1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

COMMENT:
I am enclosing two document files relating to nb.c.
They are separated by rows of ####'s.
The first deals with routines in nb.c which are global, and the
second with those that are static.
They are incomplete in three ways, perhaps.
(i) I have not yet included enough examples.
(ii) Some of the remarks about return values may not be correct.
I have not checked them very carefully.
(iii) You may consider that, in some respects, there is too much
in them and, in particular, that the statics should not be
included.
############################################################
NB.DOC
######
ELEMENTS IN NUMBER FIELDS

This module contains routines for manipulating elements in number fields.
For the current implementation, two type of number field are available:
(i): Cyclotomic fields,
(ii): Square radical fields  i.e. extensions of the rational number field
by finitely many square roots of rational integers.
The objects in SYMMETRICA which implement these numbers are known as
cyclos and
sqrads and have the SYMMETRICA types CYCLOTOMIC and SQ_RADICAL, respectively.
They are based on an object known as a monopoly and of type MONOPOLY which
implements a polynomial in one variable.
In what follows, a monopoly in the variable x may be denoted by p(x) or
a_n * x:n + a_(n1) * x:(n1) + . . . + a_1 * x + a_0.
When this represents a cyclo, x will be the 'basic' primitive mth root of
unity e:(2 * pi * i / m) for an appropriate positive integer m  m will be
known as the index of the cyclo.
When the monopoly above represents a sqrad, the sqrad corresponds to the
number a_n * \sqrt(n) + a_(n1) * \sqrt(n1) + . . . + a_1.
The following gives further details of the three structures MONOPOLY,
CYCLOTOMIC, SQ_RADICAL
A monopoly is an object of type MONOPOLY, with two fields  a self and a
next. Thus, it is syntactically the same as a list. Its next is a
monopoly or NULL. Its self is a monom whose coefficient is a scalar (integer
or rational number) and whose self is a nonnegative integer. Note that no
check is made to see whether these constraints are satisfied, but certain
routines will behave strangely if they are violated.
There is a number object with two fields  self and data. The self is a
monopoly. A cyclo is an number object of type CYCLOTOMIC whose data field
is a pointer to a block of four items  the index, the corresponding
cyclotomic polynomial, its degree and the 'automorphisms' of the field
(in fact, the integers between 1 and the index and coprime to it).
A sqrad is a number object whose data is a list of the prime divisors
(including 1) of the integers occuring as selfs of the terms of its monopoly.
Data relating to cyclotomic numbers are held in a table (read from a file
named CYCLOS.DAT) and in a list. A newly created cyclo with a known index
(i.e. known to the table or the list) has a data pointer pointing to the
known table or list item. A newly created cyclo with a new index has a
new data item created and appended to the list. At any time, the list of
data items may be appended to CYCLOS.DAT.
Although descriptions of the basic routines for manipulating the various
types of number, one should normally use the general routines given at the
end of this document. For example, use add(x,y) rather than
add_scalar_cyclo(x,y), since the general routines have typechecking built
in.
ELEMENTARY ROUTINES RELATING TO INTEGERS.

NAME:
number_of_digits
SYNOPSIS:
INT number_of_digits(OP a)
DESCRIPTION:
Determines the number of digits of the integer a. a may be
an INTEGER or a LONGINT.
RETURN:
The number of digits.
NAME:
integer_factors_to_integer
SYNOPSIS:
INT integer_factors_to_integer(OP l, OP a)
DESCRIPTION:
l is a MONOPOLY representing the factorization of an integer
into integers with integer exponents. These factors are combined to reform
the integer.
RETURN:
OK or ERROR
NAME:
make_coprimes
SYNOPSIS:
INT make_coprimes(OP number, OP result)
DESCRIPTION:
Given the number n, which should be a positive INTEGER or
LONGINT or a MONOPOLY representing a factorisation of an integer greater
than 1, the result returns the list of positive integers coprime to n.
RETURN:
OK or ERROR
NAME:
euler_phi
SYNOPSIS:
INT euler_phi(OP a, OP b)
DESCRIPTION:
Determines the number of numbers coprime to an integer a
and returns it in b. The object a may be INTEGER object or LONGINT object.
RETURN:
OK or ERROR !!
NAME:
ganzsquareroot_longint
SYNOPSIS:
INT ganzsquareroot_longint(OP a, OP b)
DESCRIPTION:
a is a nonnegative LONGINT object.
b is set to the integer part of its square root. In this case, the return
value is OK or IMPROPER according as the integer is a perfect square or not.
Otherwise, the return value is ERROR.
RETURN:
OK, IMPROPER or ERROR
NAME:
ganzsquareroot_integer
SYNOPSIS:
INT ganzsquareroot_integer(OP a, OP b)
DESCRIPTION:
a is a nonnegative INTEGER object.
b is set to the integer part of its square root. In this case, the return
value is OK or IMPROPER according as the integer is a perfect square or not.
