1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#!/usr/bin/env python
"""FEM library
Demonstrates some simple finite element definitions, and computes a mass
matrix
$ python fem.py
[ 1/60, 0, -1/360, 0, -1/90, -1/360]
[ 0, 4/45, 0, 2/45, 2/45, -1/90]
[-1/360, 0, 1/60, -1/90, 0, -1/360]
[ 0, 2/45, -1/90, 4/45, 2/45, 0]
[ -1/90, 2/45, 0, 2/45, 4/45, 0]
[-1/360, -1/90, -1/360, 0, 0, 1/60]
"""
from sympy import symbols, Symbol, factorial, Rational, zeros, div, eye, \
integrate, diff, pprint, reduced
x, y, z = symbols('x,y,z')
class ReferenceSimplex:
def __init__(self, nsd):
self.nsd = nsd
if nsd <= 3:
coords = symbols('x,y,z')[:nsd]
else:
coords = [Symbol("x_%d" % d) for d in range(nsd)]
self.coords = coords
def integrate(self, f):
coords = self.coords
nsd = self.nsd
limit = 1
for p in coords:
limit -= p
intf = f
for d in range(0, nsd):
p = coords[d]
limit += p
intf = integrate(intf, (p, 0, limit))
return intf
def bernstein_space(order, nsd):
if nsd > 3:
raise RuntimeError("Bernstein only implemented in 1D, 2D, and 3D")
sum = 0
basis = []
coeff = []
if nsd == 1:
b1, b2 = x, 1 - x
for o1 in range(0, order + 1):
for o2 in range(0, order + 1):
if o1 + o2 == order:
aij = Symbol("a_%d_%d" % (o1, o2))
sum += aij*binomial(order, o1)*pow(b1, o1)*pow(b2, o2)
basis.append(binomial(order, o1)*pow(b1, o1)*pow(b2, o2))
coeff.append(aij)
if nsd == 2:
b1, b2, b3 = x, y, 1 - x - y
for o1 in range(0, order + 1):
for o2 in range(0, order + 1):
for o3 in range(0, order + 1):
if o1 + o2 + o3 == order:
aij = Symbol("a_%d_%d_%d" % (o1, o2, o3))
fac = factorial(order) / (factorial(o1)*factorial(o2)*factorial(o3))
sum += aij*fac*pow(b1, o1)*pow(b2, o2)*pow(b3, o3)
basis.append(fac*pow(b1, o1)*pow(b2, o2)*pow(b3, o3))
coeff.append(aij)
if nsd == 3:
b1, b2, b3, b4 = x, y, z, 1 - x - y - z
for o1 in range(0, order + 1):
for o2 in range(0, order + 1):
for o3 in range(0, order + 1):
for o4 in range(0, order + 1):
if o1 + o2 + o3 + o4 == order:
aij = Symbol("a_%d_%d_%d_%d" % (o1, o2, o3, o4))
fac = factorial(order)/ (factorial(o1)*factorial(o2)*factorial(o3)*factorial(o4))
sum += aij*fac*pow(b1, o1)*pow(b2, o2)*pow(b3, o3)*pow(b4, o4)
basis.append(fac*pow(b1, o1)*pow(b2, o2)*pow(b3, o3)*pow(b4, o4))
coeff.append(aij)
return sum, coeff, basis
def create_point_set(order, nsd):
h = Rational(1, order)
set = []
if nsd == 1:
for i in range(0, order + 1):
x = i*h
if x <= 1:
set.append((x, y))
if nsd == 2:
for i in range(0, order + 1):
x = i*h
for j in range(0, order + 1):
y = j*h
if x + y <= 1:
set.append((x, y))
if nsd == 3:
for i in range(0, order + 1):
x = i*h
for j in range(0, order + 1):
y = j*h
for k in range(0, order + 1):
z = j*h
if x + y + z <= 1:
set.append((x, y, z))
return set
def create_matrix(equations, coeffs):
A = zeros(len(equations))
i = 0
j = 0
for j in range(0, len(coeffs)):
c = coeffs[j]
for i in range(0, len(equations)):
e = equations[i]
d, _ = reduced(e, [c])
A[i, j] = d[0]
return A
class Lagrange:
def __init__(self, nsd, order):
self.nsd = nsd
self.order = order
self.compute_basis()
def nbf(self):
return len(self.N)
def compute_basis(self):
order = self.order
nsd = self.nsd
N = []
pol, coeffs, basis = bernstein_space(order, nsd)
points = create_point_set(order, nsd)
equations = []
for p in points:
ex = pol.subs(x, p[0])
if nsd > 1:
ex = ex.subs(y, p[1])
if nsd > 2:
ex = ex.subs(z, p[2])
equations.append(ex )
A = create_matrix(equations, coeffs)
Ainv = A.inv()
b = eye(len(equations))
xx = Ainv*b
for i in range(0, len(equations)):
Ni = pol
for j in range(0, len(coeffs)):
Ni = Ni.subs(coeffs[j], xx[j, i])
N.append(Ni)
self.N = N
def main():
t = ReferenceSimplex(2)
fe = Lagrange(2, 2)
u = 0
#compute u = sum_i u_i N_i
us = []
for i in range(0, fe.nbf()):
ui = Symbol("u_%d" % i)
us.append(ui)
u += ui*fe.N[i]
J = zeros(fe.nbf())
for i in range(0, fe.nbf()):
Fi = u*fe.N[i]
print(Fi)
for j in range(0, fe.nbf()):
uj = us[j]
integrands = diff(Fi, uj)
print(integrands)
J[j, i] = t.integrate(integrands)
pprint(J)
if __name__ == "__main__":
main()
|