 Type alias and alias templates</a></H3>
<p>
A type alias is a statement of the form:
</p>
<div class="code"><pre>
using PFD = void (*)(double); // New introduced syntax
</pre></div>
<p>
which is equivalent to the old style typedef:
</p>
<div class="code"><pre>
typedef void (*PFD)(double); // The old style
</pre></div>
<p>
The following is an example of an alias template:
<div class="code"><pre>
template< typename T1, typename T2, int N >
class SomeType {
public:
T1 a;
T2 b;
};
template< typename T2 >
using TypedefName = SomeType<char*, T2, 5>;
</pre></div>
<p>
SWIG supports both type aliasing and alias templates.
However, in order to use an alias template, two <tt>%template</tt> directives must be used:
</p>
<div class="code"><pre>
%template(SomeTypeBool) SomeType<char*, bool, 5>;
%template() TypedefName<bool>;
</pre></div>
<p>Firstly, the actual template is instantiated with a name to be used by the target language, as per any template being wrapped.
Secondly, the empty template instantiation, <tt>%template()</tt>, is required for the alias template.
This second requirement is necessary to add the appropriate instantiated template type into the type system as SWIG does not automatically instantiate templates.
See the <a href="SWIGPlus.html#SWIGPlus_nn30">Templates</a> section for more general information on wrapping templates.
<H3><a name="CPlusPlus11_unrestricted_unions">7.2.17 Unrestricted unions</a></H3>
<p>SWIG fully supports any type inside a union even if it does not
define a trivial constructor. For example, the wrapper for the following
code correctly provides access to all members in the union:</p>
<div class="code"><pre>
struct point {
point() {}
point(int x, int y) : x_(x), y_(y) {}
int x_, y_;
};
#include <new> // For placement 'new' in the constructor below
union P {
int z;
double w;
point p; // Illegal in C++03; legal in C++11.
// Due to the point member, a constructor definition is required.
P() {
new(&p) point();
}
} p1;
</pre></div>
<H3><a name="CPlusPlus11_variadic_templates">7.2.18 Variadic templates</a></H3>
<p>SWIG supports the variadic templates syntax (inside the <>
block, variadic class inheritance and variadic constructor and
initializers) with some limitations. The following code is correctly parsed:</p>
<div class="code"><pre>
template <typename... BaseClasses> class ClassName : public BaseClasses... {
public:
ClassName (BaseClasses &&... baseClasses) : BaseClasses(baseClasses)... {}
}
</pre></div>
<p>
For now however, the <tt>%template</tt> directive only accepts one parameter substitution
for the variable template parameters.
</p>
<div class="code"><pre>
%template(MyVariant1) ClassName<> // zero argument not supported yet
%template(MyVariant2) ClassName<int> // ok
%template(MyVariant3) ClassName<int, int> // too many arguments not supported yet
</pre></div>
<p>Support for the variadic <tt>sizeof()</tt> function is correctly parsed:</p>
<div class="code"><pre>
const int SIZE = sizeof...(ClassName<int, int>);
</pre></div>
<p>
In the above example <tt>SIZE</tt> is of course wrapped as a constant.
</p>
<H3><a name="CPlusPlus11_new_char_literals">7.2.19 New character literals</a></H3>
<p>
C++11 adds support for UCS-2 and UCS-4 character literals.
These character literals are preceded by either 'u' or 'U'.
</p>
<div class="code"><pre>
char16_t a = u'a';
char32_t b = U'b';
</pre></div>
<p>
<b>Compatibility note:</b> SWIG-4.0.0 was the first version to support these Universal Coded Character Set (UCS) character literals.
</p>
<H3><a name="CPlusPlus11_new_string_literals">7.2.20 New string literals</a></H3>
<p>SWIG supports wide string and Unicode string constants and raw string literals.</p>
<div class="code"><pre>
// New string literals
wstring aa = L"Wide string";
const char *bb = u8"UTF-8 string";
const char16_t *cc = u"UTF-16 string";
const char32_t *dd = U"UTF-32 string";
// Raw string literals
const char *xx = ")I'm an \"ascii\" \\ string.";
const char *ee = R"XXX()I'm an "ascii" \ string.)XXX"; // same as xx
wstring ff = LR"XXX(I'm a "raw wide" \ string.)XXX";
const char *gg = u8R"XXX(I'm a "raw UTF-8" \ string.)XXX";
const char16_t *hh = uR"XXX(I'm a "raw UTF-16" \ string.)XXX";
const char32_t *ii = UR"XXX(I'm a "raw UTF-32" \ string.)XXX";
</pre></div>
<p>
Non-ASCII string support varies quite a bit among the various target languages though.
