File: evalf.py

package info (click to toggle)
sympy 0.7.5-3
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,576 kB
  • ctags: 27,948
  • sloc: python: 213,240; xml: 359; makefile: 117; sh: 53; lisp: 4
file content (1381 lines) | stat: -rw-r--r-- 45,850 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
"""
Adaptive numerical evaluation of SymPy expressions, using mpmath
for mathematical functions.
"""
from __future__ import print_function, division

import math

import mpmath.libmp as libmp
from mpmath import make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc
from mpmath import inf as mpmath_inf
from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf,
        fnan, fnone, fone, fzero, mpf_abs, mpf_add,
        mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt,
        mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin,
        mpf_sqrt, normalize, round_nearest, to_int, to_str)
from mpmath.libmp import bitcount as mpmath_bitcount
from mpmath.libmp.backend import MPZ
from mpmath.libmp.libmpc import _infs_nan
from mpmath.libmp.libmpf import dps_to_prec
from mpmath.libmp.gammazeta import mpf_bernoulli

from .compatibility import SYMPY_INTS
from .sympify import sympify
from .core import C
from .singleton import S
from .containers import Tuple

LG10 = math.log(10, 2)
rnd = round_nearest

def bitcount(n):
    return mpmath_bitcount(int(n))

# Used in a few places as placeholder values to denote exponents and
# precision levels, e.g. of exact numbers. Must be careful to avoid
# passing these to mpmath functions or returning them in final results.
INF = float(mpmath_inf)
MINUS_INF = float(-mpmath_inf)

# ~= 100 digits. Real men set this to INF.
DEFAULT_MAXPREC = 333


class PrecisionExhausted(ArithmeticError):
    pass

#----------------------------------------------------------------------------#
#                                                                            #
#              Helper functions for arithmetic and complex parts             #
#                                                                            #
#----------------------------------------------------------------------------#

"""
An mpf value tuple is a tuple of integers (sign, man, exp, bc)
representing a floating-point number: [1, -1][sign]*man*2**exp where
sign is 0 or 1 and bc should correspond to the number of bits used to
represent the mantissa (man) in binary notation, e.g.

>>> from sympy.core.evalf import bitcount
>>> sign, man, exp, bc = 0, 5, 1, 3
>>> n = [1, -1][sign]*man*2**exp
>>> n, bitcount(man)
(10, 3)

A temporary result is a tuple (re, im, re_acc, im_acc) where
re and im are nonzero mpf value tuples representing approximate
numbers, or None to denote exact zeros.

re_acc, im_acc are integers denoting log2(e) where e is the estimated
relative accuracy of the respective complex part, but may be anything
if the corresponding complex part is None.

"""


def fastlog(x):
    """Fast approximation of log2(x) for an mpf value tuple x.

    Notes: Calculated as exponent + width of mantissa. This is an
    approximation for two reasons: 1) it gives the ceil(log2(abs(x)))
    value and 2) it is too high by 1 in the case that x is an exact
    power of 2. Although this is easy to remedy by testing to see if
    the odd mpf mantissa is 1 (indicating that one was dealing with
    an exact power of 2) that would decrease the speed and is not
    necessary as this is only being used as an approximation for the
    number of bits in x. The correct return value could be written as
    "x[2] + (x[3] if x[1] != 1 else 0)".
        Since mpf tuples always have an odd mantissa, no check is done
    to see if the mantissa is a multiple of 2 (in which case the
    result would be too large by 1).

    Examples
    ========

    >>> from sympy import log
    >>> from sympy.core.evalf import fastlog, bitcount
    >>> s, m, e = 0, 5, 1
    >>> bc = bitcount(m)
    >>> n = [1, -1][s]*m*2**e
    >>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc))
    (10, 3.3, 4)
    """

    if not x or x == fzero:
        return MINUS_INF
    return x[2] + x[3]


def pure_complex(v):
    """Return a and b if v matches a + I*b where b is not zero and
    a and b are Numbers, else None.

    >>> from sympy.core.evalf import pure_complex
    >>> from sympy import Tuple, I
    >>> a, b = Tuple(2, 3)
    >>> pure_complex(a)
    >>> pure_complex(a + b*I)
    (2, 3)
    >>> pure_complex(I)
    (0, 1)
    """
    h, t = v.as_coeff_Add()
    c, i = t.as_coeff_Mul()
    if i is S.ImaginaryUnit:
        return h, c


def scaled_zero(mag, sign=1):
    """Return an mpf representing a power of two with magnitude ``mag``
    and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just
    remove the sign from within the list that it was initially wrapped
    in.

