File: rh.doc

package info (click to toggle)
symmetrica 2.0+ds-6
 `123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146` ``````COMMENT: /* rh.doc SYMMETRICA */ NAME: is_scalar_reihe SYNOPSIS: INT is_scalar_reihe(OP a) DESCRIPTION: checks wether a is a object of the kind REIHE with only constant term. NAME: max_degree_reihe SYNOPSIS: INT max_degree_reihe(OP a,b) DESCRIPTION: you enter a REIHE object a, and the output is the degree of maximal coefficient, which is computed up to now. NAME: m_function_reihe SYNOPSIS: INT m_function_reihe(INT (*f)(); OP a) DESCRIPTION: you enter a function f, which computes an coefficient of the series, which is specified by an paramter of the function. The result is a object a of type REIHE. The syntax of the function f is described now in detail: INT f(OP a,b) a is a INTEGER object which gives the common degree of the coefficients, which should be computed. The result b must be of the type POLYNOM object. This POLYNOM object is homogenous of the entered degree. EXAMPLE: the following routine computes the series sum over all partitions, entered in exponent notation #include "def.h" #include "macro.h" INT co_part(a,b) OP a,b; { if (S_I_I(a) == 0L) m_iindex_iexponent_monom(0L,0L,b); else { OP c = callocobject(); OP d; INT i; makevectorofpart(a,c); init(POLYNOM,b); for (i=0;i