Otherwise, the return value is ERROR.
RETURN:
OK, IMPROPER or ERROR
NAME:
primep
SYNOPSIS:
INT primep(OP a)
DESCRIPTION:
returns TRUE if a is prime number FALSE else
COMMENT:
INTEGER FACTORISATION

There is a simple routine for prime factorization of integers. A table of
prime factors is either read from a file PRIMES.DAT or constructed directly.
An integer is factored by first using the primes in the table, and then
continuing through all odd numbers following the greatest prime in the table.
NAME:
setup_prime_table
SYNOPSIS:
INT setup_prime_table()
DESCRIPTION:
Creates a table of rational prime numbers.
If the source is compiled with PRIME_FILE #defined, it searches for a file
in the current directory named PRIMES.DAT, and reads the table of primes
from that file. The first entry should be the number of primes in the file,
then the list of primes (assumes that INTs are longs).
If PRIME_FILE is not #defined, a table of the first 15 primes is set up.
Returns OK if the table is set; otherwise, returns ERROR.
RETURN:
OK or ERROR
NAME:
first_prime_factor
SYNOPSIS:
INT first_prime_factor(OP a, OP first_prime)
DESCRIPTION:
This routine finds the smallest prime factor of an integer
a. The prime found is returned as first_prime.
RETURN:
OK or ERROR
NAME:
square_free_part
SYNOPSIS:
INT square_free_part(OP a, OP b, OP c, OP la, OP lb, OP lc)
DESCRIPTION:
This routine find the squarefree part of the integer a,
i.e. the product of the prime factors which occur to an odd exponent and 1,
if the integer is negative. a may be either an INTEGER, LONGINT or a
MONOPOLY containing the prime factorization of an integer.
b and c return the the squarefree part the squareroot of the square part,
respectively. Thus, a = b * c ** 2, and b has no repeated prime factors.
If a is not a MONOPOLY and la is not NULL, la returns a MONOPOLY containing
the prime factorization of a. If they are not NULL, lb and lc return
MONOPOLYs containing the prime factorizations of b and c.
The parameters a,b,c must be distinct. If la,lb,lc are not NULL they must
be distinct also.
This routine makes use of the ancillary routine square_free_part_0.
RETURN:
OK or ERROR
NAME:
square_free_part_0
SYNOPSIS:
INT square_free_part_0(OP la,lb,lc)
DESCRIPTION:
This routine find the squarefree part of the integer, which
is given as a prime factors list la  a MONOPOLY containing the prime
factorization of the integer. lb and lc return MONOPOLYs containing the
prime factorization of the squarefree part and squareroot of the square
part, respectively.
That is, lb has no prime (including 1), occurring with an exponent > 1.
The parameters la,lb,lc must be distinct.
RETURN:
OK or ERROR
NAME:
jacobi
SYNOPSIS:
INT jacobi(OP a,b,c)
DESCRIPTION:
The Jacobi Symbol: (a/b) b odd. a and b are integers. c must
point to a location different from a and b. If a and b have a common factor,
c is set to 0 and ERROR is returned. Otherwise, c is set to the the jacobi
symbol (a/b). Note that b must be odd.
RETURN:
OK or ERROR
NAME:
kronecker
SYNOPSIS:
INT kronecker(OP a,b,c)
DESCRIPTION:
The Kronecker Symbol: (a/b). a squarefree and congruent to
0 or 1 mod 4. a and b are integers. c must point to a location different
from a and b. If a and b have a common factor, c is set to 0 and ERROR is
returned. Otherwise, c is set to the the kronecker symbol (a/b). Note
that b must be odd.
RETURN:
OK or ERROR
NAME:
b_skn_mp
SYNOPSIS:
INT b_skn_mp(OP s,k,n,e)
DESCRIPTION:
Build a monopoly whose self is s, coefficient is
k and next is n. b_skn_mp uses the objects supplied as arguments, while
m_skn_mp uses copies of them.
RETURN:
OK or ERROR (!)
NAME:
m_skn_mp
SYNOPSIS:
INT m_skn_mp(OP s,k,n,e)
DESCRIPTION:
Make a monopoly whose self is s, coefficient is
k and next is n. b_skn_mp uses the objects supplied as arguments, while
m_skn_mp uses copies of them.
RETURN:
OK or ERROR (!)
EXAMPLE:
Making the monopoly corresponding to 1 * x : 10 + 4 * x : 17.
It is assumed that all OP identifiers point to objects created by callocobject.