    Examples
    ========

    >>> from sympy.core.evalf import scaled_zero
    >>> from sympy import Float
    >>> z, p = scaled_zero(100)
    >>> z, p
    (([0], 1, 100, 1), -1)
    >>> ok = scaled_zero(z)
    >>> ok
    (0, 1, 100, 1)
    >>> Float(ok)
    1.26765060022823e+30
    >>> Float(ok, p)
    0.e+30
    >>> ok, p = scaled_zero(100, -1)
    >>> Float(scaled_zero(ok), p)
    -0.e+30
    """
    if type(mag) is tuple and len(mag) == 4 and iszero(mag, scaled=True):
        return (mag[0][0],) + mag[1:]
    elif isinstance(mag, SYMPY_INTS):
        if sign not in [-1, 1]:
            raise ValueError('sign must be +/-1')
        rv, p = mpf_shift(fone, mag), -1
        s = 0 if sign == 1 else 1
        rv = ([s],) + rv[1:]
        return rv, p
    else:
        raise ValueError('scaled zero expects int or scaled_zero tuple.')


def iszero(mpf, scaled=False):
    if not scaled:
        return not mpf or not mpf[1] and not mpf[-1]
    return mpf and type(mpf[0]) is list and mpf[1] == mpf[-1] == 1


def complex_accuracy(result):
    """
    Returns relative accuracy of a complex number with given accuracies
    for the real and imaginary parts. The relative accuracy is defined
    in the complex norm sense as ||z|+|error|| / |z| where error
    is equal to (real absolute error) + (imag absolute error)*i.

    The full expression for the (logarithmic) error can be approximated
    easily by using the max norm to approximate the complex norm.

    In the worst case (re and im equal), this is wrong by a factor
    sqrt(2), or by log2(sqrt(2)) = 0.5 bit.
    """
    re, im, re_acc, im_acc = result
    if not im:
        if not re:
            return INF
        return re_acc
    if not re:
        return im_acc
    re_size = fastlog(re)
    im_size = fastlog(im)
    absolute_error = max(re_size - re_acc, im_size - im_acc)
    relative_error = absolute_error - max(re_size, im_size)
    return -relative_error


def get_abs(expr, prec, options):
    re, im, re_acc, im_acc = evalf(expr, prec + 2, options)
    if not re:
        re, re_acc, im, im_acc = im, im_acc, re, re_acc
    if im:
        return libmp.mpc_abs((re, im), prec), None, re_acc, None
    elif re:
        return mpf_abs(re), None, re_acc, None
    else:
        return None, None, None, None


def get_complex_part(expr, no, prec, options):
    """no = 0 for real part, no = 1 for imaginary part"""
    workprec = prec
    i = 0
    while 1:
        res = evalf(expr, workprec, options)
        value, accuracy = res[no::2]
        # XXX is the last one correct? Consider re((1+I)**2).n()
        if (not value) or accuracy >= prec or -value[2] > prec:
            return value, None, accuracy, None
        workprec += max(30, 2**i)
        i += 1


def evalf_abs(expr, prec, options):
    return get_abs(expr.args[0], prec, options)


def evalf_re(expr, prec, options):
    return get_complex_part(expr.args[0], 0, prec, options)


def evalf_im(expr, prec, options):
    return get_complex_part(expr.args[0], 1, prec, options)


def finalize_complex(re, im, prec):
    if re == fzero and im == fzero:
        raise ValueError("got complex zero with unknown accuracy")
    elif re == fzero:
        return None, im, None, prec
    elif im == fzero:
        return re, None, prec, None

    size_re = fastlog(re)
    size_im = fastlog(im)
    if size_re > size_im:
        re_acc = prec
        im_acc = prec + min(-(size_re - size_im), 0)
    else:
        im_acc = prec
        re_acc = prec + min(-(size_im - size_re), 0)
    return re, im, re_acc, im_acc


def chop_parts(value, prec):
    """
    Chop off tiny real or complex parts.
    """
    re, im, re_acc, im_acc = value
    # Method 1: chop based on absolute value
    if re and re not in _infs_nan and (fastlog(re) < -prec + 4):
        re, re_acc = None, None
    if im and im not in _infs_nan and (fastlog(im) < -prec + 4):
        im, im_acc = None, None
    # Method 2: chop if inaccurate and relatively small
    if re and im:
        delta = fastlog(re) - fastlog(im)
        if re_acc < 2 and (delta - re_acc <= -prec + 4):
            re, re_acc = None, None
        if im_acc < 2 and (delta - im_acc >= prec - 4):
            im, im_acc = None, None
    return re, im, re_acc, im_acc


def check_target(expr, result, prec):
    a = complex_accuracy(result)
    if a < prec:
        raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n"
            "from zero. Try simplifying the input, using chop=True, or providing "
            "a higher maxn for evalf" % (expr))


def get_integer_part(expr, no, options, return_ints=False):
    """
    With no = 1, computes ceiling(expr)
    With no = -1, computes floor(expr)

    Note: this function either gives the exact result or signals failure.
    """

    # The expression is likely less than 2^30 or so
    assumed_size = 30
    ire, iim, ire_acc, iim_acc = evalf(expr, assumed_size, options)