</p>
<p>
Note: There is a bug currently where SWIG's preprocessor incorrectly parses an odd number of double quotes
inside raw string literals.
</p>
<H3><a name="CPlusPlus11_user_defined_literals">7.2.21 User-defined literals</a></H3>
<p>
SWIG parses the declaration of user-defined literals, that is, the <tt>operator "" _mysuffix()</tt> function syntax.
</p>
<p>
Some examples are the raw literal:
</p>
<div class="code"><pre>
OutputType operator "" _myRawLiteral(const char * value);
</pre></div>
<p>
numeric cooked literals:
</p>
<div class="code"><pre>
OutputType operator "" _mySuffixIntegral(unsigned long long);
OutputType operator "" _mySuffixFloat(long double);
</pre></div>
<p>
and cooked string literals:
</p>
<div class="code"><pre>
OutputType operator "" _mySuffix(const char * string_values, size_t num_chars);
OutputType operator "" _mySuffix(const wchar_t * string_values, size_t num_chars);
OutputType operator "" _mySuffix(const char16_t * string_values, size_t num_chars);
OutputType operator "" _mySuffix(const char32_t * string_values, size_t num_chars);
</pre></div>
<p>
Like other operators that SWIG parses, a warning is given about renaming the operator in order for it to be wrapped:
</p>
<div class="shell"><pre>
example.i:27: Warning 503: Can't wrap 'operator "" _myRawLiteral' unless renamed to a valid identifier.
</pre></div>
<p>
If %rename is used, then it can be called like any other wrapped method.
Currently you need to specify the full declaration including parameters for %rename:
</p>
<div class="code"><pre>
%rename(MyRawLiteral) operator"" _myRawLiteral(const char * value);
</pre></div>
<p>
Or if you just wish to ignore it altogether:
</p>
<div class="code"><pre>
%ignore operator "" _myRawLiteral(const char * value);
</pre></div>
<p>
Note that use of user-defined literals such as the following still give a syntax error:
</p>
<div class="code"><pre>
OutputType var1 = "1234"_suffix;
OutputType var2 = 1234_suffix;
OutputType var3 = 3.1416_suffix;
</pre></div>
<H3><a name="CPlusPlus11_thread_local_storage">7.2.22 Thread-local storage</a></H3>
<p>SWIG correctly parses the <tt>thread_local</tt> keyword. For example, variables
reachable by the current thread can be defined as:</p>
<div class="code"><pre>
struct A {
static thread_local int val;
};
thread_local int global_val;
</pre></div>
<p>
The use of the <tt>thread_local</tt> storage specifier does not affect the wrapping process; it does not modify
the wrapper code compared to when it is not specified.
A variable will be thread local if accessed from different threads from the target language in the
same way that it will be thread local if accessed from C++ code.
</p>
<H3><a name="CPlusPlus11_defaulted_deleted">7.2.23 Explicitly defaulted functions and deleted functions</a></H3>
<p>SWIG handles explicitly defaulted functions, that is, <tt>= default</tt> added to a function declaration. Deleted definitions, which are also called deleted functions, have <tt>= delete</tt> added to the function declaration.
For example:</p>
<div class="code"><pre>
struct NonCopyable {
NonCopyable & operator=(const NonCopyable &) = delete; /* Removes operator= */
NonCopyable(const NonCopyable &) = delete; /* Removes copy constructor */
NonCopyable() = default; /* Explicitly allows the empty constructor */
};
</pre></div>
<p>
Wrappers for deleted functions will not be available in the target language.
Wrappers for defaulted functions will of course be available in the target language.
Explicitly defaulted functions have no direct effect for SWIG wrapping as the declaration is handled
much like any other method declaration parsed by SWIG.
</p>
<p>
Deleted functions are also designed to prevent implicit conversions when calling the function.
For example, the C++ compiler will not compile any code which attempts to use an int as the type of the parameter passed to <tt>f</tt> below:
</p>
<div class="code"><pre>
struct NoInt {
void f(double i);
void f(int) = delete;
};
</pre></div>
<p>
This is a C++ compile time check and SWIG does not make any attempt to detect if the target language is using an int instead of a double though,
so in this case it is entirely possible to pass an int instead of a double to <tt>f</tt> from Java, Python etc.