(1)
m_i_i(17L,b);
m_i_i(4L,c);
b_skn_mp(b,c,d,a);
b = callocobject(); /* need new objects for these pointers */
c = callocobject();
m_i_i(10L,b);
m_i_i(1L,c);
b_skn_mp(b,c,NULL,d); /* at this stage the monopoly is complete */
The statement 'println(a);' causes the output 4 17 1 10
The statement 'objectwrite(stdout,a);' causes the output where, for convenience,
some lines have been joined and the components have been annotated:
126 1 21 1 4 1 17 1
MONOPOLY nonNULL MONOM INTEGER value INTEGER value more terms
126 1 21 1 1 1 10 0
MONOPOLY nonNULL MONOM INTEGER value INTEGER value no more terms
(2) The following creates the same monopoly, the insert routine carries
out some sorting.
init(MONOPOLY,a);
m_i_i(10L,b);
m_i_i(1L,c);
h = callocobject();
m_sk_mo(b,c,h);
insert(h,a,add_koeff,NULL);
m_i_i(17L,b);
m_i_i(4L,c);
h = callocobject();
m_sk_mo(b,c,h);
insert(h,a,add_koeff,NULL);
The statement 'println(a);' causes the output 1 10 4 17
The statement 'objectwrite(stdout,a);' causes the output:ce,
126 1 21 1 1 1 10 1 126 1 21 1 4 1 17 0
NAME:
scan_monopoly
SYNOPSIS:
INT scan_monopoly(OP a)
DESCRIPTION:
Routines for inputting a monopoly from stdin. scan_monopoly
requests the type of self and coefficient. It then transfers control to
SCMPCO which requests the number of terms in the monopoly and inputs the
terms one by one. This is a subroutine of scan. It is better to
use the general routine scan.
RETURN:
OK or ERROR
NAME:
remove_zero_terms
SYNOPSIS:
INT remove_zero_terms(OP a)
DESCRIPTION:
Removes those terms from a MONOPOLY with zero coefficients
unless this makes the list empty. In this case, one term with self and
coefficient both 0 is left.
RETURN:
OK or ERROR
NAME:
add_scalar_monopoly
SYNOPSIS:
INT add_scalar_monopoly(OP a,b,c)
DESCRIPTION:
subroutine of add
NAME:
mult_scalar_monopoly
SYNOPSIS:
INT mult_scalar_monopoly(OP a,b,c)
DESCRIPTION:
subroutine of mult
NAME:
add_monopoly_monopoly
SYNOPSIS:
INT add_monopoly_monopoly(OP a, b, c)
DESCRIPTION:
subroutine of add
NAME:
mult_monopoly_monopoly
SYNOPSIS:
INT mult_monopoly_monopoly(OP a, b, c)
DESCRIPTION:
subroutine of mult
NAME:
add_monopoly
SYNOPSIS:
INT add_monopoly(OP a,b,c)
DESCRIPTION:
subroutine of add
NAME:
add_apply_monopol
SYNOPSIS:
INT add_apply_monopoly(OP a,b)
DESCRIPTION:
Addition of objects of type INTEGER,
LONGINT, BRUCH and MONOPOLY. Subroutine of add_apply
NAME:
mult_monopoly
SYNOPSIS:
INT mult_monopoly(OP a,b,c)
DESCRIPTION:
for the multiplication of a object a of type MONOPOLY
with an arbitray object b, the result is the object c.
Subroutine of mult
RETURN:
OK if no error occured.
NAME:
mult_apply_monopoly
SYNOPSIS:
INT mult_apply_monopoly(OP a,b)
DESCRIPTION:
Multiplication of objects of type INTEGER, LONGINT,
BRUCH, MATRIX, MONOM, POLYNOM, SCHUBERT, VECTOR and MONOPOLY,
Better to use the general routine mult_apply
NAME:
addinvers_monopoly
SYNOPSIS:
INT addinvers_monopoly(OP a,b)
DESCRIPTION:
subroutine of the general routine addinvers
NAME:
addinvers_apply_monopoly
SYNOPSIS:
INT addinvers_apply_monopoly(OP a)
DESCRIPTION:
subroutine of the general routine addinvers_apply
NAME:
nullp
SYNOPSIS:
INT nullp_monopoly(OP a)
DESCRIPTION:
subroutine of the general routine nullp.
NAME:
comp_monopoly
SYNOPSIS:
INT comp_monopoly(OP a,b)
DESCRIPTION:
Compares monopolies as lists, using comp_list()
RETURN:
0 (= equal) <0 if a<b >0 if a>b
NAME:
quores_monopoly
SYNOPSIS:
INT quores_monopoly(OP poly,dpoly,qpoly,rpoly)
DESCRIPTION:
Carries out the division algorithm on polynomials of one
variable to find the quotient (qpoly) and remainder (rpoly). The result
is poly = dpoly * qpoly + rpoly, where rpoly has degree less than dpoly,
or represents 0. The parameters poly, dpoly, qpoly and rpoly must all be
different.
RETURN:
OK or ERROR
NAME:
raise_power_monopoly
SYNOPSIS:
INT raise_power_monopoly(OP a, b)
DESCRIPTION:
Multiplies all the self components of the terms of the
monopoly b by the scalar a. Viewing the monopoly as a polynomial p(x),
this has the effect of replacing it by p(x**a).
