File: C.html

package info (click to toggle)
swig 4.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 46,232 kB
  • sloc: cpp: 54,631; ansic: 29,122; java: 17,530; python: 12,505; cs: 10,369; ruby: 7,232; yacc: 6,477; makefile: 5,965; javascript: 5,520; sh: 5,415; perl: 4,187; php: 3,693; ml: 2,187; lisp: 2,056; tcl: 1,991; xml: 115
file content (843 lines) | stat: -rw-r--r-- 29,066 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>SWIG and C as the target language</title>
<link rel="stylesheet" type="text/css" href="style.css">
</head>
<body bgcolor="#FFFFFF">
<H1><a name="C">38 SWIG and C as the target language</a></H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#C_overview">Overview</a>
<ul>
<li><a href="#C_shortcomings">Known C++ Shortcomings in Generated C API</a>
</ul>
<li><a href="#C_preliminaries">Preliminaries</a>
<ul>
<li><a href="#C_running_swig">Running SWIG</a>
<li><a href="#C_commandline">Command line options</a>
<li><a href="#C_dynamic">Compiling a dynamic module</a>
<li><a href="#C_using_module">Using the generated module</a>
</ul>
<li><a href="#C_basic_c_wrapping">Basic C wrapping</a>
<ul>
<li><a href="#C_functions">Functions</a>
<li><a href="#C_variables">Variables</a>
</ul>
<li><a href="#C_basic_cpp_wrapping">Basic C++ wrapping</a>
<ul>
<li><a href="#C_enums">Enums</a>
<li><a href="#C_classes">Classes</a>
</ul>
<li><a href="#C_developer">Backend Developer Documentation</a>
<li><a href="#C_typemaps">Typemaps</a>
<ul>
<li><a href="#C_typemaps_walkthrough">C Typemaps, a Code Generation Walkthrough</a>
<ul>
<li><a href="#C_walkthrough_interface">The Interface</a>
<li><a href="#C_walkthrough_wrapper">The Wrapper</a>
<li><a href="#C_walkthrough_proxy">The Proxy</a>
</ul>
</ul>
<li><a href="#C_exceptions">Exception handling</a>
<li><a href="#C_cxx_wrappers">C++ Wrappers</a>
<ul>
<li><a href="#C_additional_possibilities">Additional customization possibilities</a>
<li><a href="#C_exception_handling">Exception handling</a>
</ul>
</ul>
</div>
<!-- INDEX -->



<p>
This chapter describes SWIG's support for creating ISO C wrappers. This module has a special purpose and thus is different from most other modules.
</p>

<p>
<b>NOTE:</b> this module is still under development.
</p>


<H2><a name="C_overview">38.1 Overview</a></H2>


<p>
SWIG is normally used to provide access to C or C++ libraries from target languages such as scripting languages or languages running on a virtual machine. 
SWIG performs analysis of the input C/C++ library header files from which it generates further code. For most target languages this code consists of two layers; namely an intermediary C code layer and a set of language specific proxy classes and functions on top of the C code layer. 
We could also think of C as just another target language supported by SWIG.
The aim then is to generate a pure ISO C interface to the input C or C++ library and hence the C target language module.
</p>

<p>
With wrapper interfaces generated by SWIG, it is easy to use the functionality of C++ libraries inside application code written in C. This module may also be useful to generate custom APIs for a library, to suit particular needs, e.g. to supply function calls with error checking or to implement a "design by contract".
</p>

<p>
Flattening C++ language constructs into a set of C-style functions obviously comes with many limitations and inconveniences, but this module is actually also capable of generating C++ wrappers defined completely inline using the C functions, thus wrapping the original C++ library API in another, similar C++ API. Contrary to the natural initial reaction, this is far from being completely pointless, as wrapping C++ API in this way avoids all problems due to C++ ABI issues, e.g. it is now possible to use the original C++ API using a different C++ compiler, or a different version of the same compiler, or even the same compiler, but with different compilation options affecting the ABI. The C++ wrapper API is not identical to the original one, but strives to be as close to it as possible.
</p>

<H3><a name="C_shortcomings">38.1.1 Known C++ Shortcomings in Generated C API</a></H3>


<ul>
    <li>Enums with a context like class or namespace are broken</li>
    <li>Global variables are not supported</li>
    <li>Qualifiers are stripped</li>
    <li>Vararg functions are not supported.</li>
</ul>
<H2><a name="C_preliminaries">38.2 Preliminaries</a></H2>