    # We now know the size, so we can calculate how much extra precision
    # (if any) is needed to get within the nearest integer
    if ire and iim:
        gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc)
    elif ire:
        gap = fastlog(ire) - ire_acc
    elif iim:
        gap = fastlog(iim) - iim_acc
    else:
        # ... or maybe the expression was exactly zero
        return None, None, None, None

    margin = 10

    if gap >= -margin:
        ire, iim, ire_acc, iim_acc = \
            evalf(expr, margin + assumed_size + gap, options)

    # We can now easily find the nearest integer, but to find floor/ceil, we
    # must also calculate whether the difference to the nearest integer is
    # positive or negative (which may fail if very close).
    def calc_part(expr, nexpr):
        nint = int(to_int(nexpr, rnd))
        expr = C.Add(expr, -nint, evaluate=False)
        x, _, x_acc, _ = evalf(expr, 10, options)
        try:
            check_target(expr, (x, None, x_acc, None), 3)
        except PrecisionExhausted:
            if not expr.equals(0):
                raise PrecisionExhausted
            x = fzero
        nint += int(no*(mpf_cmp(x or fzero, fzero) == no))
        nint = from_int(nint)
        return nint, fastlog(nint) + 10

    re, im, re_acc, im_acc = None, None, None, None

    if ire:
        re, re_acc = calc_part(C.re(expr, evaluate=False), ire)
    if iim:
        im, im_acc = calc_part(C.im(expr, evaluate=False), iim)

    if return_ints:
        return int(to_int(re or fzero)), int(to_int(im or fzero))
    return re, im, re_acc, im_acc


def evalf_ceiling(expr, prec, options):
    return get_integer_part(expr.args[0], 1, options)


def evalf_floor(expr, prec, options):
    return get_integer_part(expr.args[0], -1, options)

#----------------------------------------------------------------------------#
#                                                                            #
#                            Arithmetic operations                           #
#                                                                            #
#----------------------------------------------------------------------------#


def add_terms(terms, prec, target_prec):
    """
    Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.

    Returns
    -------

    - None, None if there are no non-zero terms;
    - terms[0] if there is only 1 term;
    - scaled_zero if the sum of the terms produces a zero by cancellation
      e.g. mpfs representing 1 and -1 would produce a scaled zero which need
      special handling since they are not actually zero and they are purposely
      malformed to ensure that they can't be used in anything but accuracy
      calculations;
    - a tuple that is scaled to target_prec that corresponds to the
      sum of the terms.

    The returned mpf tuple will be normalized to target_prec; the input
    prec is used to define the working precision.

    XXX explain why this is needed and why one can't just loop using mpf_add
    """
    from sympy.core.core import C

    terms = [t for t in terms if not iszero(t)]
    if not terms:
        return None, None
    elif len(terms) == 1:
        return terms[0]

    # see if any argument is NaN or oo and thus warrants a special return
    special = []
    for t in terms:
        arg = C.Float._new(t[0], 1)
        if arg is S.NaN or arg.is_unbounded:
            special.append(arg)
    if special:
        from sympy.core.add import Add
        rv = evalf(Add(*special), prec + 4, {})
        return rv[0], rv[2]

    working_prec = 2*prec
    sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF

    for x, accuracy in terms:
        sign, man, exp, bc = x
        if sign:
            man = -man
        absolute_error = max(absolute_error, bc + exp - accuracy)
        delta = exp - sum_exp
        if exp >= sum_exp:
            # x much larger than existing sum?
            # first: quick test
            if ((delta > working_prec) and
                ((not sum_man) or
                 delta - bitcount(abs(sum_man)) > working_prec)):
                sum_man = man
                sum_exp = exp
            else:
                sum_man += (man << delta)
        else:
            delta = -delta
            # x much smaller than existing sum?
            if delta - bc > working_prec:
                if not sum_man:
                    sum_man, sum_exp = man, exp
            else:
                sum_man = (sum_man << delta) + man
                sum_exp = exp
    if not sum_man:
        return scaled_zero(absolute_error)
    if sum_man < 0:
        sum_sign = 1
        sum_man = -sum_man
    else:
        sum_sign = 0
    sum_bc = bitcount(sum_man)
    sum_accuracy = sum_exp + sum_bc - absolute_error
    r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
        rnd), sum_accuracy
    #print "returning", to_str(r[0],50), r[1]
    return r


def evalf_add(v, prec, options):
    res = pure_complex(v)
    if res:
        h, c = res
        re, _, re_acc, _ = evalf(h, prec, options)
        im, _, im_acc, _ = evalf(c, prec, options)
        return re, im, re_acc, im_acc

    oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)

    i = 0
    target_prec = prec
    while 1:
        options['maxprec'] = min(oldmaxprec, 2*prec)