RETURN:
OK or ERROR
NAME:
scale_monopoly
SYNOPSIS:
INT scale_monopoly(OP a,b)
DESCRIPTION:
Viewing the monopoly b as a polynomial p(x), the effect of
this routine is to replace it by p(a*x).
RETURN:
OK or ERROR
NAME:
objectread_monopoly
SYNOPSIS:
INT objectread_monopoly(FILE *f, OP a)
DESCRIPTION:
Reads a monopoly a from the stream f.
RETURN:
OK or ERROR
NAME:
tex_monopoly
SYNOPSIS:
INT tex_monopoly(OP a)
DESCRIPTION:
Outputs a monopoly in a form suitable for TeX processing.
It is treated as a polynomial in x. Subroutine of the general routine
tex.
RETURN:
OK or ERROR
NAME:
make_unitary0_monopoly
SYNOPSIS:
INT make_unitary0_monopoly(OP number,result)
DESCRIPTION:
Given the number n, which should be an positive INTEGER or
LONGINT, the result returns the monopoly corresponding to x**n1.
RETURN:
OK or ERROR
NAME:
make_unitary1_monopoly
SYNOPSIS:
INT make_unitary1_monopoly(OP number,result)
DESCRIPTION:
Given the number n, which should be an positive INTEGER or
LONGINT, the result returns the MONOPOLY x**(n1) + x**(n2) + ... + x + 1.
RETURN:
OK or ERROR
NAME:
make_cyclotomic_monopoly
SYNOPSIS:
INT make_cyclotomic_monopoly(OP number,result)
DESCRIPTION:
Given the number n, which should be an positive INTEGER or
LONGINT or a MONOPOLY representing a factorisation of an integer greater
than 1, the result returns the cyclotomic polynomial of index n, phi_n(x).
RETURN:
OK or ERROR
NAME:
t_MONOPOLY_POLYNOM
SYNOPSIS:
INT t_MONOPOLY_POLYNOM(OP a,b)
DESCRIPTION:
converts a MONOPOLY object a into a POLYNOM object b
with one variable.
NAME:
eq_fieldobject_int
SYNOPSIS:
INT eq_fieldobject_int(OBJECTKIND type, OP a, INT i)
DESCRIPTION:
Determines if the 'field object' (a monopoly, sqrad or cyclo)
is equal to the integer i. Returns OK for equality. There are six
associated macros:
EINSP_MONOPOLY(a) eq_fieldobject_int(MONOPOLY,(a),1L)
EINSP_CYCLO(a) eq_fieldobject_int(CYCLOTOMIC,(a),1L)
EINSP_SQRAD(a) eq_fieldobject_int(SQ_RADICAL,(a),1L)
NEGEINSP_MONOPOLY(a) eq_fieldobject_int(MONOPOLY,(a),1L)
NEGEINSP_CYCLO(a) eq_fieldobject_int(CYCLOTOMIC,(a),1L)
NEGEINSP_SQRAD(a) eq_fieldobject_int(SQ_RADICAL,(a),1L)
RETURN:
OK or ERROR
NAME:
b_ksd_n
SYNOPSIS:
INT b_ksd_n(OBJECTKIND kind; OP self,data,result)
DESCRIPTION:
build a number object (sqrad or cyclo), whose type
is 'kind', and with the given self and data. b_ksd_n uses the objects
supplied as arguments, while m_ksd_n uses copies of them.
RETURN:
OK or ERROR (!)
NAME:
m_ksd_n
SYNOPSIS:
INT m_ksd_n(OBJECTKIND kind; OP self,data,result)
DESCRIPTION:
Make a number object (sqrad or cyclo), whose type
is 'kind', and with the given self and data. b_ksd_n uses the objects
supplied as arguments, while m_ksd_n uses copies of them.
RETURN:
OK or ERROR (!)
NAME:
objectwrite_number
SYNOPSIS:
INT objectwrite_number(FILE *f, OP number)
DESCRIPTION:
writes a number (sqrad or cyclo)
to a stream. In the case of a cyclo, the only part of the data
transferred is the index.
RETURN:
OK or ERROR
NAME:
objectread_number
SYNOPSIS:
INT objectread_number(FILE *f, OP number, OBJECTKIND type)
DESCRIPTION:
Reads a number (sqrad or cyclo) from
a stream. In the case of a cyclo, the only part of the data
transferred is the index. There are two associated macros:
OBJECTREAD_CYCLO(f,a) objectread_number((f),(a),CYCLOTOMIC)
OBJECTREAD_SQRAD(f,a) objectread_number((f),(a),SQ_RADICAL)
RETURN:
OK or ERROR
NAME:
fprint_number
SYNOPSIS:
INT fprint_number(FILE *f, OP n)
DESCRIPTION:
Prints the number n on the stream f. The self is printed
first and is separated by a colon from the data list in the case of a sqrad
and the index in the case of a cyclo.