<H3><a name="C_running_swig">38.2.1 Running SWIG</a></H3>


<p>
Consider the following simple example. Suppose we have an interface file like:
</p>

<div class="code">
<pre>
/* File: example.i */
%module test
%{
#include "stuff.h"
%}
int fact(int n);
</pre>
</div>

<p>
To build a C module (C as the target language), run SWIG using the <tt>-c</tt> option :</p>

<div class="shell"><pre>
$ swig -c example.i
</pre></div>

<p>
The above assumes C as the input language. If the input language is C++ add the <tt>-c++</tt> option:
</p>

<div class="shell"><pre>
$ swig -c++ -c example.i
</pre></div>

<p>
Note that <tt>-c</tt> is the option specifying the <b>target</b> language and <tt>-c++</tt> controls what the <b>input</b> language is.
</p>

<p>
This will generate an <tt>example_wrap.c</tt> file or, in the latter case, <tt>example_wrap.cxx</tt> file, along with <tt>example_wrap.h</tt> (the same extension is used in both C and C++ cases for the last one). The names of the files are derived from the name of the input file by default, but can be changed using the <tt>-o</tt> and <tt>-oh</tt> options common to all language modules. 
</p>

<p>
The <tt>xxx_wrap.c</tt> file contains the wrapper functions, which perform the main functionality of SWIG: each of the wrappers translates the input arguments from C to C++, makes calls to the original functions and marshals C++ output back to C data. The <tt>xxx_wrap.h</tt> header file contains the declarations of these functions as well as global variables.
</p>

<H3><a name="C_commandline">38.2.2 Command line options</a></H3>


<p>
The following table list the additional command line options available for the C module. They can also be seen by using: 
</p>

<div class="shell"><pre>
$ swig -c -help
</pre></div>

<table summary="C specific options">
<tr>
<th>C specific options</th>
</tr>

<tr>
<td>-namespace &lt;nspace&gt;</td>
<td>Generate wrappers with the prefix based on the provided namespace, e.g. if the option value is <tt>outer::inner</tt>, the prefix <tt>outer_inner_</tt> will be used. Notice that this is different from using SWIG <tt>nspace</tt> feature, as it applies the prefix to all the symbols, regardless of the namespace they were actually declared in. Notably, this provides a way to export instantiations of templates defined in the <tt>std</tt> namespace, such as <tt>std::vector</tt>, using a custom prefix rather than <tt>std_</tt>.</td>
</tr>

<tr>
<td>-nocxx</td>
<td>Don't generate C++ wrappers, even when the <tt>-c++</tt> option is used. See <a href="#C_cxx_wrappers">C++ Wrappers</a> section for more details.</td>
</tr>

<tr>
<td>-noexcept</td>
<td>generate wrappers with no support for exception handling; see <a href="#C_exceptions">Exceptions</a> chapter for more details </td>
</tr>

</table>

<H3><a name="C_dynamic">38.2.3 Compiling a dynamic module</a></H3>


<p>
The next step is to build a dynamically loadable module, which we can link to our application. For example, to do this using the <tt>gcc</tt> compiler (Linux, MinGW, etc.):
</p>

<div class="shell"><pre>
$ swig -c example.i
$ gcc -fPIC -c example_wrap.c
$ gcc -shared example_wrap.o -o libexample.so
</pre></div>

<p>
Or, for C++ input:
</p>

<div class="shell"><pre>
$ swig -c++ -c example.i
$ g++ -fPIC -c example_wrap.cxx
$ g++ -shared example_wrap.o -o libexample.so
</pre></div>

<p>
Now the shared library module is ready to use. Note that the name of the generated module is important: is should be prefixed with <tt>lib</tt> on Unix, and have the specific extension, like <tt>.dll</tt> for Windows or <tt>.so</tt> for Unix systems.
</p>

<H3><a name="C_using_module">38.2.4 Using the generated module</a></H3>


<p>
The simplest way to use the generated shared module is to link it to the application code during the compilation stage. The process is usually similar to this:
</p>