        terms = [evalf(arg, prec + 10, options) for arg in v.args]
        re, re_acc = add_terms(
            [a[0::2] for a in terms if a[0]], prec, target_prec)
        im, im_acc = add_terms(
            [a[1::2] for a in terms if a[1]], prec, target_prec)
        acc = complex_accuracy((re, im, re_acc, im_acc))
        if acc >= target_prec:
            if options.get('verbose'):
                print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc)
            break
        else:
            if (prec - target_prec) > options['maxprec']:
                break

            prec = prec + max(10 + 2**i, target_prec - acc)
            i += 1
            if options.get('verbose'):
                print("ADD: restarting with prec", prec)

    options['maxprec'] = oldmaxprec
    if iszero(re, scaled=True):
        re = scaled_zero(re)
    if iszero(im, scaled=True):
        im = scaled_zero(im)
    return re, im, re_acc, im_acc


def evalf_mul(v, prec, options):
    from sympy.core.core import C

    res = pure_complex(v)
    if res:
        # the only pure complex that is a mul is h*I
        _, h = res
        im, _, im_acc, _ = evalf(h, prec, options)
        return None, im, None, im_acc
    args = list(v.args)

    # see if any argument is NaN or oo and thus warrants a special return
    special = []
    for arg in args:
        arg = evalf(arg, prec, options)
        if arg[0] is None:
            continue
        arg = C.Float._new(arg[0], 1)
        if arg is S.NaN or arg.is_unbounded:
            special.append(arg)
    if special:
        from sympy.core.mul import Mul
        special = Mul(*special)
        return evalf(special, prec + 4, {})

    # With guard digits, multiplication in the real case does not destroy
    # accuracy. This is also true in the complex case when considering the
    # total accuracy; however accuracy for the real or imaginary parts
    # separately may be lower.
    acc = prec

    # XXX: big overestimate
    working_prec = prec + len(args) + 5

    # Empty product is 1
    start = man, exp, bc = MPZ(1), 0, 1

    # First, we multiply all pure real or pure imaginary numbers.
    # direction tells us that the result should be multiplied by
    # I**direction; all other numbers get put into complex_factors
    # to be multiplied out after the first phase.
    last = len(args)
    direction = 0
    args.append(S.One)
    complex_factors = []

    for i, arg in enumerate(args):
        if i != last and pure_complex(arg):
            args[-1] = (args[-1]*arg).expand()
            continue
        elif i == last and arg is S.One:
            continue
        re, im, re_acc, im_acc = evalf(arg, working_prec, options)
        if re and im:
            complex_factors.append((re, im, re_acc, im_acc))
            continue
        elif re:
            (s, m, e, b), w_acc = re, re_acc
        elif im:
            (s, m, e, b), w_acc = im, im_acc
            direction += 1
        else:
            return None, None, None, None
        direction += 2*s
        man *= m
        exp += e
        bc += b
        if bc > 3*working_prec:
            man >>= working_prec
            exp += working_prec
        acc = min(acc, w_acc)
    sign = (direction & 2) >> 1
    if not complex_factors:
        v = normalize(sign, man, exp, bitcount(man), prec, rnd)
        # multiply by i
        if direction & 1:
            return None, v, None, acc
        else:
            return v, None, acc, None
    else:
        # initialize with the first term
        if (man, exp, bc) != start:
            # there was a real part; give it an imaginary part
            re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
            i0 = 0
        else:
            # there is no real part to start (other than the starting 1)
            wre, wim, wre_acc, wim_acc = complex_factors[0]
            acc = min(acc,
                      complex_accuracy((wre, wim, wre_acc, wim_acc)))
            re = wre
            im = wim
            i0 = 1

        for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
            # acc is the overall accuracy of the product; we aren't
            # computing exact accuracies of the product.
            acc = min(acc,
                      complex_accuracy((wre, wim, wre_acc, wim_acc)))

            use_prec = working_prec
            A = mpf_mul(re, wre, use_prec)
            B = mpf_mul(mpf_neg(im), wim, use_prec)
            C = mpf_mul(re, wim, use_prec)
            D = mpf_mul(im, wre, use_prec)
            re = mpf_add(A, B, use_prec)
            im = mpf_add(C, D, use_prec)
        if options.get('verbose'):
            print("MUL: wanted", prec, "accurate bits, got", acc)
        # multiply by I
        if direction & 1:
            re, im = mpf_neg(im), re
        return re, im, acc, acc


def evalf_pow(v, prec, options):

    target_prec = prec
    base, exp = v.args

    # We handle x**n separately. This has two purposes: 1) it is much
    # faster, because we avoid calling evalf on the exponent, and 2) it
    # allows better handling of real/imaginary parts that are exactly zero
    if exp.is_Integer:
        p = exp.p
        # Exact
        if not p:
            return fone, None, prec, None
        # Exponentiation by p magnifies relative error by |p|, so the
        # base must be evaluated with increased precision if p is large
        prec += int(math.log(abs(p), 2))
        re, im, re_acc, im_acc = evalf(base, prec + 5, options)
        # Real to integer power
        if re and not im:
            return mpf_pow_int(re, p, target_prec), None, target_prec, None
        # (x*I)**n = I**n * x**n
        if im and not re:
            z = mpf_pow_int(im, p, target_prec)
            case = p % 4
            if case == 0:
                return z, None, target_prec, None
            if case == 1:
                return None, z, None, target_prec
            if case == 2:
                return mpf_neg(z), None, target_prec, None
            if case == 3:
                return None, mpf_neg(z), None, target_prec
        # Zero raised to an integer power
        if not re:
            return None, None, None, None
        # General complex number to arbitrary integer power
        re, im = libmp.mpc_pow_int((re, im), p, prec)
        # Assumes full accuracy in input
        return finalize_complex(re, im, target_prec)