RETURN:
OK or ERROR
COMMENT:
There are the standard routines and macros
NAME MACRO DESCRIPTION RETURN TYPE

c_n_s C_N_S change number self INT
c_n_d C_N_D change number data INT
s_n_s S_N_S select number self OP
s_n_d S_N_D select number sqrad data OP
s_n_dci S_DCI_I select number cyclo data:index OP
s_n_dcd S_DCI_D select number cyclo data:degree OP
s_n_dcp S_DCI_P select number cyclo data:poly OP
NAME:
mult_lists
SYNOPSIS:
INT mult_lists(OP a,b,c)
DESCRIPTION:
Multiplies the entries in two lists pairwise, putting the
resulting objects in a list. Duplicate objects are ignored.
RETURN:
OK or ERROR
NAME:
tidy
SYNOPSIS:
INT tidy(OP a)
DESCRIPTION:
Tidies up an object which contains cyclos in some of its
components. Such cyclos are reduced modulo the cyclotomic polynomial.
RETURN:
OK or ERROR
NAME:
make_monopoly_sqrad
SYNOPSIS:
INT make_monopoly_sqrad(OP a,b)
DESCRIPTION:
Makes b a sqrad whose self is a copy of the monopoly a.
Also determines the data of the sqrad.
RETURN:
OK or ERROR
NAME:
make_scalar_sqrad
SYNOPSIS:
INT make_scalar_sqrad(OP a,b)
DESCRIPTION:
Makes b a sqrad whose self is 1 and whose coefficient is a.
RETURN:
OK or ERROR
NAME:
scan_sqrad
SYNOPSIS:
INT scan_sqrad(OP a)
DESCRIPTION:
Input a sqrad directly from standard input.
RETURN:
OK or ERROR
NAME:
add_scalar_sqrad
SYNOPSIS:
INT add_scalar_sqrad(OP a,b,c)
DESCRIPTION:
this is a subroutine of the general routine add
NAME:
mult_scalar_sqrad
SYNOPSIS:
INT mult_scalar_sqrad(OP a,b,c)
DESCRIPTION:
this is a subroutine of the general routine mult
NAME:
add_sqrad_sqrad
SYNOPSIS:
INT add_sqrad_sqrad(OP a,b,c)
DESCRIPTION:
this is a subroutine of the general routine add
NAME:
mult_sqrad_sqrad
SYNOPSIS:
INT mult_sqrad_sqrad(OP a,b,c)
DESCRIPTION:
this is a subroutine of the general routine mult
NAME:
add_sqrad
SYNOPSIS:
INT add_sqrad(OP a,b,c)
DESCRIPTION:
this is a subroutine of the general routine add
NAME:
add_apply_sqrad
SYNOPSIS:
INT add_apply_sqrad(OP a,b)
DESCRIPTION:
Addition of objects of type INTEGER, LONGINT, BRUCH, POLYNOM,
SQ_RADICA or CYCLOTOMIC.
This is a subroutine of the general routine add_apply
NAME:
mult_sqrad
SYNOPSIS:
INT mult_sqrad(OP a,b,c)
DESCRIPTION:
this is a subroutine of the general routine mult
NAME:
mult_apply_sqrad
SYNOPSIS:
INT mult_apply_sqrad(OP a,b)
DESCRIPTION:
Multiplication of objects the first of type SQ_RADICAL and the second of
type INTEGER, LONGINT, CYCLOTOMIC, BRUCH, MATRIX, MONOM, VECTOR,
SQ_RADICAL, POLYNOM or SCHUBERT.
this is a subroutine of the general routine mult_apply
NAME:
addinvers_sqrad
SYNOPSIS:
INT addinvers_sqrad(OP a,b)
DESCRIPTION:
this is a subroutine of the general routine addinvers
NAME:
addinvers_apply_sqrad
SYNOPSIS:
INT addinvers_apply_sqrad(OP a)
DESCRIPTION:
this is a subroutine of the general routine addinvers_apply
NAME:
invers_sqrad
SYNOPSIS:
INT invers_sqrad(OP a,b)
DESCRIPTION:
this is a subroutine of the general routine invers
NAME:
nullp_sqrad
SYNOPSIS:
INT nullp_sqrad(OP a)
DESCRIPTION:
this is a subroutine of the general routine nullp
SYNOPSIS:
INT comp_sqrad(OP a,b)
DESCRIPTION:
Uses comp_list on the self fields.
NAME:
tex_sqrad
SYNOPSIS:
INT tex_sqrad(OP a)
DESCRIPTION:
Outputs a sqrad in a form suitable for TeX processing.
Each term of the self is expressed in the form: coefficient * \sqrt (self).