<div class="shell"><pre>
$ gcc runme.c -L. -lexample -o runme
</pre></div>

<p>
This will compile the application code (<tt>runme.c</tt>) and link it against the generated shared module. Following the <tt>-L</tt> option is the path to the directory containing the shared module. The output executable is ready to use. The last thing to do is to supply to the operating system the information of location of our module. This is system dependant, for instance Unix systems look for shared modules in certain directories, like <tt>/usr/lib</tt>, and additionally we can set the environment variable <tt>LD_LIBRARY_PATH</tt> (Unix) or <tt>PATH</tt> (Windows) for other directories.
</p>

<H2><a name="C_basic_c_wrapping">38.3 Basic C wrapping</a></H2>


<p>
Wrapping C functions and variables is obviously performed in a straightforward way. There is no need to perform type conversions, and all language constructs can be preserved in their original form. However, SWIG allows you to enhance the code with some additional elements, for instance using a <tt>check</tt> typemap or <tt>%extend</tt> directive.
</p>

<p>
It is also possible to output arbitrary additional code into the generated header by using the <tt>%insert</tt> directive with <tt>cheader</tt> section, e.g.
</p>

<div class="code"><pre>
%insert("cheader") %{
#include "another.h"
%}
</pre></div>

<H3><a name="C_functions">38.3.1 Functions</a></H3>


<p>
For each C function declared in the interface file a wrapper function with a prefix, required to make its name different from the original one, is created. The prefix for the global functions is <tt>module_</tt>, i.e. the name of the SWIG module followed by underscore, by default. If <tt>-namespace</tt> option is used, the prefix corresponding to the given fixed namespace is used instead. If <tt>nspace</tt> feature is used, the prefix corresponding to the namespace in which the function is defined is used -- note that, unlike with <tt>-namespace</tt> option, this prefix can be different for different functions. The wrapper function performs a call to the original function, and returns its result.
</p>

<p>
For example, for function declaration in the module <tt>mymath</tt>:
</p>

<div class="targetlang"><pre>
int gcd(int x, int y);
</pre></div>

<p>
The output is simply:
</p>

<div class="targetlang"><pre>
int mymath_gcd(int arg1, int arg2) {
  int result;
  result = gcd(arg1,arg2);
  return result;
}
</pre></div>

<p>
Now one might think, what's the use of creating such functions in C? The answer is, you can apply special rules to the generated code. Take for example constraint checking. You can write a "check" typemap in your interface file:
</p>

<div class="code"><pre>
%typemap(check) int POSITIVE {
  if ($1 &lt;= 0)
    fprintf(stderr, "Expected positive value for parameter $1 in $name.\n");
}

int gcd(int POSITIVE, int POSITIVE);
</pre></div>

<p>
And now the generated result looks like:
</p>

<div class="targetlang"><pre>
int _wrap_gcd(int arg1, int arg2) {
  int result;
  {
    if (arg1 &lt;= 0)
      fprintf(stderr, "Expected positive value for parameter arg1 in gcd.\n");
  }
  {
    if (arg2 &lt;= 0)
      fprintf(stderr, "Expected positive value for parameter arg2 in gcd.\n");
  }
  result = gcd(arg1,arg2);
  return result;
}
</pre></div>

<p>
This time calling <tt>gcd</tt> with negative value argument will trigger an error message. This can save you time writing all the constraint checking code by hand.
</p>

<H3><a name="C_variables">38.3.2 Variables</a></H3>


<p>
Wrapping variables comes also without any special issues. All global variables are directly accessible from application code. There is a difference in the semantics of <tt>struct</tt> definition in C and C++. When handling C <tt>struct</tt>, SWIG simply rewrites its declaration. In C++ <tt>struct</tt> is handled as class declaration. 
</p>

<p>
You can still apply some of the SWIG features when handling structs, e.g. <tt>%extend</tt> directive. Suppose, you have a C struct declaration:
</p>

<div class="targetlang"><pre>
typedef struct {
  int x;
  char *str;
} my_struct;
</pre></div>

<p>
You can redefine it to have an additional fields, like:
</p>

<div class="code"><pre>
%extend my_struct {
  double d;
};
</pre></div>

<p>
In application code:
</p>

<div class="targetlang"><pre>
struct my_struct ms;
ms.x = 123;
ms.d = 123.123;
</pre></div>

<H2><a name="C_basic_cpp_wrapping">38.4 Basic C++ wrapping</a></H2>


<p>
The main reason of having the C module in SWIG is to be able to access C++ from C. In this chapter we will take a look at the rules of wrapping elements of the C++ language.
</p>

