1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
#!/usr/bin/env python
from __future__ import print_function
from sympy import sin, cos, sinh, cosh, symbols, expand, simplify
from sympy.galgebra import xdvi
from sympy.galgebra import MV, Format, Com
def main():
Format()
(ex, ey, ez) = MV.setup('e*x|y|z')
A = MV('A', 'mv')
print(r'\bm{A} =', A)
A.Fmt(2, r'\bm{A}')
A.Fmt(3, r'\bm{A}')
X = (x, y, z) = symbols('x y z')
(ex, ey, ez, grad) = MV.setup('e_x e_y e_z', metric='[1,1,1]', coords=X)
f = MV('f', 'scalar', fct=True)
A = MV('A', 'vector', fct=True)
B = MV('B', 'grade2', fct=True)
print(r'\bm{A} =', A)
print(r'\bm{B} =', B)
print('grad*f =', grad*f)
print(r'grad|\bm{A} =', grad | A)
print(r'grad*\bm{A} =', grad*A)
print(r'-I*(grad^\bm{A}) =', -MV.I*(grad ^ A))
print(r'grad*\bm{B} =', grad*B)
print(r'grad^\bm{B} =', grad ^ B)
print(r'grad|\bm{B} =', grad | B)
(a, b, c, d) = MV.setup('a b c d')
print('g_{ij} =', MV.metric)
print('\\bm{a|(b*c)} =', a | (b*c))
print('\\bm{a|(b^c)} =', a | (b ^ c))
print('\\bm{a|(b^c^d)} =', a | (b ^ c ^ d))
print('\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =', (a | (b ^ c)) + (c | (a ^ b)) + (b | (c ^ a)))
print('\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =', a*(b ^ c) - b*(a ^ c) + c*(a ^ b))
print('\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =', a*(b ^ c ^ d) - b*(a ^ c ^ d) + c*(a ^ b ^ d) - d*(a ^ b ^ c))
print('\\bm{(a^b)|(c^d)} =', (a ^ b) | (c ^ d))
print('\\bm{((a^b)|c)|d} =', ((a ^ b) | c) | d)
print('\\bm{(a^b)\\times (c^d)} =', Com(a ^ b, c ^ d))
metric = '1 # #,' + \
'# 1 #,' + \
'# # 1,'
(e1, e2, e3) = MV.setup('e1 e2 e3', metric)
E = e1 ^ e2 ^ e3
Esq = (E*E).scalar()
print('E =', E)
print('%E^{2} =', Esq)
Esq_inv = 1/Esq
E1 = (e2 ^ e3)*E
E2 = (-1)*(e1 ^ e3)*E
E3 = (e1 ^ e2)*E
print('E1 = (e2^e3)*E =', E1)
print('E2 =-(e1^e3)*E =', E2)
print('E3 = (e1^e2)*E =', E3)
print('E1|e2 =', (E1 | e2).expand())
print('E1|e3 =', (E1 | e3).expand())
print('E2|e1 =', (E2 | e1).expand())
print('E2|e3 =', (E2 | e3).expand())
print('E3|e1 =', (E3 | e1).expand())
print('E3|e2 =', (E3 | e2).expand())
w = ((E1 | e1).expand()).scalar()
Esq = expand(Esq)
print('%(E1\\cdot e1)/E^{2} =', simplify(w/Esq))
w = ((E2 | e2).expand()).scalar()
print('%(E2\\cdot e2)/E^{2} =', simplify(w/Esq))
w = ((E3 | e3).expand()).scalar()
print('%(E3\\cdot e3)/E^{2} =', simplify(w/Esq))
X = (r, th, phi) = symbols('r theta phi')
curv = [[r*cos(phi)*sin(th), r*sin(phi)*sin(th), r*cos(th)], [1, r, r*sin(th)]]
(er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi', metric='[1,1,1]', coords=X, curv=curv)
f = MV('f', 'scalar', fct=True)
A = MV('A', 'vector', fct=True)
B = MV('B', 'grade2', fct=True)
print('A =', A)
print('B =', B)
print('grad*f =', grad*f)
print('grad|A =', grad | A)
print('-I*(grad^A) =', -MV.I*(grad ^ A))
print('grad^B =', grad ^ B)
vars = symbols('t x y z')
(g0, g1, g2, g3, grad) = MV.setup('gamma*t|x|y|z', metric='[1,-1,-1,-1]', coords=vars)
I = MV.I
B = MV('B', 'vector', fct=True)
E = MV('E', 'vector', fct=True)
B.set_coef(1, 0, 0)
E.set_coef(1, 0, 0)
B *= g0
E *= g0
J = MV('J', 'vector', fct=True)
F = E + I*B
print('B = \\bm{B\\gamma_{t}} =', B)
print('E = \\bm{E\\gamma_{t}} =', E)
print('F = E+IB =', F)
print('J =', J)
gradF = grad*F
gradF.Fmt(3, 'grad*F')
print('grad*F = J')
(gradF.grade(1) - J).Fmt(3, '%\\grade{\\nabla F}_{1} -J = 0')
(gradF.grade(3)).Fmt(3, '%\\grade{\\nabla F}_{3} = 0')
(alpha, beta, gamma) = symbols('alpha beta gamma')
(x, t, xp, tp) = symbols("x t x' t'")
(g0, g1) = MV.setup('gamma*t|x', metric='[1,-1]')
R = cosh(alpha/2) + sinh(alpha/2)*(g0 ^ g1)
X = t*g0 + x*g1
Xp = tp*g0 + xp*g1
print('R =', R)
print(r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}")
Xpp = R*Xp*R.rev()
Xpp = Xpp.collect([xp, tp])
Xpp = Xpp.subs({2*sinh(alpha/2)*cosh(alpha/2): sinh(alpha), sinh(alpha/2)**2 + cosh(alpha/2)**2: cosh(alpha)})
print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp)
Xpp = Xpp.subs({sinh(alpha): gamma*beta, cosh(alpha): gamma})
print(r'%\f{\sinh}{\alpha} = \gamma\beta')
print(r'%\f{\cosh}{\alpha} = \gamma')
print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp.collect(gamma))
vars = symbols('t x y z')
(g0, g1, g2, g3, grad) = MV.setup('gamma*t|x|y|z', metric='[1,-1,-1,-1]', coords=vars)
I = MV.I
(m, e) = symbols('m e')
psi = MV('psi', 'spinor', fct=True)
A = MV('A', 'vector', fct=True)
sig_z = g3*g0
print('\\bm{A} =', A)
print('\\bm{\\psi} =', psi)
dirac_eq = (grad*psi)*I*sig_z - e*A*psi - m*psi*g0
dirac_eq.simplify()
dirac_eq.Fmt(3, r'\nabla \bm{\psi} I \sigma_{z}-e\bm{A}\bm{\psi}-m\bm{\psi}\gamma_{t} = 0')
xdvi()
return
if __name__ == "__main__":
main()
|