</p>
<H3><a name="CPlusPlus11_type_long_long_int">7.2.24 Type long long int</a></H3>
<p>SWIG correctly parses and uses the new <tt>long long</tt> type already introduced in C99 some time ago.</p>
<H3><a name="CPlusPlus11_static_assertions">7.2.25 Static assertions</a></H3>
<p>
SWIG correctly parses the new <tt>static_assert</tt> declarations (though 3.0.12 and earlier
had a bug which meant this wasn't accepted at file scope).
This is a C++ compile time directive so there isn't anything useful that SWIG can do with it.
</p>
<div class="code"><pre>
template <typename T>
struct Check {
static_assert(sizeof(int) <= sizeof(T), "not big enough");
};
</pre></div>
<H3><a name="CPlusPlus11_sizeof">7.2.26 Allow sizeof to work on members of classes without an explicit object</a></H3>
<p>
SWIG can parse the new sizeof() on types as well as on objects. For example:
</p>
<div class="code"><pre>
struct A {
int member;
};
const int SIZE = sizeof(A::member); // does not work with C++03. Okay with C++11
</pre></div>
<p>In Python:</p>
<div class="targetlang"><pre>
>>> SIZE
8
</pre></div>
<H3><a name="CPlusPlus11_noexcept">7.2.27 Exception specifications and noexcept</a></H3>
<p>
C++11 added in the noexcept specification to exception specifications to indicate that a function simply may or may not throw an exception, without actually naming any exception.
SWIG understands these, although there isn't any useful way that this information can be taken advantage of by target languages,
so it is as good as ignored during the wrapping process.
Below are some examples of noexcept in function declarations:
</p>
<div class="code"><pre>
static void noex1() noexcept;
int noex2(int) noexcept(true);
int noex3(int, bool) noexcept(false);
</pre></div>
<H3><a name="CPlusPlus11_alignment">7.2.28 Control and query object alignment</a></H3>
<p>
An <tt>alignof</tt> operator is used mostly within C++ to return alignment in number of bytes, but could be used to initialize a variable as shown below.
The variable's value will be available for access by the target language as any other variable's compile time initialised value.
<div class="code"><pre>
const int align1 = alignof(A::member);
</pre></div>
<p>
The <tt>alignas</tt> specifier for variable alignment is not yet supported.
Example usage:
</p>
<div class="code"><pre>
struct alignas(16) S {
int num;
};
alignas(double) unsigned char c[sizeof(double)];
</pre></div>
<p>
Use the preprocessor to work around this for now:
</p>
<div class="code"><pre>
#define alignas(T)
</pre></div>
<H3><a name="CPlusPlus11_attributes">7.2.29 Attributes</a></H3>
<p>
Attributes such as those shown below, are supported since SWIG 4.1.0 but are
currently crudely ignored by the parser's tokeniser so they have no effect on
SWIG's code generation.
</p>
<div class="code"><pre>
int [[attr1]] i [[attr2, attr3]];
[[noreturn, nothrow]] void f [[noreturn]] ();
</pre></div>
<H3><a name="CPlusPlus11_ref_qualifiers">7.2.30 Methods with ref-qualifiers</a></H3>
<p>
C++11 non-static member functions can be declared with ref-qualifiers.
Member functions declared with a <tt>&</tt> lvalue ref-qualifiers are wrapped like any other function without ref-qualifiers.
Member functions declared with a <tt>&&</tt> rvalue ref-qualifiers are ignored by default
as they are unlikely to be required from non-C++ languages where the concept of <i>rvalue-ness</i>
for the implied *this pointer does not apply.
The warning is hidden by default, but can be displayed as described in the section on <a href="Warnings.html#Warnings_nn4">Enabling extra warnings</a>.
</p>
<p>
Consider:
</p>
<div class="code"><pre>
struct RQ {
void m1(int x) &;
void m2(int x) &&;
};
</pre></div>
<p>
The only wrapped method will be the lvalue ref-qualified method <tt>m1</tt>
and if SWIG is run with the <tt>-Wextra</tt> command-line option, the following warning will be issued indicating <tt>m2</tt> is not wrapped:
</p>
<div class="shell">
<pre>
example.i:7: Warning 405: Method with rvalue ref-qualifier m2(int) && ignored.