<p>
By default, SWIG attempts to build a natural C interface to your C/C++ code.
</p>
<table BORDER summary="Generated C representation of C++">
  <tr>
    <th>C++ Type</th>
    <th>SWIG C Translation</th>
  </tr>
  <tr>
    <td>Class <tt>Example</tt></td>
    <td>Empty structure <tt>Example</tt></td>
  </tr>
  <tr>
    <td>Public, mutable member variable <tt>Foo Example::foo</tt></td>
    <td><div class="targetlang"><pre>
      Example_foo_get(Example *e);
      Example_foo_set(Example *e, Foo *f);
    </pre></div></td>
  </tr>
  <tr>
    <td>Public, immutable member variable <tt>Foo Example::bar</tt></td>
    <td><div class="targetlang"><pre>
      Example_foo_get(Example *e);
    </pre></div></td>
  </tr>
</table>

<p>
This section briefly covers the essential aspects of this wrapping.
</p>

<H3><a name="C_enums">38.4.1 Enums</a></H3>


<p>
C enums and unscoped C++ enums are simply copied to the generated code and both the enum itself and its elements keep the same name as in the original code unless <tt>-namespace</tt> option is used or <tt>nspace</tt> feature is enabled, in which case the prefix corresponding to the specified namespace is used.
</p>
<p>
For scoped C++11 enums, the enum name itself is used as an additional prefix.
</p>


<H3><a name="C_classes">38.4.2 Classes</a></H3>


<p>
Consider the following example. We have a C++ class, and want to use it from C code.
</p>

<div class="targetlang"><pre>
class Circle {
public:
  double radius;

  Circle(double r) : radius(r) { };
  double area(void);
};
</pre></div>

<p>
What we need to do is to create an object of the class, manipulate it, and finally, destroy it. SWIG generates C functions for this purpose each time a class declaration is encountered in the interface file.
</p>

<p>
The first two generated functions are used to create and destroy instances of class <tt>Circle</tt>. Such instances are represented on the C side as pointers to special structs, called <tt>SwigObj</tt>. They are all "renamed" (via typedef) to the original class names, so that you can use the object instances on the C side using pointers like:
</p>

<div class="targetlang"><pre>
Circle *circle;
</pre></div>

<p>
The generated functions make calls to class' constructors and destructors, respectively. They also do all the necessary things required by the SWIG object management system in C.
</p>

<div class="targetlang"><pre>
Circle * Circle_new(double r);
void Circle_delete(Circle * self);
</pre></div>

<p>
The class <tt>Circle</tt> has a public variable called <tt>radius</tt>. SWIG generates a pair of setters and getters for each such variable:
</p>

<div class="targetlang"><pre>
void Circle_radius_set(Circle * self, double radius);
double Circle_radius_get(Circle * self);
</pre></div>

<p>
For each public method, an appropriate function is generated:
</p>

<div class="targetlang"><pre>
double Circle_area(Circle * self);
</pre></div>

<p>
You can see that in order to use the generated object we need to provide a pointer to the object instance (struct <tt>Circle</tt> in this case) as the first function argument. In fact, this struct is basically wrapping pointer to the "real" C++ object.
</p>

<p>
Our application code could look like this:
</p>

<div class="targetlang"><pre>
  Circle *c = Circle_new(1.5);
  printf("radius: %f\narea: %f\n", Circle_radius_get(c), Circle_area(c));
  Circle_delete(c);
</pre></div>

