1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
#include "sympow.h"
#define DEBUG (FALSE || GLOBAL_DEBUG)
static void generic_plusminus(llint p,int m,int A,int B,QDpoly *v)
{QD P,t; QDpoly v1,v2,w;
if (DEBUG) printf("generic_plusminus %lli %i %i %i\n",p,m,A,B);
QD_copy(wmax,QD_zero,P); P[0]=(double) p;
if (m&1)
{initQDpoly(&w,2); ASSERT(A==B);
QD_copy(wmax,QD_one,w.coeff[0]);
QD_powi(wmax,P,m,t); QD_copy(wmax,t,w.coeff[2]);
QDpoly_pow(w,A,v,-1); delQDpoly(&w); return;}
initQDpoly(&w,1); QD_copy(wmax,QD_one,w.coeff[0]);
QD_powi(wmax,P,m/2,t); QD_copy(wmax,t,w.coeff[1]);
QDpoly_pow(w,A,&v1,-1); QD_neg(wmax,w.coeff[1],w.coeff[1]);
QDpoly_pow(w,B,&v2,-1); delQDpoly(&w); QDpoly_mul(v1,v2,v,-1);
delQDpoly(&v1); delQDpoly(&v2);}
static void cyclic_nonabelian(llint p,int m,int eps,QDpoly *v)
{int A,B;
if (DEBUG) printf("cyclic_nonabelian %lli %i %i\n",p,m,eps);
if (m&1) {ASSERT((eps&1)==0); A=eps/2; B=eps/2;}
else if (m&2) {A=(eps+1)/2; B=A-1;} else {A=(eps-1)/2; B=A+1;}
return generic_plusminus(p,m,A,B,v);}
static void cyclic_abelian_ap(llint p,int ap,int m,int d,QDpoly *v)
{QDpoly qp,lp,A; QD P,t,u; int i;
initQDpoly(&A,0); QD_copy(wmax,QD_one,A.coeff[0]);
initQDpoly(&qp,2); QD_copy(wmax,QD_zero,P); P[0]=(double) p;
QD_powi(wmax,P,m,t); QD_copy(wmax,t,qp.coeff[2]);
QD_copy(wmax,QD_one,qp.coeff[0]);
for (i=0;i<(m+1)/2;i++)
{if (((2*i-m)%d)==0)
{power_trace_from_ap(wmax,p,ap,m-2*i,t);
QD_neg(wmax,t,t); QD_powi(wmax,P,i,u); QD_mul(wmax,t,u,qp.coeff[1]);
QDpoly_mul(A,qp,v,-1); delQDpoly(&A); A=*v;}}
delQDpoly(&qp);
if ((m&1)==0)
{initQDpoly(&lp,1); QD_copy(wmax,QD_one,lp.coeff[0]);
QD_powi(wmax,P,m/2,t); QD_neg(wmax,t,t); QD_copy(wmax,t,lp.coeff[1]);
QDpoly_mul(A,lp,v,-1); delQDpoly(&A); delQDpoly(&lp);}}
static void hecke_good(llint p,int ap,int m,QDpoly *v)
{QD T; if (m==0) errorit("m=0 in hecke_good?!");
initQDpoly(v,2); QD_copy(wmax,QD_one,(*v).coeff[0]);
if (ap!=0)
{QD_copy(wmax,QD_zero,T); T[0]=(double) p; QD_powi(wmax,T,m,T);
power_trace_from_ap(wmax,p,ap,m,(*v).coeff[1]);
QD_neg(wmax,(*v).coeff[1],(*v).coeff[1]); QD_copy(wmax,T,(*v).coeff[2]);}
else
{QD_copy(wmax,QD_zero,T); T[0]=(double) -p; QD_powi(wmax,T,m,T);
QD_neg(wmax,T,(*v).coeff[2]); QD_copy(wmax,QD_zero,(*v).coeff[1]);}}
static void cyclic_abelian(llint p,int m,int d,QDpoly *v,int bpt)
{double P=(double) p; int v4,v6,ap,i,c4,c6; QD Et4,Et6;
if (DEBUG) printf("cyclic abelian p:%lli sp:%i Cd:%i bpt:%i\n",p,m,d,bpt);
if ((d>2) && (p<=3)) {cyclic_abelian_ap(p,p,m,d,v); return;}
if ((d>1) && (p>3))
{QD_copy(wmax,QD_zero,Et4); QD_copy(wmax,QD_zero,Et6);
v4=QD_valuation(Ec4,P); v6=QD_valuation(Ec6,P);
if (3*v4>=2*v6)
{QD_copy(wmax,Ec6,Et6); for (i=1;i<=v6;i++) QD_div1(wmax,Et6,P,Et6);}
if (3*v4<=2*v6)