</pre>
</div>
<p>
If you unignore the method as follows, wrappers for <tt>m2</tt> will be generated:
</p>
<div class="code"><pre>
%feature("ignore", "0") RQ::m2(int x) &&;
struct RQ {
void m1(int x) &;
void m2(int x) &&;
};
</pre></div>
<p>
Inspection of the generated C++ code, will show that <tt>std::move</tt> is used on the instance
of the <tt>RQ *</tt> class:
</p>
<div class="code"><pre>
RQ *arg1 = (RQ *) 0 ;
int arg2 ;
arg1 = ...marshalled from target language...
arg2 = ...marshalled from target language...
std::move(*arg1).m2(arg2);
</pre></div>
<p>
This will compile but when run, the move effects may not be what you want.
As stated earlier, rvalue ref-qualifiers aren't really applicable outside the world of C++.
However, if you really know what you are doing, full control over the call to the method is
possible via the low-level "action" feature.
This feature completely replaces the call to the underlying function, that is, the last line in the snippet of code above.
</p>
<div class="code"><pre>
%feature("ignore", "0") RQ::m2(int x) &&;
%feature("action") RQ::m2(int x) && %{
RQ().m2(arg2);
%}
struct RQ {
void m1(int x) &;
void m2(int x) &&;
};
</pre></div>
<p>
resulting in:
</p>
<div class="code"><pre>
RQ *arg1 = (RQ *) 0 ;
int arg2 ;
arg1 = ...marshalled from target language...
arg2 = ...marshalled from target language...
RQ().m2(arg2);
</pre></div>
<p>
<b>Compatibility note:</b> SWIG-4.0.0 was the first version to support ref-qualifiers.
</p>
<H2><a name="CPlusPlus11_standard_library_changes">7.3 Standard library changes</a></H2>
<H3><a name="CPlusPlus11_threading_facilities">7.3.1 Threading facilities</a></H3>
<p>SWIG does not currently wrap or use any of the new threading
classes introduced (thread, mutex, locks, condition variables, task). The main reason is that
SWIG target languages offer their own threading facilities so there is limited use for them.
</p>
<H3><a name="CPlusPlus11_tuple_types">7.3.2 Tuple types</a></H3>
<p>
SWIG does not provide library files for the new tuple types yet.
Variadic template support requires further work to provide substantial tuple wrappers.
</p>
<H3><a name="CPlusPlus11_hash_tables">7.3.3 Hash tables</a></H3>
<p>
The new hash tables in the STL are <tt>unordered_set</tt>, <tt>unordered_multiset</tt>, <tt>unordered_map</tt>, <tt>unordered_multimap</tt>.
These are not available in all target languages.
Any missing support can in principle be easily implemented by adapting the current STL containers.
</p>
<H3><a name="CPlusPlus11_regular_expressions">7.3.4 Regular expressions</a></H3>
<p>
While SWIG could provide wrappers for the new C++11 regular expressions classes, there is little need as the target languages have their own regular expression facilities.
</p>
<H3><a name="CPlusPlus11_general_purpose_smart_pointers">7.3.5 General-purpose smart pointers</a></H3>
<p>
SWIG provides special smart pointer handling for <tt>std::shared_ptr</tt> in the same way it has support for <tt>boost::shared_ptr</tt>.
Please see the <a href="Library.html#Library_std_shared_ptr">shared_ptr smart pointer</a>
and <a href="Library.html#Library_std_unique_ptr">unique_ptr smart pointer</a> library sections.
There is no special smart pointer handling available for <tt>std::weak_ptr</tt>.
</p>
<H3><a name="CPlusPlus11_extensible_random_number_facility">7.3.6 Extensible random number facility</a></H3>
<p>This feature extends and standardizes the standard library only and does not effect the C++ language nor SWIG.</p>
<H3><a name="CPlusPlus11_wrapper_reference">7.3.7 Wrapper reference</a></H3>
<p>
Wrapper references are similar to normal C++ references but are copy-constructible and copy-assignable.
They could conceivably be used in public APIs.
There is no special support for <tt>std::reference_wrapper</tt> in SWIG though.
Users would need to write their own typemaps if wrapper references are being used and these would be similar to the plain C++ reference typemaps.
</p>
<H3><a name="CPlusPlus11_polymorphous_wrappers_for_function_objects">7.3.8 Polymorphic wrappers for function objects</a></H3>
<p>
SWIG supports functor classes in a few languages in a very natural way.
However nothing is provided yet for the new <tt>std::function</tt> template.
SWIG will parse usage of the template like any other template.
</p>
<div class="code"><pre>
%rename(__call__) Test::operator(); // Default renaming used for Python
struct Test {
bool operator()(int x, int y); // function object
};
#include <functional>
std::function<void (int, int)> pF = Test; // function template wrapper
</pre></div>
<p>
Example of supported usage of the plain functor from Python is shown below.