<p>
After running this we'll get:
</p>

<div class="shell"><pre>
radius: 1.500000
area: 7.068583
</pre></div>

<H2><a name="C_developer">38.5 Backend Developer Documentation</a></H2>


<H2><a name="C_typemaps">38.6 Typemaps</a></H2>


<table BORDER summary="C Backend Typemaps">
  <tr>
    <th>Typemap</th>
    <th>Used for</th>
  </tr>
  <tr>
      <td><tt>ctype</tt></td>
      <td>Provides types used for the C API and<br>
          Typecasts wrapper functions return values in proxy functions
<div class="targetlang"><pre>
MyClass *MyClass_new(void) {
  return (MyClass *)MyClass_new();
}
</pre></div>
      </td>
  </tr>
  <tr>
    <td><tt>in</tt></td>
    <td>Mapping of wrapper functions parameters to local C++ variables
<div class="targetlang"><pre>
SwigObj* MyClass_do(SwigObj *carg1) {
  SomeCPPClass *arg1 = 0;
  if (carg1)
    arg1 = (SomeCPPClass*)carg1->obj
  else
    arg1 = 0;
}
</pre></div>
       </td>
  </tr>
  <tr>
    <td><tt>out</tt></td>
    <td>Assigns wrapped function's return value to a dedicated return variable, packaging it into SwigObj if necessary</td>
  </tr>
  <tr>
    <td><tt>cppouttype</tt></td>
    <td>Type of the result variable used for the return value if the wrapped function is a C++ function
    </td>
  </tr>
  <tr>
      <td><tt>cxxintype</tt></td>
      <td>Defines the type for the parameters of C++ wrapper functions corresponding to this type. By default is the same as <tt>ctype</tt>, but may sometimes be different to make the functions more convenient to use. For example, <tt>ctype</tt> for <tt>std::string</tt> is <tt>const char*</tt>, but <tt>cxxintype</tt> typemap for it is <tt>std::string const&amp;</tt>, i.e. even though the C++ string passed as a raw pointer via C API, the C++ wrapper still accepts a C++ string. If this typemap is defined, <tt>cxxin</tt> should normally be defined as well. If it is not defined, <tt>ctype</tt> is used.
      </td>
  </tr>
  <tr>
      <td><tt>cxxouttype</tt></td>
      <td>Similar to <tt>cxxintype</tt>, but is used for the function return values and together with <tt>cxxout</tt> typemap. Also defaults to <tt>ctype</tt> if not defined.
      </td>
  </tr>
  <tr>
      <td><tt>cxxin</tt></td>
      <td>Defines how to transform <tt>cxxintype</tt> value to <tt>ctype</tt>
      </td>
  </tr>
  <tr>
      <td><tt>cxxout</tt></td>
      <td>Defines how to transform <tt>ctype</tt> value returned by a function to <tt>cxxouttype</tt>
      </td>
  </tr>
  <tr>
      <td><tt>cxxcode</tt></td>
      <td>May contain arbitrary code that will be injected in the declaration of the C++ wrapper class corresponding to the given type. Ignored for non-class types. The special variable <tt>$cxxclassname</tt> is replaced with the name of the class inside this typemap expansion and <tt>$cclassptrname</tt> is replaced with the name of the pointer type used to represent the class in C wrapper functions.
      </td>
  </tr>
</table>

<H3><a name="C_typemaps_walkthrough">38.6.1 C Typemaps, a Code Generation Walkthrough</a></H3>


<p>
To get a better idea of which typemap is used for which generated code, have a look at the following 'walk through'.
</p>

<p>
Let's assume we have the following C++ interface file, we'd like to generate code for:
</p>

<H4><a name="C_walkthrough_interface">38.6.1.1 The Interface</a></H4>


<div class="code"><pre>
%module example

%inline
%{
  class SomeClass{};
  template &lt;typename T&gt; class SomeTemplateClass{};
  SomeClass someFunction(SomeTemplateClass&lt;int&gt; &amp;someParameter, int simpleInt);
%}

%template (SomeIntTemplateClass) SomeTemplateClass&lt;int&gt;;
</pre></div>

<p>
What we would like to generate as a C interface of this function would be something like this:
</p>

<div class="targetlang"><pre>
// wrapper header file
typedef struct SwigObj_SomeClass SomeClass;

SomeClass * SomeClass_new();

void SomeClass_delete(SomeClass * carg1);
        
SomeClass* someFunction(SomeIntTemplateClass* carg1, int carg2);
        
        
typedef struct SwigObj_SomeIntTemplateClass SomeIntTemplateClass;
        
SomeIntTemplateClass * SomeIntTemplateClass_new();
        
void SomeIntTemplateClass_delete(SomeIntTemplateClass * carg1);
</pre></div>

<H4><a name="C_walkthrough_wrapper">38.6.1.2 The Wrapper</a></H4>


<p>
We'll examine the generation of the wrapper function first.
</p>

<div class="targetlang"><pre>
SWIGEXPORTC SwigObj * module_someFunction(SwigObj * carg1, int carg2) {
  SomeClass * cppresult;
  SomeTemplateClass&lt; int &gt; *arg1 = 0 ;
  int arg2 ;
  SwigObj * result;
  