    # Pure square root
    if exp is S.Half:
        xre, xim, _, _ = evalf(base, prec + 5, options)
        # General complex square root
        if xim:
            re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
            return finalize_complex(re, im, prec)
        if not xre:
            return None, None, None, None
        # Square root of a negative real number
        if mpf_lt(xre, fzero):
            return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
        # Positive square root
        return mpf_sqrt(xre, prec), None, prec, None

    # We first evaluate the exponent to find its magnitude
    # This determines the working precision that must be used
    prec += 10
    yre, yim, _, _ = evalf(exp, prec, options)
    # Special cases: x**0
    if not (yre or yim):
        return fone, None, prec, None

    ysize = fastlog(yre)
    # Restart if too big
    # XXX: prec + ysize might exceed maxprec
    if ysize > 5:
        prec += ysize
        yre, yim, _, _ = evalf(exp, prec, options)

    # Pure exponential function; no need to evalf the base
    if base is S.Exp1:
        if yim:
            re, im = libmp.mpc_exp((yre or fzero, yim), prec)
            return finalize_complex(re, im, target_prec)
        return mpf_exp(yre, target_prec), None, target_prec, None

    xre, xim, _, _ = evalf(base, prec + 5, options)
    # 0**y
    if not (xre or xim):
        return None, None, None, None

    # (real ** complex) or (complex ** complex)
    if yim:
        re, im = libmp.mpc_pow(
            (xre or fzero, xim or fzero), (yre or fzero, yim),
            target_prec)
        return finalize_complex(re, im, target_prec)
    # complex ** real
    if xim:
        re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # negative ** real
    elif mpf_lt(xre, fzero):
        re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # positive ** real
    else:
        return mpf_pow(xre, yre, target_prec), None, target_prec, None


#----------------------------------------------------------------------------#
#                                                                            #
#                            Special functions                               #
#                                                                            #
#----------------------------------------------------------------------------#
def evalf_trig(v, prec, options):
    """
    This function handles sin and cos of complex arguments.

    TODO: should also handle tan of complex arguments.
    """
    if v.func is C.cos:
        func = mpf_cos
    elif v.func is C.sin:
        func = mpf_sin
    else:
        raise NotImplementedError
    arg = v.args[0]
    # 20 extra bits is possibly overkill. It does make the need
    # to restart very unlikely
    xprec = prec + 20
    re, im, re_acc, im_acc = evalf(arg, xprec, options)
    if im:
        if 'subs' in options:
            v = v.subs(options['subs'])
        return evalf(v._eval_evalf(prec), prec, options)
    if not re:
        if v.func is C.cos:
            return fone, None, prec, None
        elif v.func is C.sin:
            return None, None, None, None
        else:
            raise NotImplementedError
    # For trigonometric functions, we are interested in the
    # fixed-point (absolute) accuracy of the argument.
    xsize = fastlog(re)
    # Magnitude <= 1.0. OK to compute directly, because there is no
    # danger of hitting the first root of cos (with sin, magnitude
    # <= 2.0 would actually be ok)
    if xsize < 1:
        return func(re, prec, rnd), None, prec, None
    # Very large
    if xsize >= 10:
        xprec = prec + xsize
        re, im, re_acc, im_acc = evalf(arg, xprec, options)
    # Need to repeat in case the argument is very close to a
    # multiple of pi (or pi/2), hitting close to a root
    while 1:
        y = func(re, prec, rnd)
        ysize = fastlog(y)
        gap = -ysize
        accuracy = (xprec - xsize) - gap
        if accuracy < prec:
            if options.get('verbose'):
                print("SIN/COS", accuracy, "wanted", prec, "gap", gap)
                print(to_str(y, 10))
            if xprec > options.get('maxprec', DEFAULT_MAXPREC):
                return y, None, accuracy, None
            xprec += gap
            re, im, re_acc, im_acc = evalf(arg, xprec, options)
            continue
        else:
            return y, None, prec, None


def evalf_log(expr, prec, options):
    arg = expr.args[0]
    workprec = prec + 10
    xre, xim, xacc, _ = evalf(arg, workprec, options)