{QD_copy(wmax,Ec4,Et4); for (i=1;i<=v4;i++) QD_div1(wmax,Et4,P,Et4);}}
if ((d==2) && (p==2)) /* need to worry here */
{if (bpt==16) {QD_div1(wmax,Ec4,16.0,Et4); QD_div1(wmax,Ec6,64.0,Et6);}
else
{QD_div1(wmax,Ec4,4.0,Et4); QD_div1(wmax,Ec6,8.0,Et6);
c4=QD_modi(Et4,1<<29); c6=QD_modi(Et6,1<<29);
if ((((c4&31)==16) && ((c6&255)==192)) ||
(((c4&255)==0) && ((c6&2047)==512)))
{QD_div1(wmax,Et4,16.0,Et4); QD_div1(wmax,Et6,64.0,Et6);}
else if ((((c4&31)==16) && ((c6&255)==64)) ||
(((c4&255)==0) && ((c6&2047)==1536)))
{QD_div1(wmax,Et4,16.0,Et4); QD_div1(wmax,Et6,-64.0,Et6);}
}
}
if ((d==2) && (p==3)) /* think this is OK */
{QD_div1(wmax,Ec4,9.0,Et4); QD_div1(wmax,Ec6,-27.0,Et6);}
if (d==1) ap=(int) ec_do(p); else ap=(int) ec_ap(Et4,Et6,p);
if ((HECKE) && (d==1)) return hecke_good(p,ap,m,v);
cyclic_abelian_ap(p,ap,m,d,v);}
static void euler_factor_good(llint p,int m,QDpoly *v)
{cyclic_abelian(p,m,1,v,0);}
void euler_factor_bad(llint p,int bpt,int m,QDpoly *v)
{int ap,eps,lc; if (DEBUG) printf("euler_factor_bad %lli %i %i\n",p,bpt,m);
lc=tame_local_conductor(bpt,m); eps=m+1-lc;
if (lc==m+1) {initQDpoly(v,0); QD_copy(wmax,QD_one,(*v).coeff[0]); return;}
if ((bpt==1) || (bpt>=29))
{ap=ec_ap(Ec4,Ec6,p); initQDpoly(v,1); QD_copy(wmax,QD_one,(*v).coeff[0]);
if ((ap>=0) || !(m&1)) QD_neg(wmax,(*v).coeff[0],(*v).coeff[1]);
else QD_copy(wmax,QD_one,(*v).coeff[1]); return;}
if ((bpt>=2) && (bpt<=6))
{if ((p%bpt)!=1) cyclic_nonabelian(p,m,eps,v);
else cyclic_abelian(p,m,bpt,v,bpt); return;}
if (((bpt>=8) && (bpt<=10)) || ((bpt>=24) && (bpt<=27)))
{if (((m&7)==2) || ((m&7)==4)) generic_plusminus(2,m,eps/2,eps/2,v);
if ((m&7)==6) generic_plusminus(2,m,(eps+1)/2,(eps-1)/2,v);
if ((m&7)==0) generic_plusminus(2,m,(eps-1)/2,(eps+1)/2,v); return;
}
if (bpt==22) {cyclic_abelian(2,m,4,v,bpt); return;}
if (bpt==23) {cyclic_nonabelian(p,m,eps,v); return;}
if ((bpt==12) || (bpt==13))
{if ((eps&1)==0) generic_plusminus(3,m,eps/2,eps/2,v);
else if ((m&3)==0) generic_plusminus(3,m,(eps-1)/2,(eps+1)/2,v);
else if ((m&3)==2) generic_plusminus(3,m,(eps+1)/2,(eps-1)/2,v);}
if ((bpt==16) || (bpt==17)) cyclic_abelian(2,m,2,v,bpt);
if (bpt==14) cyclic_abelian(3,m,3,v,bpt);
if (bpt==15) cyclic_abelian(3,m,6,v,bpt);
if ((bpt==18) || (bpt==19)) cyclic_nonabelian(p,m,eps,v);
if ((bpt==20) || (bpt==21)) cyclic_nonabelian(p,m,eps,v); return;}
static int deflate(int CM)
{if ((CM==-27) || (CM== -12)) return 3; if (CM==-28) return 7;
if (CM==-16) return 4; return -CM;}
void euler_factor_hecke_bad(llint p,int bpt,int m,QDpoly *v)
{QDpoly ef1,ef2,poly,R; int i,k; QD P,T; int A[8]={0,1,0,-1,0,-1,0,1};
if (DEBUG) printf("euler_factor_hecke_bad p:%lli bpt:%i sp:%i\n",p,bpt,m);
QD_copy(wmax,QD_zero,P); P[0]=(double) p; euler_factor_bad(p,bpt,m,&ef1);