  {
    if (carg1)
    arg1 = (SomeTemplateClass&lt; int &gt; *) carg1->obj;
    else
    arg1 = (SomeTemplateClass&lt; int &gt; *) 0;
  }
  arg2 = (int) carg2;
  {
    const SomeClass &amp;_result_ref =  someFunction(*arg1,arg2);cppresult = (SomeClass*) &amp;_result_ref;
  }
  {
    result = SWIG_create_object(cppresult, SWIG_STR(SomeClass));
  }
  return result;
}
</pre></div>

<p>
It might be helpful to think of the way function calls are generated as a composition of building blocks.
A typical wrapper will be composited with these [optional] blocks:
</p>

<ol>
<li>Prototype</li>
<li>C return value variable</li>
<li>Local variables equal to the called C++ function's parameters</li>
<li>[C++ return value variable]</li>
<li>Assignment (extraction) of wrapper parameters to local parameter copies</li>
<li>[Contract (e.g. constraints) checking]</li>
<li> C++ function call</li>
<li>[Exception handling]</li>
<li>[Assignment to C++ return value]</li>
<li>Assignment to C return value</li>
</ol>

<p>
Let's go through it step by step and start with the wrapper prototype
</p>

<div class="targetlang"><pre>
ctype                        ctype            ctype
---------                    ---------        ---
SwigObj * module_someFunction(SwigObj * carg1, int carg2);
</pre></div>

<p>
As first unit of the wrapper code, a variable to hold the return value of the function is emitted to the wrapper's body
</p>

<div class="targetlang"><pre>
ctype
---------
SwigObj * result;
</pre></div>

<p>
Now for each of the C++ function's arguments, a local variable with the very same type is emitted to the wrapper's body.
</p>

<div class="targetlang"><pre>
SomeTemplateClass&lt; int &gt; *arg1 = 0 ;
int arg2 ;
</pre></div>

<p>
If it's a C++ function that is wrapped (in this case it is), another variable is emitted for the 'original' return value of the C++ function.
At this point, we simply 'inject' behavior if it's a C++ function that is wrapped (in this case it obviously is).
</p>

<div class="targetlang"><pre>
cppouttype
-----------
SomeClass * cppresult;
</pre></div>

<p>
Next, the values of the input parameters are assigned to the local variables using the 'in' typemap.
</p>

<div class="targetlang"><pre>
{
  if (carg1)
  arg1 = (SomeTemplateClass&lt; int &gt; *) carg1->obj;
  else
  arg1 = (SomeTemplateClass&lt; int &gt; *) 0;
}
arg2 = (int) carg2;
</pre></div>

<p>
A reasonable question would be: "Why aren't the parameters assigned in the declaration of their local counterparts?"
As seen above, for complex types pointers have to be verified before extracting and
casting the actual data pointer from the provided SwigObj pointer.
This could easily become messy if it was done in the same line with the local variable declaration.
</p>

<p>
At this point we are ready to call the C++ function with our parameters.
</p>

<div class="targetlang"><pre>
{
  const SomeClass &amp;_result_ref =  someFunction(*arg1,arg2);cppresult = (SomeClass*) &amp;_result_ref;
}
</pre></div>

<p>
Subsequently, the return value is assigned to the dedicated return value variable using the 'out' typemap
</p>

<div class="targetlang"><pre>
{
  result = SWIG_create_object(cppresult, SWIG_STR(SomeClass));
}
</pre></div>

<p>
Finally, the return value variable is returned.
</p>

<div class="targetlang"><pre>
return result;
</pre></div>

<p>
Note that typemaps may use <tt>$null</tt> special variable which will be
replaced with either <tt>0</tt> or nothing, depending on whether the function
has a non-void return value or not.
</p>

<H4><a name="C_walkthrough_proxy">38.6.1.3 The Proxy</a></H4>


<p>
Compared to the wrapper code generation, the header code is very simple.
Basically it contains just the declarations corresponding to the definitions
above.
</p>

<div class="targetlang"><pre>
// wrapper header file
typedef struct SwigObj_SomeClass SomeClass;

SomeClass * SomeClass_new();

void SomeClass_delete(SomeClass * carg1);

SomeClass* someFunction(SomeIntTemplateClass* carg1, int carg2);


typedef struct SwigObj_SomeIntTemplateClass SomeIntTemplateClass;