    if xim:
        # XXX: use get_abs etc instead
        re = evalf_log(
            C.log(C.Abs(arg, evaluate=False), evaluate=False), prec, options)
        im = mpf_atan2(xim, xre or fzero, prec)
        return re[0], im, re[2], prec

    imaginary_term = (mpf_cmp(xre, fzero) < 0)

    re = mpf_log(mpf_abs(xre), prec, rnd)
    size = fastlog(re)
    if prec - size > workprec:
        # We actually need to compute 1+x accurately, not x
        arg = C.Add(S.NegativeOne, arg, evaluate=False)
        xre, xim, _, _ = evalf_add(arg, prec, options)
        prec2 = workprec - fastlog(xre)
        re = mpf_log(mpf_add(xre, fone, prec2), prec, rnd)

    re_acc = prec

    if imaginary_term:
        return re, mpf_pi(prec), re_acc, prec
    else:
        return re, None, re_acc, None


def evalf_atan(v, prec, options):
    arg = v.args[0]
    xre, xim, reacc, imacc = evalf(arg, prec + 5, options)
    if xre is xim is None:
        return (None,)*4
    if xim:
        raise NotImplementedError
    return mpf_atan(xre, prec, rnd), None, prec, None


def evalf_subs(prec, subs):
    """ Change all Float entries in `subs` to have precision prec. """
    newsubs = {}
    for a, b in subs.items():
        b = S(b)
        if b.is_Float:
            b = b._eval_evalf(prec)
        newsubs[a] = b
    return newsubs


def evalf_piecewise(expr, prec, options):
    if 'subs' in options:
        expr = expr.subs(evalf_subs(prec, options['subs']))
        newopts = options.copy()
        del newopts['subs']
        if hasattr(expr, 'func'):
            return evalf(expr, prec, newopts)
        if type(expr) == float:
            return evalf(C.Float(expr), prec, newopts)
        if type(expr) == int:
            return evalf(C.Integer(expr), prec, newopts)

    # We still have undefined symbols
    raise NotImplementedError


def evalf_bernoulli(expr, prec, options):
    arg = expr.args[0]
    if not arg.is_Integer:
        raise ValueError("Bernoulli number index must be an integer")
    n = int(arg)
    b = mpf_bernoulli(n, prec, rnd)
    if b == fzero:
        return None, None, None, None
    return b, None, prec, None

#----------------------------------------------------------------------------#
#                                                                            #
#                            High-level operations                           #
#                                                                            #
#----------------------------------------------------------------------------#


def as_mpmath(x, prec, options):
    x = sympify(x)
    if isinstance(x, C.Zero):
        return mpf(0)
    if isinstance(x, C.Infinity):
        return mpf('inf')
    if isinstance(x, C.NegativeInfinity):
        return mpf('-inf')
    # XXX
    re, im, _, _ = evalf(x, prec, options)
    if im:
        return mpc(re or fzero, im)
    return mpf(re)


def do_integral(expr, prec, options):
    func = expr.args[0]
    x, xlow, xhigh = expr.args[1]
    orig = mp.prec

    oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
    options['maxprec'] = min(oldmaxprec, 2*prec)

    try:
        mp.prec = prec + 5
        xlow = as_mpmath(xlow, prec + 15, options)
        xhigh = as_mpmath(xhigh, prec + 15, options)

        # Integration is like summation, and we can phone home from
        # the integrand function to update accuracy summation style
        # Note that this accuracy is inaccurate, since it fails
        # to account for the variable quadrature weights,
        # but it is better than nothing

        have_part = [False, False]
        max_real_term = [MINUS_INF]
        max_imag_term = [MINUS_INF]

        def f(t):
            re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})

            have_part[0] = re or have_part[0]
            have_part[1] = im or have_part[1]

            max_real_term[0] = max(max_real_term[0], fastlog(re))
            max_imag_term[0] = max(max_imag_term[0], fastlog(im))

            if im:
                return mpc(re or fzero, im)
            return mpf(re or fzero)

        if options.get('quad') == 'osc':
            A = C.Wild('A', exclude=[x])
            B = C.Wild('B', exclude=[x])
            D = C.Wild('D')
            m = func.match(C.cos(A*x + B)*D)
            if not m:
                m = func.match(C.sin(A*x + B)*D)
            if not m:
                raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
                  "or cos(A*x+B)*f(x) is required for oscillatory quadrature")
            period = as_mpmath(2*S.Pi/m[A], prec + 15, options)
            result = quadosc(f, [xlow, xhigh], period=period)
            # XXX: quadosc does not do error detection yet
            quadrature_error = MINUS_INF
        else:
            result, quadrature_error = quadts(f, [xlow, xhigh], error=1)
            quadrature_error = fastlog(quadrature_error._mpf_)

