1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
NAME:
dimension_symmetrization
SYNOPSIS:
INT dimension_symmetrization(OP n,part,a)
DESCRIPTION:
computes the dimension of the degree of a irreducible
representation of the GL_n, n is a INTEGER object, labeled
by the PARTITION object a.
RETURN:
OK if no error occured.
EXAMPLE:
#include "def.h"
#include "macro.h"
main()
{
OP a,b,c;
anfang();
a=callocobject(); b=callocobject(); c=callocobject();
printeingabe("Enter the degree of the linear group:");
scan(INTEGER,b);
printeingabe("Enter the part labeling the irrep of the linear group:");
scan(PARTITION,a);
printeingabe("The degree of the irrep is:");
dimension_symmetrization(b,a,c);
println(c);
freeall(a); freeall(b); freeall(c);
ende();
}
NAME:
bdg
SYNOPSIS:
INT bdg(part,perm,D); OP part,perm,D;
DESCRIPTION:
Calculates the irreduzible matrix representation
D^part(perm), whose entries are of integral numbers.
reference: H. Boerner:
Darstellungen von Gruppen, Springer 1955.
pp. 104-107.
NAME:
sdg
SYNOPSIS:
INT sdg(part,perm,D); OP part,perm,D;
DESCRIPTION:
Calculates the irreduzible matrix representation
D^part(perm), which consists of rational numbers.
reference: G. James/ A. Kerber:
Representation Theory of the Symmetric Group.
Addison/Wesley 1981.
pp. 124-126.
NAME:
odg
SYNOPSIS:
INT odg(part,perm,D); OP part,perm,D;
DESCRIPTION:
Calculates the irreduzible matrix representation
D^part(perm), which consists of real numbers.
reference: G. James/ A. Kerber:
Representation Theory of the Symmetric Group.
Addison/Wesley 1981.
pp. 127-129.
COMMENT:
4. Polynomial Representations of GLm(C):
---------------------------------------
GENERAL HINT:
For the routines below are just for constructing small examples
and very time-and space-consuming, the user should take care
that his calculations do not exceed the following limits:
i) Group size <= 1000.
ii) Matrix size (m^n) <= 256.
a) Decomposition of the n-fold tensorproduct of the identical
representation of Glm(C) onto itself.
NAME:
glmndg
SYNOPSIS:
INT glmndg(m,n,M,VAR); OP m,n,M; INT VAR;
DESCRIPTION:
If VAR is equal to 0L the orthogonal representation
is used for the decomposition, otherwise, if VAR
equals 1L, the natural representation is considered.
The result is the VECTOR-Object M, consisting of
components of type MATRIX, representing the several
irreducible matrix representations of GLm(C) with
part_1' <= m, where part is a partition of n.
COMMENT:
b) Calculation of only one polynomial representation <<part>>
of GLm(C).
NAME:
glpdg
SYNOPSIS:
INT glpdg(m,part,M); OP m,part,M;
DESCRIPTION:
part has to be an PARTITION object with not more
than m parts.
For this partition, the program calculates the
polynomial irreducible representation
<<part>> of GLm(C), which ist stored in the
MATRIX-Object M.
reference: J. Grabmeier/ A. Kerber:
The evaluation of Irreducible Polynomial
Representations of the General Linear Groups
and of the Unitary Groups over Fields of
Characteristic 0.
Acta Applicandae Mathematicae 8 (1987).
(Describes a method different from
the one implemented here, but gives a lot
of theoratical background.)
COMMENT:
5. Checking Homomorphy of Representations of GLm(C):
------------------------------------------------
NAME:
glm_homtest
SYNOPSIS:
INT glm_homtest(m,M); OP m,M;
DESCRIPTION:
The relation D(A)*D(B) = D(A*B) is verified
with two random integer matrices.
In case of M not being a representation, the
procedure displays an error message to stdout.
COMMENT:
/* Documentation of routines, concerning the calculation of
symmetry adapted bases for general finite permutation groups
1. Calculating of a general symmetry adapted Basis:
--------------------------------------------------
SYNOPSIS: sab_input(S,SMat,M); OP S,SMat,M;
group_gen(S,SMat,D,Di); OP S,SMat,D,Di;
sab(Di,D,B,M,mpc); OP Di,D,B,M,mpc;
The procedure sab_input reads the necessary input from the
standard-input.
The input-format is as follows:
--------------------------------------------------------------
nr of generators of G | orderS
(INTEGER ) |
set S of generators of G | S
(VECTOR of PERMUTATIONS of |
length n, where G <= Sn) |
nr. of irred. representations | anz_irr
(INTEGER ) |
matrices of irr.representations |
for the elements s in S | SMat
(VECTOR of VECTOR of MATRIX) |
symmetric operator M | M
(MATRIX) |
--------------------------------------------------------------
With this input, group_gen calulates the whole symmetry group G.
The group elements are stored in D the first line of their
irreducible matrix representations are stored in Di in the
order of the invers elements. D has the same type as S and Di
is a threedimensional VECTOR structure.
Finally sab can be called, which calculates the symmetry adapted
basis in B and the decomposed Operator in M as a vector of
matrices representing the blockdiagonal structure of M.
Every block occures once, its multiplicity ist stored in the
vector mpc.
REFERENCE: E.Stiefel/A.Faessler:
Gruppentheoretische Methoden und ihre Anwendung
Teubner, 1979.
*/
|