File: sab.doc

package info (click to toggle)
symmetrica 2.0+ds-6
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 9,456 kB
  • sloc: ansic: 97,289; makefile: 170; sh: 70
file content (195 lines) | stat: -rw-r--r-- 6,677 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
NAME:		
	dimension_symmetrization
SYNOPSIS:	
	INT dimension_symmetrization(OP n,part,a)
DESCRIPTION:    
	computes the dimension of the degree of a irreducible
	representation of the GL_n, n is a INTEGER object, labeled
	by the PARTITION object a.
RETURN:		
	OK if no error occured.
EXAMPLE:
	#include "def.h"
	#include "macro.h"

	main()
	{
	OP a,b,c;
	anfang();

	a=callocobject(); b=callocobject(); c=callocobject();

	printeingabe("Enter the degree of the linear group:");
	scan(INTEGER,b);
	printeingabe("Enter the part labeling the irrep of the linear group:");
	scan(PARTITION,a);
	printeingabe("The degree of the irrep is:");
	dimension_symmetrization(b,a,c);
	println(c);

	freeall(a); freeall(b); freeall(c);
	ende();
	}


NAME:
	bdg
SYNOPSIS:
	INT bdg(OP part,perm,D)
DESCRIPTION:
	Calculates the irreduzible matrix representation 
                        D^part(perm), whose entries are of integral numbers.
          reference:    H. Boerner:
                        Darstellungen von Gruppen, Springer 1955.
                        pp. 104-107.

NAME:
	sdg

SYNOPSIS:
	INT sdg(OP part,perm,D)
DESCRIPTION:
	Calculates the irreduzible matrix representation 
                        D^part(perm), which consists of rational numbers.
          reference:    G. James/ A. Kerber:  
                        Representation Theory of the Symmetric Group.
                        Addison/Wesley 1981.
                        pp. 124-126.

NAME:
	odg
SYNOPSIS:
	INT odg(OP part,perm,D)
DESCRIPTION:
	Calculates the irreduzible matrix representation 
	D^part(perm), which consists of real numbers.

  reference:    G. James/ A. Kerber:  
		Representation Theory of the Symmetric Group.
                        Addison/Wesley 1981.
                        pp. 127-129.

COMMENT:
   4. Polynomial Representations of GLm(C):
   ---------------------------------------
   GENERAL HINT:

        For the routines below are just for constructing small examples
        and very time-and space-consuming, the user should take care
        that his calculations do not exceed the following limits:

        i)  Group size <= 1000.

        ii) Matrix size (m^n) <= 256.

        a)  Decomposition of the n-fold tensorproduct of the identical
                representation of Glm(C) onto itself.

NAME:
	glmndg
SYNOPSIS:
	INT glmndg(OP m,n,M; INT VAR)
DESCRIPTION:
	If VAR is equal to 0L the orthogonal representation 
                         is used for the decomposition, otherwise, if VAR 
                         equals 1L, the natural representation is considered.

                         The result is the  VECTOR-Object M, consisting of  
                         components of type MATRIX, representing the several 
                         irreducible matrix representations of GLm(C) with 
                         part_1' <= m, where part is a partition of n.

COMMENT:
        b)  Calculation of only one polynomial representation <<part>>
                of GLm(C).

NAME:
	glpdg
SYNOPSIS:     
	INT glpdg(OP m,part,M)
DESCRIPTION:  
	part has to be an PARTITION object with not more
                          than m parts.
                          For this partition, the program calculates the
                          polynomial irreducible representation
                          <<part>> of GLm(C), which ist stored in the 
                          MATRIX-Object M.

            reference:    J. Grabmeier/ A. Kerber:  

                          The evaluation of Irreducible Polynomial 
                          Representations of the General Linear Groups 
                          and of the Unitary Groups over Fields of 
                          Characteristic 0.

                          Acta Applicandae Mathematicae 8 (1987).

                          (Describes a method different from
                           the one implemented here, but gives a lot
                           of theoratical background.)

COMMENT:
   5. Checking Homomorphy of Representations of GLm(C):
   ------------------------------------------------
NAME:
	glm_homtest
SYNOPSIS:     
	INT glm_homtest(OP m,M)
DESCRIPTION:  
	The relation D(A)*D(B) = D(A*B) is verified 
                        with two random integer matrices. 
                        In case of M not being a representation, the 
                        procedure displays an error message to stdout.

COMMENT:
/* Documentation  of routines, concerning the calculation of 
   symmetry adapted bases for general finite permutation groups 

   1. Calculating of a general symmetry adapted Basis:
   --------------------------------------------------

          SYNOPSIS:     sab_input(S,SMat,M);    OP S,SMat,M;
                        group_gen(S,SMat,D,Di); OP S,SMat,D,Di;
                        sab(Di,D,B,M,mpc);      OP Di,D,B,M,mpc;

          The procedure sab_input reads the necessary input from the 
          standard-input.

          The input-format is as follows:

                 --------------------------------------------------------------      
                 nr of generators of  G             |       orderS 
                 (INTEGER )                         |

                 set S of generators of G           |       S
                 (VECTOR of PERMUTATIONS of         |
                 length n, where G <= Sn)           |

                 nr. of irred. representations      |       anz_irr
                 (INTEGER )                         |

                 matrices of irr.representations    |                           
                 for the elements s in S            |       SMat
                 (VECTOR of VECTOR of MATRIX)       |

                 symmetric operator M               |       M 
                 (MATRIX)                           |

                 --------------------------------------------------------------      
          With this input, group_gen calulates the whole symmetry group G.
          The group elements are stored in D the first line of their 
          irreducible matrix representations are stored in Di in the 
          order of the invers elements. D has the same type as S and Di 
          is a threedimensional VECTOR structure.

          Finally sab can be called, which calculates the symmetry adapted
          basis in B and the decomposed Operator in M as a vector of
          matrices representing the blockdiagonal structure of M.
          Every block occures once, its multiplicity ist stored in the
          vector mpc.

          REFERENCE:    E.Stiefel/A.Faessler:
                        Gruppentheoretische Methoden und ihre Anwendung

                        Teubner, 1979.
*/