RETURN:
OK or ERROR
NAME:
squareroot_integer
SYNOPSIS:
INT squareroot_integer(OP a,b)
DESCRIPTION:
b is a sqrad whose square is the scalar a, which is a
INTEGER object. This is a
subroutine of the generalroutine squareroot
RETURN:
OK or ERROR
NAME:
squareroot_longint
SYNOPSIS:
INT squareroot_longint(OP a,b)
DESCRIPTION:
b is a sqrad whose square is the scalar a, which is a
LONGINT object. This is a
subroutine of the generalroutine squareroot
RETURN:
OK or ERROR
NAME:
squareroot_bruch
SYNOPSIS:
INT squareroot_bruch(OP a,b)
DESCRIPTION:
b is a sqrad whose square is the scalar a, which is a
BRUCH object. This is a
subroutine of the generalroutine squareroot
RETURN:
OK or ERROR
NAME:
convert_radical_cyclo
SYNOPSIS:
INT convert_radical_cyclo(OP a,b)
DESCRIPTION:
Converts the square root of an integer a to a cyclo b.
RETURN:
OK
NAME:
trans_index_monopoly_cyclo
SYNOPSIS:
INT trans_index_monopoly_cyclo(OP a,b,c)
DESCRIPTION:
Given a positive integer a and a monopoly b corresponding to
the polynomial p(x), a cyclo c is constructed whose index is a and which
repersents the cyclotomic number p(x) where x is the basic primitive ath
root of unity. p(x) is reduced modulo x:a  1 but not modulo phi_a(x).
RETURN:
OK or ERROR
NAME:
field_check_cyclo
SYNOPSIS:
INT field_check_cyclo(OP a)
DESCRIPTION:
Check if element of field element , the CYCLOTOMIC
object a, is essentially an INTEGER,
and if so, transform to an object of type INTEGER.
RETURN:
OK or ERROR
NAME:
field_check_sqrad
SYNOPSIS:
INT field_check_sqrad(OP a)
DESCRIPTION:
Check if element of field element, the SQ_RADICAL
object a, is essentially an INTEGER,
and if so, transform to an object of type INTEGER.
RETURN:
OK or ERROR
NAME:
make_scalar_cyclo
SYNOPSIS:
INT make_scalar_cyclo(OP a,b)
DESCRIPTION:
transfer a scalar object l into an CYCLOTOMIC object b.
NAME:
make_index_coeff_power_cyclo
SYNOPSIS:
INT make_index_coeff_power_cyclo(OP a,b,c,d)
DESCRIPTION:
The monomial b * x:c is treated as a cyclotomic number,
where x is the basic primitive ath root of unity. A cyclo d is
constructed corresponding to this number.
RETURN:
OK or ERROR
NAME:
scan_cyclo
SYNOPSIS:
INT scan_cyclo(OP a)
DESCRIPTION:
Input a cyclo directly from standard input.
Subroutine of the general routine scan.
RETURN:
OK or ERROR
NAME:
add_scalar_cyclo
SYNOPSIS:
INT add_scalar_cyclo(OP a,b,c)
DESCRIPTION:
this is a subroutine of the general routine add
NAME:
mult_scalar_cyclo
SYNOPSIS:
INT mult_scalar_cyclo(OP a,b,c)
DESCRIPTION:
this is a subroutine of the general routine mult
NAME:
add_cyclo_cyclo
SYNOPSIS:
INT add_cyclo_cyclo(OP a,b,c)
DESCRIPTION:
c is completely tidied.
this is a subroutine of the general routine add
NAME:
mult_cyclo_cyclo
SYNOPSIS:
INT mult_cyclo_cyclo(OP a,b,c)
DESCRIPTION:
c is completely tidied.
this is a subroutine of the general routine mult
NAME:
add_cyclo
SYNOPSIS:
INT add_cyclo(OP a,b,c)
DESCRIPTION:
this is a subroutine of the general routine add
NAME:
add_apply_cyclo
SYNOPSIS:
INT add_apply_cyclo(OP a,b)
DESCRIPTION:
Adds a cyclo to an object of type INTEGER, LONGINT, BRUCH, SQ_RADICAL,
CYCLOTOMIC or POLYNOM.
this is a subroutine of the general routine add_apply
NAME:
mult_cyclo
SYNOPSIS:
INT mult_cyclo(OP a,b,c)
DESCRIPTION:
this is a subroutine of the general routine mult
NAME:
mult_apply_cyclo
SYNOPSIS:
INT mult_apply_cyclo(OP a,b)
DESCRIPTION:
Multiplies a cyclo with an object of type INTEGER, LONGINT, BRUCH,
SQ_RADICAL, CYCLOTOMIC, POLYNOM, SCHUBERT, VECTOR or MATRIX.