if (m>2) euler_factor_bad(p,bpt,m-2,&ef2);
else {initQDpoly(&ef2,0); QD_copy(wmax,QD_one,ef2.coeff[0]);}
if ((m&1)==0)
{initQDpoly(&poly,1); QD_copy(wmax,QD_one,poly.coeff[0]);
k=-deflate(CM_CASE); if (p>2) k=kronll((llint) k,p); else k=A[k&7];
if ((m&3)==2)
{QD_powi(wmax,P,m/2-1,T); if (k==1) QD_neg(wmax,T,T);
if (k==0) poly.deg=0; else QD_copy(wmax,T,poly.coeff[1]);
QDpoly_mul(ef2,poly,&R,-1); delQDpoly(&ef2); delQDpoly(&poly); ef2=R;}
if ((m&3)==0)
{QD_powi(wmax,P,m/2,T); if (k==1) QD_neg(wmax,T,T);
if (k==0) poly.deg=0; else QD_copy(wmax,T,poly.coeff[1]);
QDpoly_mul(ef1,poly,&R,-1); delQDpoly(&ef1); delQDpoly(&poly); ef1=R;}
initQDpoly(&poly,1); QD_copy(wmax,QD_one,poly.coeff[0]);
if ((m&3)==0)
{QD_powi(wmax,P,m/2-1,T); QD_neg(wmax,T,poly.coeff[1]);
QDpoly_mul(ef2,poly,&R,-1); delQDpoly(&ef2); delQDpoly(&poly); ef2=R;}
if ((m&3)==2)
{if (m<=2) delQDpoly(&poly);
else
{QD_powi(wmax,P,m/2,T); QD_neg(wmax,T,poly.coeff[1]);
QDpoly_mul(ef1,poly,&R,-1); delQDpoly(&ef1); delQDpoly(&poly); ef1=R;}}}
QD_copy(wmax,P,T);
for (i=1;i<=ef2.deg;i++)
{QD_mul(wmax,ef2.coeff[i],T,ef2.coeff[i]); QD_mul(wmax,T,P,T);}
QDpoly_inv(ef2,ef1.deg-ef2.deg,&R); QDpoly_mul(ef1,R,v,ef1.deg-ef2.deg);
delQDpoly(&R); delQDpoly(&ef1); delQDpoly(&ef2);}
void euler_factor(llint p,int m,QDpoly *v)
{int i;
if ((COND0%p)!=0) {euler_factor_good(p,m,v);}
else
{for (i=0;p!=badprimes[i];i++);
if (HECKE) euler_factor_hecke_bad(p,badprimetype[i],m,v);
else euler_factor_bad(p,badprimetype[i],m,v);}
QDpoly_intround(v);}
static void localinfo(llint p,int sp)
{QDpoly v; printf("Euler factor at %lli is ",p);
euler_factor(p,sp,&v); QDpoly_intout(v); delQDpoly(&v);
if ((!HECKE) && (p<=3))
{printf("Tame cond exponent at %lli is %i\n",p,get_tame_conductor(p,sp));
printf("Wild cond exponent at %lli is %i\n",p,get_wild_conductor(p,sp));}
else printf("Conductor exponent at %lli is %i\n",p,get_conductor(p,sp));}
static int primetest(llint x)
{int i; llint p; if (x==1) return FALSE;
for(i=0;PRIMES[i]!=0;i++)
{p=PRIMES[i]; if (x==p) return 1; if ((x%p)==0) return 0;} return 1;}
void localinfos(char *p,char *sp)
{int k=0; llint prl=0,prh=0,pr; int ml=0,mh=0,m;
while ((p[k]!='-') && (p[k]!=0))
{prl*=10; ASSERT(ISA_NUMBER(p[k])); prl+=p[k]-'0'; k++;}
if (p[k]=='-') k++; else prh=prl;
while (p[k]!=0)
{prh*=10; ASSERT(ISA_NUMBER(p[k])); prh+=p[k]-'0'; k++;}
k=0; while ((sp[k]!='-') && (sp[k]!=0))
{ml*=10; ASSERT(ISA_NUMBER(sp[k])); ml+=sp[k]-'0'; k++;}
if (sp[k]=='-') k++; else mh=ml;
while (sp[k]!=0)
{mh*=10; ASSERT(ISA_NUMBER(sp[k])); mh+=sp[k]-'0'; k++;}
if ((ml<=0) || (mh>99)) errorit("Symmetric power range invalid");
for (m=ml;m<=mh;m++)
{if (HECKE) printf("Hecke "); printf("Symmetric power %i\n",m);
for (pr=prl;pr<=prh;pr++) if (primetest(pr)) localinfo(pr,m);}}
|