    finally:
        options['maxprec'] = oldmaxprec
        mp.prec = orig

    if have_part[0]:
        re = result.real._mpf_
        if re == fzero:
            re, re_acc = scaled_zero(
                min(-prec, -max_real_term[0], -quadrature_error))
            re = scaled_zero(re)  # handled ok in evalf_integral
        else:
            re_acc = -max(max_real_term[0] - fastlog(re) -
                          prec, quadrature_error)
    else:
        re, re_acc = None, None

    if have_part[1]:
        im = result.imag._mpf_
        if im == fzero:
            im, im_acc = scaled_zero(
                min(-prec, -max_imag_term[0], -quadrature_error))
            im = scaled_zero(im)  # handled ok in evalf_integral
        else:
            im_acc = -max(max_imag_term[0] - fastlog(im) -
                          prec, quadrature_error)
    else:
        im, im_acc = None, None

    result = re, im, re_acc, im_acc
    return result


def evalf_integral(expr, prec, options):
    limits = expr.limits
    if len(limits) != 1 or len(limits[0]) != 3:
        raise NotImplementedError
    workprec = prec
    i = 0
    maxprec = options.get('maxprec', INF)
    while 1:
        result = do_integral(expr, workprec, options)
        # if a scaled_zero comes back accuracy will compute to -1
        # which will cause workprec to increment by 1
        accuracy = complex_accuracy(result)
        if accuracy >= prec or workprec >= maxprec:
            return result
        workprec += prec - max(-2**i, accuracy)
        i += 1


def check_convergence(numer, denom, n):
    """
    Returns (h, g, p) where
    -- h is:
        > 0 for convergence of rate 1/factorial(n)**h
        < 0 for divergence of rate factorial(n)**(-h)
        = 0 for geometric or polynomial convergence or divergence

    -- abs(g) is:
        > 1 for geometric convergence of rate 1/h**n
        < 1 for geometric divergence of rate h**n
        = 1 for polynomial convergence or divergence

        (g < 0 indicates an alternating series)

    -- p is:
        > 1 for polynomial convergence of rate 1/n**h
        <= 1 for polynomial divergence of rate n**(-h)

    """
    npol = C.Poly(numer, n)
    dpol = C.Poly(denom, n)
    p = npol.degree()
    q = dpol.degree()
    rate = q - p
    if rate:
        return rate, None, None
    constant = dpol.LC() / npol.LC()
    if abs(constant) != 1:
        return rate, constant, None
    if npol.degree() == dpol.degree() == 0:
        return rate, constant, 0
    pc = npol.all_coeffs()[1]
    qc = dpol.all_coeffs()[1]
    return rate, constant, (qc - pc)/dpol.LC()


def hypsum(expr, n, start, prec):
    """
    Sum a rapidly convergent infinite hypergeometric series with
    given general term, e.g. e = hypsum(1/factorial(n), n). The
    quotient between successive terms must be a quotient of integer
    polynomials.
    """
    from sympy import hypersimp, lambdify

    if start:
        expr = expr.subs(n, n + start)
    hs = hypersimp(expr, n)
    if hs is None:
        raise NotImplementedError("a hypergeometric series is required")
    num, den = hs.as_numer_denom()

    func1 = lambdify(n, num)
    func2 = lambdify(n, den)

    h, g, p = check_convergence(num, den, n)

    if h < 0:
        raise ValueError("Sum diverges like (n!)^%i" % (-h))

    # Direct summation if geometric or faster
    if h > 0 or (h == 0 and abs(g) > 1):
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec) // term.q
        s = term
        k = 1
        while abs(term) > 5:
            term *= MPZ(func1(k - 1))
            term //= MPZ(func2(k - 1))
            s += term
            k += 1
        return from_man_exp(s, -prec)
    else:
        alt = g < 0
        if abs(g) < 1:
            raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
        if p < 1 or (p == 1 and not alt):
            raise ValueError("Sum diverges like n^%i" % (-p))
        # We have polynomial convergence: use Richardson extrapolation
        # Need to use at least quad precision because a lot of cancellation
        # might occur in the extrapolation process
        prec2 = 4*prec
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec2) // term.q

        def summand(k, _term=[term]):
            if k:
                k = int(k)
                _term[0] *= MPZ(func1(k - 1))
                _term[0] //= MPZ(func2(k - 1))
            return make_mpf(from_man_exp(_term[0], -prec2))

        orig = mp.prec
        try:
            mp.prec = prec
            v = nsum(summand, [0, mpmath_inf], method='richardson')
        finally:
            mp.prec = orig
        return v._mpf_