this is a subroutine of the general routine mult_apply
NAME:
addinvers_cyclo
SYNOPSIS:
INT addinvers_cyclo(OP a,b)
DESCRIPTION:
this is a subroutine of the general routine addinvers
NAME:
addinvers_apply_cyclo
SYNOPSIS:
INT addinvers_apply_cyclo(OP a)
DESCRIPTION:
this is a subroutine of the general routine addinvers_apply
NAME:
invers_cyclo
SYNOPSIS:
INT invers_cyclo(OP a,b)
DESCRIPTION:
this is a subroutine of the general routine invers
NAME:
nullp_cyclo
SYNOPSIS:
INT nullp_cyclo(OP a)
DESCRIPTION:
this is a subroutine of the general routine nullp
NAME:
comp_cyclo
SYNOPSIS:
INT comp_cyclo(OP a)
DESCRIPTION:
Uses comp_list on the self fields.
NAME:
conj_cyclo
SYNOPSIS:
INT conj_cyclo(OP a,b,c)
DESCRIPTION:
If a represents the cyclotomic number p(x), where x is the
basic primitive nth root of unity, c is a cyclo representing the number
p(x:b). If b is coprime to n, this is an algebraic conjugate of p(x).
RETURN:
OK or ERROR
NAME:
tex_cyclo
SYNOPSIS:
INT tex_cyclo(OP a)
DESCRIPTION:
Outputs a cyclo in a form suitable for TeX processing.
Each term of the self is expressed in the form:
coefficient * \omega_{index} : (self).
RETURN:
OK or ERROR
NAME:
setup_cyclotomic_table
SYNOPSIS:
INT setup_cyclotomic_table()
DESCRIPTION:
Reads the table of cyclos from the file CYCLOS.DAT. The first
entry should be no_cyclos, then the list of cyclo_data. Returns OK if the
table is set; otherwise, returns ERROR.
RETURN:
OK or ERROR
NAME:
print_cyclo_data
SYNOPSIS:
INT print_cyclo_data(CYCLO_DATA *ptr)
DESCRIPTION:
Prints at stdout the cyclotomic data pointed to by ptr,
prefacing the entries by Index, Degree, Polynomial and Automorphism
exponents respectively.
RETURN:
NAME:
print_cyclo_table
SYNOPSIS:
INT print_cyclo_table()
DESCRIPTION:
Prints the data corresponding to each item on the cyclo table.
RETURN:
OK or ERROR
NAME:
print_cyclo_list
SYNOPSIS:
INT print_cyclo_list()
DESCRIPTION:
Prints the data corresponding to each item on the cyclo list.
RETURN:
OK or ERROR
NAME:
save_cyclo_list
SYNOPSIS:
INT save_cyclo_list()
DESCRIPTION:
Appends the data corresponding to each item on the cyclo list
to the file CYCLOS.DAT  the file is created if it does not exist. There
is no check for duplication of data.
RETURN:
OK or ERROR
COMMENT:

GENERAL ROUTINES

NAME DESCRIPTION

add()
mult()
addinvers()
invers()
nullp()
comp()
copy()
fprint()
fprintln()
freeall()
freeself()
objectread()
objectwrite()
scan()
tex()
COMMENT:
############################################################
STATIC.DOC
##########
THE STATIC ROUTINES

NAME: integer_factor_0
SYNOPSIS: static INT integer_factor_0(a,l,g,m,first_prime)
OP a,l,g,m, first_prime;
DESCRIPTION: This routine factorizes an integer using the table of primes.
a is the integer to be factored; l is a monopoly in which the prime factors
of a, which are contained in the table, and their exponents are inserted as
monomials with the primes as the selfs and the exponents as the koeffs;
g is the remaining factor; m is the last number tried as a factor.
If it is nonNULL, first_prime is set to the first prime factor and the
routine returns as soon as it is found. For a full factorization, it
must be set to NULL. The parameters a,l,g,m and first_prime must be
different.
RETURN: OK or ERROR
NAME: integer_factor_1
SYNOPSIS: static INT integer_factor_1(a,f1,f2,b,l,first_prime)
OP a,f1,f2,b,l,first_prime;
DESCRIPTION: This routine finds all prime factors of the integer a
between two bounds f1 (the lower) and f2. If f1 is even, it is replaced
by f1 + 1. l is a monopoly in which the prime factors of a, between the
given bounds, and their exponents are inserted as monomials with the
primes as the selfs and the exponents as the koeffs. b is set to the
remaining factor. If it is nonNULL, first_prime is set to the first
prime factor and the routine returns as soon as it is found.
For a full factorization, it must be set to NULL. The parameters a,l,b,
f1,f2 and first_prime must be different.
RETURN: OK or ERROR
NAME: integer_factor_2 /* deleted */
SYNOPSIS:
DESCRIPTION: This routine finds a partial prime factorisation of the
integer a with all the primes on a list l0. l is a monopoly to hold the
factorisation and b is set to the remaining factor. a,l,b,l0 must be
different.
