1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
#!/usr/bin/env python
"""
Plotting Examples
Suggested Usage: python -i plotting.py
"""
from sympy import symbols
from sympy.plotting.pygletplot import PygletPlot
from sympy import sin, cos, pi, sqrt, exp
from time import sleep, clock
def main():
x, y, z = symbols('x,y,z')
# toggle axes visibility with F5, colors with F6
axes_options = 'visible=false; colored=true; label_ticks=true; label_axes=true; overlay=true; stride=0.5'
#axes_options = 'colored=false; overlay=false; stride=(1.0, 0.5, 0.5)'
p = PygletPlot(width=600, height=500, ortho=False, invert_mouse_zoom=False, axes=axes_options, antialiasing=True)
examples = []
def example_wrapper(f):
examples.append(f)
return f
@example_wrapper
def mirrored_saddles():
p[5] = x**2 - y**2, [20], [20]
p[6] = y**2 - x**2, [20], [20]
@example_wrapper
def mirrored_saddles_saveimage():
p[5] = x**2 - y**2, [20], [20]
p[6] = y**2 - x**2, [20], [20]
p.wait_for_calculations()
# although the calculation is complete,
# we still need to wait for it to be
# rendered, so we'll sleep to be sure.
sleep(1)
p.saveimage("plot_example.png")
@example_wrapper
def mirrored_ellipsoids():
p[2] = x**2 + y**2, [40], [40], 'color=zfade'
p[3] = -x**2 - y**2, [40], [40], 'color=zfade'
@example_wrapper
def saddle_colored_by_derivative():
f = x**2 - y**2
p[1] = f, 'style=solid'
p[1].color = abs(f.diff(x)), abs(f.diff(x) + f.diff(y)), abs(f.diff(y))
@example_wrapper
def ding_dong_surface():
f = sqrt(1.0 - y)*y
p[1] = f, [x, 0, 2*pi, 40], [y, -1, 4, 100], 'mode=cylindrical; style=solid; color=zfade4'
@example_wrapper
def polar_circle():
p[7] = 1, 'mode=polar'
@example_wrapper
def polar_flower():
p[8] = 1.5*sin(4*x), [160], 'mode=polar'
p[8].color = z, x, y, (0.5, 0.5, 0.5), (0.8, 0.8, 0.8), (x, y, None, z) # z is used for t
@example_wrapper
def simple_cylinder():
p[9] = 1, 'mode=cylindrical'
@example_wrapper
def cylindrical_hyperbola():
## (note that polar is an alias for cylindrical)
p[10] = 1/y, 'mode=polar', [x], [y, -2, 2, 20]
@example_wrapper
def extruded_hyperbolas():
p[11] = 1/x, [x, -10, 10, 100], [1], 'style=solid'
p[12] = -1/x, [x, -10, 10, 100], [1], 'style=solid'
@example_wrapper
def torus():
a, b = 1, 0.5 # radius, thickness
p[13] = (a + b*cos(x))*cos(y), (a + b*cos(x))*sin(y), b*sin(x), [x, 0, pi*2, 40], [y, 0, pi*2, 40]
@example_wrapper
def warped_torus():
a, b = 2, 1 # radius, thickness
p[13] = (a + b*cos(x))*cos(y), (a + b*cos(x))*sin(y), b*sin(x) + 0.5*sin(4*y), [x, 0, pi*2, 40], [y, 0, pi*2, 40]
@example_wrapper
def parametric_spiral():
p[14] = cos(y), sin(y), y/10.0, [y, -4*pi, 4*pi, 100]
p[14].color = x, (0.1, 0.9), y, (0.1, 0.9), z, (0.1, 0.9)
@example_wrapper
def multistep_gradient():
p[1] = 1, 'mode=spherical', 'style=both'
#p[1] = exp(-x**2-y**2+(x*y)/4), [-1.7,1.7,100], [-1.7,1.7,100], 'style=solid'
#p[1] = 5*x*y*exp(-x**2-y**2), [-2,2,100], [-2,2,100]
gradient = [ 0.0, (0.3, 0.3, 1.0),
0.30, (0.3, 1.0, 0.3),
0.55, (0.95, 1.0, 0.2),
0.65, (1.0, 0.95, 0.2),
0.85, (1.0, 0.7, 0.2),
1.0, (1.0, 0.3, 0.2) ]
p[1].color = z, [None, None, z], gradient
#p[1].color = 'zfade'
#p[1].color = 'zfade3'
@example_wrapper
def lambda_vs_sympy_evaluation():
start = clock()
p[4] = x**2 + y**2, [100], [100], 'style=solid'
p.wait_for_calculations()
print("lambda-based calculation took %s seconds." % (clock() - start))
start = clock()
p[4] = x**2 + y**2, [100], [100], 'style=solid; use_sympy_eval'
p.wait_for_calculations()
print("sympy substitution-based calculation took %s seconds." % (clock() - start))
@example_wrapper
def gradient_vectors():
def gradient_vectors_inner(f, i):
from sympy import lambdify
from sympy.plotting.plot_interval import PlotInterval
from pyglet.gl import glBegin, glColor3f
from pyglet.gl import glVertex3f, glEnd, GL_LINES
def draw_gradient_vectors(f, iu, iv):
"""
Create a function which draws vectors
representing the gradient of f.
"""
dx, dy, dz = f.diff(x), f.diff(y), 0
FF = lambdify( [x, y], [x, y, f] )
FG = lambdify( [x, y], [dx, dy, dz] )
iu.v_steps /= 5
iv.v_steps /= 5
Gvl = list(list([FF(u, v), FG(u, v)]
for v in iv.frange())
for u in iu.frange())
def draw_arrow(p1, p2):
"""
Draw a single vector.
"""
glColor3f(0.4, 0.4, 0.9)
glVertex3f(*p1)
glColor3f(0.9, 0.4, 0.4)
glVertex3f(*p2)
def draw():
"""
Iterate through the calculated
vectors and draw them.
"""
glBegin(GL_LINES)
for u in Gvl:
for v in u:
point = [ [v[0][0], v[0][1], v[0][2]],
[v[0][0] + v[1][0], v[0][1] + v[1][1], v[0][2] + v[1][2]] ]
draw_arrow(point[0], point[1])
glEnd()
return draw
p[i] = f, [-0.5, 0.5, 25], [-0.5, 0.5, 25], 'style=solid'
iu = PlotInterval(p[i].intervals[0])
iv = PlotInterval(p[i].intervals[1])
p[i].postdraw.append(draw_gradient_vectors(f, iu, iv))
gradient_vectors_inner( x**2 + y**2, 1)
gradient_vectors_inner(-x**2 - y**2, 2)
def help_str():
s = ("\nPlot p has been created. Useful commands: \n"
" help(p), p[1] = x**2, print p, p.clear() \n\n"
"Available examples (see source in plotting.py):\n\n")
for i in xrange(len(examples)):
s += "(%i) %s\n" % (i, examples[i].__name__)
s += "\n"
s += "e.g. >>> example(2)\n"
s += " >>> ding_dong_surface()\n"
return s
def example(i):
if callable(i):
p.clear()
i()
elif i >= 0 and i < len(examples):
p.clear()
examples[i]()
else:
print("Not a valid example.\n")
print(p)
example(0) # 0 - 15 are defined above
print(help_str())
if __name__ == "__main__":
main()
|