File: zyk.doc

package info (click to toggle)
symmetrica 2.0-1
  • links: PTS
  • area: main
  • in suites: lenny, squeeze, wheezy
  • size: 3,892 kB
  • ctags: 4,938
  • sloc: ansic: 97,272; makefile: 8
file content (184 lines) | stat: -rw-r--r-- 4,810 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
COMMENT:
	ZYK
	___


	We are describing the routines of the file zyk.c. These are routines
	for the computation of cycle index polynomials, and for the computation
	with general permutation groups. 


NAME:		
	zykelind_Sn
SYNOPSIS:
		INT zykelind_Sn(OP n,pol)
DESCRIPTION:
		computes the cycleindex polynomial of the symmetric
	group of the degree n. n is a INTEGER object, pol becomes a
	POLYNOM object.
BUG:
			n and pol must be different


NAME:
			zykelind_Dn
SYNOPSIS:
		INT zykelind_Dn(OP n,pol)
DESCRIPTION:
		computes the cycleindex polynomial of the dihedral
	group of the degree n. n is a INTEGER object, pol becomes a
	POLYNOM object.
BUG:
			n and pol must be different

NAME:
			zykelind_Cn
SYNOPSIS:
		INT zykelind_Cn(OP n,pol)
DESCRIPTION:
		computes the cycleindex polynomial of the cyclic
	group of the degree n. n is a INTEGER object, pol becomes a
	POLYNOM object.
BUG:
			n and pol must be different

NAME:
			zykelind_An
SYNOPSIS:
		INT zykelind_An(OP n,pol)
DESCRIPTION:
		computes the cycleindex polynomial of the alternating
	group of the degree n. n is a INTEGER object, pol becomes a
	POLYNOM object.
BUG:
			n and pol must be different

NAME:
			zykelind_arb
SYNOPSIS:
		INT zykelind_arb(OP vec,pol)
DESCRIPTION:
		computes the cycle index polynomial of a arbitrary permutation
	group . vec is a VECTOR object, whose entries are PERMUTATION 
	objects whose degrees are equal. These permutations are the generators
	of the group.  pol becomes a POLYNOM object.
BUG:
			vec and pol must be different

NAME:
			dimino
SYNOPSIS:
		INT dimino(OP vec)
DESCRIPTION:
		computes the elements of a arbitrary permutation group.
	vec is a VECTOR object, whose elements are PERMUTATION objects,
	which generates the group. At the end of dimino, this vector
	contains all elements of the group.
BUG:
			the permutations in the vector must be of the same
	degree, and they must be of VECTOR type.

NAME:
			polya_n_sub
SYNOPSIS:
		INT polya_n_sub(OP p,n,e)
DESCRIPTION:
		you enter a POLYNOM object p, and a INTEGER object n, and
	the output is the POLYNOM object which you get using the substitution
	x_i --> a_1^i + ... + a_n^i 

NAME:
			grf_Sn
SYNOPSIS:
		INT grf_Sn(OP degree, OP n, OP result)
DESCRIPTION:
		you enter the degree of the symmetric group, and the number of
	variables for the polya substitution. The routine computes the group reduction
  	function. The first step is the computation of cycle index and the second step is
	the polya substitution with n variables.
EXAMPLE:
	#include "def.h"
	#include "macro.h"

	ANFANG
	sscan("9",INTEGER,a); sscan("4",INTEGER,b); 
	grf_Sn(a,b,c); println(c);
	ENDE

NAME:
			grf_Cn
SYNOPSIS:
		INT grf_Cn(OP degree, OP n, OP result)
DESCRIPTION:
		you enter the degree of the cyclic group, and the number of
	variables for the polya substitution. The routine computes the group reduction
  	function. The first step is the computation of cycle index and the second step is
	the polya substitution with n variables.
EXAMPLE:
	#include "def.h"
	#include "macro.h"

	ANFANG
	sscan("9",INTEGER,a); sscan("4",INTEGER,b); 
	grf_Cn(a,b,c); println(c);
	ENDE



NAME:
			grf_An
SYNOPSIS:
		INT grf_An(OP degree, OP n, OP result)
DESCRIPTION:
		you enter the degree of the alternating group, and the number of
	variables for the polya substitution. The routine computes the group reduction
  	function. The first step is the computation of cycle index and the second step is
	the polya substitution with n variables.
EXAMPLE:
	#include "def.h"
	#include "macro.h"

	ANFANG
	sscan("9",INTEGER,a); sscan("4",INTEGER,b); 
	grf_An(a,b,c); println(c);
	ENDE


NAME:
			grf_Dn
SYNOPSIS:
		INT grf_Dn(OP degree, OP n, OP result)
DESCRIPTION:
		you enter the degree of the dihedral group, and the number of
	variables for the polya substitution. The routine computes the group reduction
  	function. The first step is the computation of cycle index and the second step is
	the polya substitution with n variables.
EXAMPLE:
	#include "def.h"
	#include "macro.h"

	ANFANG
	sscan("9",INTEGER,a); sscan("4",INTEGER,b); 
	grf_Dn(a,b,c); println(c);
	ENDE

NAME:
                        grf_arb
SYNOPSIS:
                INT grf_arb(OP generators, OP n, OP result)
DESCRIPTION:
                you enter the generators (VECTOR of PERMUTATION objects) 
	of a permutaion group, and the number of
        variables for the polya substitution. The routine computes the group reduction
        function. The first step is the computation of cycle index and the second step is
        the polya substitution with n variables.
EXAMPLE:
        #include "def.h"
        #include "macro.h"

        ANFANG
        sscan("[[6,5,4,3,2,1,8,7],[2,1,8,7,6,5,4,3],[5,6,7,8,1,2,3,4]]",
		PERMUTATIONVECTOR,a); sscan("4",INTEGER,b);
        grf_arb(a,b,c); println(c);
        ENDE