RETURN: OK or ERROR
NAME: integer_factor
SYNOPSIS: static INT integer_factor(a,l) OP a,l;
DESCRIPTION: This is the main integer factorization routine.
a is the integer to be factored. l is a monopoly to hold the factorisation.
l need not be initialized to a MONOPOLY.
RETURN: OK or ERROR
NAME: callocnumber
SYNOPSIS: static struct number * callocnumber()
DESCRIPTION: Creates a number object and returns a pointer to it.
RETURN: A pointer or NULL
NAME: insert_zero_into_monopoly
SYNOPSIS: static INT insert_zero_into_monopoly(a) OP a;
DESCRIPTION: Converts an empty monopoly into a nonempty one.
RETURN: OK or ERROR
NAME: find_sqrad_data
SYNOPSIS: static INT find_sqrad_data(a) OP a;
DESCRIPTION: Finds the list of prime factors of the radicals of a
sqrad a and 1 if one of these radicals is negative, and inserts this list
in the appropriate field of a.
RETURN: OK or ERROR
NAME: adjust_sqrad_data
SYNOPSIS: static INT adjust_sqrad_data(a) OP a;
DESCRIPTION: This adjusts an incomplete data list of primes for the
sqrad a to make it complete. It may result in the list having too many
primes.
RETURN: OK or ERROR
NAME: conj_sqrad
SYNOPSIS: static INT conj_sqrad(a,b,c) OP a,b,c;
DESCRIPTION: Obtains the conjugate of the sqrad a with respect to the
automorphism x + y * \sqrt(b) > x  y * \sqrt(b) of the number field
F = E(\sqrt(b)), where [E:F] = 2, and F is generated by the square roots
of the elements on the data list of a. The variable c returns the
conjugate.
RETURN: OK or ERROR
NAME: convert_sqrad_scalar
SYNOPSIS: static INT convert_sqrad_scalar(a) OP a;
DESCRIPTION: If a is a sqrad not involving radicals, it is converted to a
scalar  the coefficient of \sqrt(1).
RETURN: OK or ERROR
NAME: make_index_monopoly_cyclo
SYNOPSIS: static INT make_index_monopoly_cyclo(a,b,c,tid)
OP a,b,c; int tid;
DESCRIPTION: Given a positive integer a and a monopoly b corresponding to
the polynomial p(x), a cyclo c is constructed whose index is a and which
repersents the cyclotomic number p(x) where x is the basic primitive ath
root of unity. The parameter tid specifies the amount of tidying up
required  see the standardise_cyclo routine.
RETURN: OK or ERROR
NAME: standardise_cyclo
SYNOPSIS: static INT standardise_cyclo(a,tid) OP a; int tid;
DESCRIPTION: This routine carries out a tidyingup process on the
monopoly p(x) corresponding to the cyclo a. If tid = 0, the monopoly
p(x) is not tidied up in any way. if tid = 1, p(x) is reduced modulo
x:n  1; and if tid = 2, it is reduced modulo phi_n(x), where n denotes
the index.
RETURN: OK or ERROR
NAME: add_cyclo_cyclo_0
mult_cyclo_cyclo_0
SYNOPSIS: static INT add_cyclo_cyclo_0(a,b,c,tid) OP a,b,c; int tid;
static INT mult_cyclo_cyclo_0(a,b,c,tid) OP a,b,c; int tid;
DESCRIPTION: Adding and multiplying with tidying facilities.
RETURN: OK or ERROR
NAME: invers_cyclo_norm
SYNOPSIS: static INT invers_cyclo_norm(a,b,c) OP a,b,c;
DESCRIPTION: Calculates the inverse and norm of the cyclo a and returns
them as b and c respectively. The norm of a is the product of its
conjugates in the cyclotomic field corresponding to the index of a.
RETURN: OK or ERROR
NAME: add_cyclo_data
SYNOPSIS: static CYCLO_DATA *add_cyclo_data(index) OP index;
DESCRIPTION: Creates the data associated with a new cyclotomic index
and appends it to the global list of cyclotomic data. A pointer to this
data is returned.
RETURN: pointer or NULL
NAME: cyclo_ptr
SYNOPSIS: static CYCLO_DATA *cyclo_ptr(index) OP index;
DESCRIPTION:
DESCRIPTION: Returns a pointer to data associated with the cyclotomic index
given  the pointer points to a table item or a list item  or NULL if
the data is neither on the table or the list.
RETURN: pointer or NULL
static INT convert_cyclo_scalar(a) OP a;
NAME: convert_cyclo_scalar
SYNOPSIS: static INT convert_cyclo_scalar(a) OP a;
DESCRIPTION: If a is a cyclo not involving roots of unity, it is converted
to a scalar  the coefficient of x:0.
RETURN: OK or ERROR
############################################################
