1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
//
// SWIG typemaps for std::vector
// Luigi Ballabio
// May 7, 2002
//
// Java implementation
%include exception.i
// containers
// methods which can raise are caused to throw an IndexError
%exception std::vector::get {
try {
$action
} catch (std::out_of_range& e) {
SWIG_exception(SWIG_IndexError,const_cast<char*>(e.what()));
}
}
%exception std::vector::set {
try {
$action
} catch (std::out_of_range& e) {
SWIG_exception(SWIG_IndexError,const_cast<char*>(e.what()));
}
}
// ------------------------------------------------------------------------
// std::vector
//
// The aim of all that follows would be to integrate std::vector with
// Java as much as possible, namely, to allow the user to pass and
// be returned Java (arrays? containers?)
// const declarations are used to guess the intent of the function being
// exported; therefore, the following rationale is applied:
//
// -- f(std::vector<T>), f(const std::vector<T>&), f(const std::vector<T>*):
// the parameter being read-only, either a Java sequence or a
// previously wrapped std::vector<T> can be passed.
// -- f(std::vector<T>&), f(std::vector<T>*):
// the parameter must be modified; therefore, only a wrapped std::vector
// can be passed.
// -- std::vector<T> f():
// the vector is returned by copy; therefore, a Java sequence of T:s
// is returned which is most easily used in other Java functions
// -- std::vector<T>& f(), std::vector<T>* f(), const std::vector<T>& f(),
// const std::vector<T>* f():
// the vector is returned by reference; therefore, a wrapped std::vector
// is returned
// ------------------------------------------------------------------------
%{
#include <vector>
#include <algorithm>
#include <stdexcept>
%}
// exported class
namespace std {
template<class T> class vector {
// add generic typemaps here
public:
vector();
vector(unsigned int);
unsigned int size() const;
%rename(isEmpty) empty;
bool empty() const;
void clear();
%rename(add) push_back;
void push_back(const T& x);
%extend {
T& get(int i) {
int size = int(self->size());
if (i>=0 && i<size)
return (*self)[i];
else
throw std::out_of_range("vector index out of range");
}
void set(int i, const T& x) {
int size = int(self->size());
if (i>=0 && i<size)
(*self)[i] = x;
else
throw std::out_of_range("vector index out of range");
}
}
};
// specializations for built-ins
%define specialize_std_vector(T)
template<> class vector<T> {
// add specialized typemaps here
public:
vector();
vector(unsigned int);
unsigned int size() const;
%rename(isEmpty) empty;
bool empty() const;
void clear();
%rename(add) push_back;
void push_back(T x);
%extend {
T get(int i) {
int size = int(self->size());
if (i>=0 && i<size)
return (*self)[i];
else
throw std::out_of_range("vector index out of range");
}
void set(int i, T x) {
int size = int(self->size());
if (i>=0 && i<size)
(*self)[i] = x;
else
throw std::out_of_range("vector index out of range");
}
}
};
%enddef
specialize_std_vector(bool);
specialize_std_vector(char);
specialize_std_vector(int);
specialize_std_vector(short);
specialize_std_vector(long);
specialize_std_vector(unsigned char);
specialize_std_vector(unsigned int);
specialize_std_vector(unsigned short);
specialize_std_vector(unsigned long);
specialize_std_vector(float);
specialize_std_vector(double);
specialize_std_vector(std::string);
}
|