SomeIntTemplateClass * SomeIntTemplateClass_new();

void SomeIntTemplateClass_delete(SomeIntTemplateClass * carg1);
</pre></div>

<H2><a name="C_exceptions">38.7 Exception handling</a></H2>


<p>
Any call to a C++ function may throw an exception, which cannot be caught by C code. Instead, the special <tt>SWIG_CException_get_pending()</tt> function must be called to check for this. If it returns a non-null pointer, <tt>SWIG_CException_msg_get()</tt> can be called to retrieve the error message associated with the exception. Finally, <tt>SWIG_CException_reset_pending()</tt> must be called to free the exception object and reset the current pending exception. Note that exception handling is much simpler when using C++, rather than C, wrappers, see sections 36.6.2.
</p>

<H2><a name="C_cxx_wrappers">38.8 C++ Wrappers</a></H2>


<p>
When <tt>-c++</tt> command line option is used (and <tt>-nocxx</tt> one is not), the header file generated by SWIG will also contain the declarations of C++ wrapper functions and classes mirroring the original API. All C++ wrappers are fully inline, i.e. don't need to be compiled separately, and are always defined inside the namespace (or nested namespaces) specified by <tt>-namespace</tt> command-line option or the namespace with the same name as the SWIG module name if this option is not specified.
</p>

<p>
C++ wrappers try to provide a similar API to the original C++ API being wrapped, notably any class <tt>Foo</tt> in the original API appears as a class with the same name in the wrappers namespace, and has the same, or similar, public methods. A class <tt>Bar</tt> deriving from <tt>Foo</tt> also derives from it in the wrappers and so on. There are some differences with the original API, however. Some of them are due to fundamental limitations of the approach used, e.g.:
</p>

<ul>
  <li>Only template instantiations are present in the wrappers, not the templates themselves.</li>
</ul>

<p>
Other ones are due to things that could be supported but haven't been implemented yet:
</p>

<ul>
  <li>Only single, not multiple, inheritance is currently supported.</li>
  <li>Only enums using <tt>int</tt> (or smaller type) as underlying type are supported.</li>
</ul>

<H3><a name="C_additional_possibilities">38.8.1 Additional customization possibilities</a></H3>


<p>
Generated C++ code can be customized by inserting custom code in the following sections:
</p>

<ul>
  <li><tt>cxxheader</tt> for including additional headers and other declarations in the global scope.</li>
  <li><tt>cxxcode</tt> for additional code to appear after the declarations of all wrapper classes, inside the module-specific namespace.</li>
</ul>

<p>
The following features are taken into account when generating C++ wrappers:
</p>

<ul>
  <li><tt>cxxignore</tt> May be set to skip generation of C++ wrappers for the given function or class, while still generating C wrappers for them.</li>
</ul>

<H3><a name="C_exception_handling">38.8.2 Exception handling</a></H3>


<p>
Exception handling in C++ is more natural, as the exceptions are re-thrown when using C++ wrappers and so can be caught, as objects of the special <tt>SWIG_CException</tt> type, using the usual <tt>try/catch</tt> statement. The objects of <tt>SWIG_CException</tt> class have <tt>code()</tt> and <tt>msg()</tt> methods, with the latter returning the error message associated with the exception.
</p>

<p>
If necessary, a custom exception type may be used instead of <tt>SWIG_CException</tt>. To do this, a custom implementation of <tt>swig_check()</tt> function, called to check for the pending exception and throw the corresponding C++ exception if necessary, must be provided and <tt>SWIG_swig_check_DEFINED</tt> preprocessor symbol must be defined to prevent the default implementation of this function from being compiled:
</p>
<div class="code"><pre>
%insert(cxxheader) %{
#ifndef SWIG_swig_check_DEFINED
#define SWIG_swig_check_DEFINED 1

#include &lt;stdexcept&gt;

class Exception : public std::runtime_error {
public:
    explicit Exception(const char* msg) : std::runtime_error{msg} {}
};

inline void swig_check() {
  if (auto* swig_ex = SWIG_CException_get_pending()) {
    Exception const e{SWIG_CException_msg_get(swig_ex)};
    SWIG_CException_reset_pending();
    throw e;
  }
}

template &lt;typename T&gt; T swig_check(T x) {
  swig_check();
  return x;
}

#endif // SWIG_swig_check_DEFINED
%}
</pre></div>

</body>
</html>