It does not involve <tt>std::function</tt>.
</p>
<div class="targetlang"><pre>
t = Test()
b = t(1, 2) # invoke C++ function object
</pre></div>
<H3><a name="CPlusPlus11_type_traits_for_metaprogramming">7.3.9 Type traits for metaprogramming</a></H3>
<p>The type_traits functions to support C++ metaprogramming is useful at compile time and is aimed specifically at C++ development:</p>
<div class="code"><pre>
#include <type_traits>
// First way of operating.
template< bool B > struct algorithm {
template< class T1, class T2 > static int do_it(T1 &, T2 &) { /*...*/ return 1; }
};
// Second way of operating.
template<> struct algorithm<true> {
template< class T1, class T2 > static int do_it(T1, T2) { /*...*/ return 2; }
};
// Instantiating 'elaborate' will automatically instantiate the correct way to operate, depending on the types used.
template< class T1, class T2 > int elaborate(T1 A, T2 B) {
// Use the second way only if 'T1' is an integer and if 'T2' is a floating point,
// otherwise use the first way.
return algorithm< std::is_integral<T1>::value && std::is_floating_point<T2>::value >::do_it(A, B);
}
</pre></div>
<p>
SWIG correctly parses the template specialization, template types etc.
However, metaprogramming and the additional support in the type_traits header is really for compile time and is not much use at runtime for the target languages.
For example, as SWIG requires explicit instantiation of templates via <tt>%template</tt>, there isn't much that <tt>std::is_integral<int></tt> is going to provide by itself.
However, template functions using such metaprogramming techniques might be useful to wrap.
For example, the following instantiations could be made:
</p>
<div class="code"><pre>
%template(Elaborate) elaborate<int, int>;
%template(Elaborate) elaborate<int, double>;
</pre></div>
<p>
Then the appropriate algorithm can be called for the subset of types given by the above <tt>%template</tt> instantiations from a target language, such as Python:
</p>
<div class="targetlang"><pre>
>>> Elaborate(0, 0)
1
>>> Elaborate(0, 0.0)
2
</pre></div>
<H3><a name="CPlusPlus11_uniform_method_for_computing_return_type_of_function_objects">7.3.10 Uniform method for computing return type of function objects</a></H3>
<p>
The new <tt>std::result_of</tt> class introduced in the <functional> header provides a generic way to obtain the return type of a function type via <tt>std::result_of::type</tt>.
There isn't any library interface file to support this type.
With a bit of work, SWIG will deduce the return type of functions when used in <tt>std::result_of</tt> using the approach shown below.
The technique basically forward declares the <tt>std::result_of</tt> template class, then partially specializes it for the function types of interest.
SWIG will use the partial specialization and hence correctly use the <tt>std::result_of::type</tt> provided in the partial specialization.
</p>
<div class="code"><pre>
%inline %{
#include <functional>
typedef double(*fn_ptr)(double);
%}
namespace std {
// Forward declaration of result_of
template<typename Func> struct result_of;
// Add in a partial specialization of result_of
template<> struct result_of< fn_ptr(double) > {
typedef double type;
};
}
%template() std::result_of< fn_ptr(double) >;
%inline %{
double square(double x) {
return (x * x);
}
template<class Fun, class Arg>
typename std::result_of<Fun(Arg)>::type test_result_impl(Fun fun, Arg arg) {
return fun(arg);
}
%}
%template(test_result) test_result_impl< fn_ptr, double >;
%constant double (*SQUARE)(double) = square;
</pre></div>
<p>
Note the first use of <tt>%template</tt> which SWIG requires to instantiate the template.
The empty template instantiation suffices as no proxy class is required for <tt>std::result_of<Fun(Arg)>::type</tt> as this type is really just a <tt>double</tt>.
The second <tt>%template</tt> instantiates the template function which is being wrapped for use as a callback.
The <tt>%constant</tt> can then be used for any callback function as described in <a href="SWIG.html#SWIG_nn30">Pointers to functions and callbacks</a>.
</p>
<p>
Example usage from Python should give the not too surprising result:
</p>
<div class="targetlang"><pre>
>>> test_result(SQUARE, 5.0)
25.0
</pre></div>
<p>
Phew, that is a lot of hard work to get a callback working.
You could just go with the more attractive option of just using <tt>double</tt> as the return type in the function declaration instead of <tt>result_of</tt>!
</p>
</body>
</html>
|