def evalf_sum(expr, prec, options):
    if 'subs' in options:
        expr = expr.subs(options['subs'])
    func = expr.function
    limits = expr.limits
    if len(limits) != 1 or len(limits[0]) != 3:
        raise NotImplementedError
    if func is S.Zero:
        return mpf(0), None, None, None
    prec2 = prec + 10
    try:
        n, a, b = limits[0]
        if b != S.Infinity or a != int(a):
            raise NotImplementedError
        # Use fast hypergeometric summation if possible
        v = hypsum(func, n, int(a), prec2)
        delta = prec - fastlog(v)
        if fastlog(v) < -10:
            v = hypsum(func, n, int(a), delta)
        return v, None, min(prec, delta), None
    except NotImplementedError:
        # Euler-Maclaurin summation for general series
        eps = C.Float(2.0)**(-prec)
        for i in range(1, 5):
            m = n = 2**i * prec
            s, err = expr.euler_maclaurin(m=m, n=n, eps=eps,
                eval_integral=False)
            err = err.evalf()
            if err <= eps:
                break
        err = fastlog(evalf(abs(err), 20, options)[0])
        re, im, re_acc, im_acc = evalf(s, prec2, options)
        if re_acc is None:
            re_acc = -err
        if im_acc is None:
            im_acc = -err
        return re, im, re_acc, im_acc


#----------------------------------------------------------------------------#
#                                                                            #
#                            Symbolic interface                              #
#                                                                            #
#----------------------------------------------------------------------------#

def evalf_symbol(x, prec, options):
    val = options['subs'][x]
    if isinstance(val, mpf):
        if not val:
            return None, None, None, None
        return val._mpf_, None, prec, None
    else:
        if not '_cache' in options:
            options['_cache'] = {}
        cache = options['_cache']
        cached, cached_prec = cache.get(x.name, (None, MINUS_INF))
        if cached_prec >= prec:
            return cached
        v = evalf(sympify(val), prec, options)
        cache[x.name] = (v, prec)
        return v

evalf_table = None


def _create_evalf_table():
    global evalf_table
    evalf_table = {
        C.Symbol: evalf_symbol,
        C.Dummy: evalf_symbol,
        C.Float: lambda x, prec, options: (x._mpf_, None, prec, None),
        C.Rational: lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None),
        C.Integer: lambda x, prec, options: (from_int(x.p, prec), None, prec, None),
        C.Zero: lambda x, prec, options: (None, None, prec, None),
        C.One: lambda x, prec, options: (fone, None, prec, None),
        C.Half: lambda x, prec, options: (fhalf, None, prec, None),
        C.Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
        C.Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
        C.ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
        C.NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
        C.NaN : lambda x, prec, options: (fnan, None, prec, None),

        C.exp: lambda x, prec, options: evalf_pow(C.Pow(S.Exp1, x.args[0],
        evaluate=False), prec, options),

        C.cos: evalf_trig,
        C.sin: evalf_trig,

        C.Add: evalf_add,
        C.Mul: evalf_mul,
        C.Pow: evalf_pow,

        C.log: evalf_log,
        C.atan: evalf_atan,
        C.Abs: evalf_abs,

        C.re: evalf_re,
        C.im: evalf_im,
        C.floor: evalf_floor,
        C.ceiling: evalf_ceiling,

        C.Integral: evalf_integral,
        C.Sum: evalf_sum,
        C.Piecewise: evalf_piecewise,

        C.bernoulli: evalf_bernoulli,
    }


def evalf(x, prec, options):
    from sympy import re as re_, im as im_
    try:
        rf = evalf_table[x.func]
        r = rf(x, prec, options)
    except KeyError:
        try:
            # Fall back to ordinary evalf if possible
            if 'subs' in options:
                x = x.subs(evalf_subs(prec, options['subs']))
            re, im = x._eval_evalf(prec).as_real_imag()
            if re.has(re_) or im.has(im_):
                raise NotImplementedError
            if re == 0:
                re = None
                reprec = None
            else:
                re = re._to_mpmath(prec, allow_ints=False)._mpf_
                reprec = prec
            if im == 0:
                im = None
                imprec = None
            else:
                im = im._to_mpmath(prec, allow_ints=False)._mpf_
                imprec = prec
            r = re, im, reprec, imprec
        except AttributeError:
            raise NotImplementedError
    if options.get("verbose"):
        print("### input", x)
        print("### output", to_str(r[0] or fzero, 50))
        print("### raw", r ) # r[0], r[2]
        print()
    chop = options.get('chop', False)
    if chop:
        if chop is True:
            chop_prec = prec
        else:
            # convert (approximately) from given tolerance;
            # the formula here will will make 1e-i rounds to 0 for
            # i in the range +/-27 while 2e-i will not be chopped
            chop_prec = int(round(-3.321*math.log10(chop) + 2.5))
            if chop_prec == 3:
                chop_prec -= 1
        r = chop_parts(r, chop_prec)
    if options.get("strict"):
        check_target(x, r, prec)
    return r


class EvalfMixin(object):
    """Mixin class adding evalf capabililty."""

    __slots__ = []

    def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
        """
        Evaluate the given formula to an accuracy of n digits.
        Optional keyword arguments:

            subs=<dict>
                Substitute numerical values for symbols, e.g.
                subs={x:3, y:1+pi}.

            maxn=<integer>
                Allow a maximum temporary working precision of maxn digits
                (default=100)

            chop=<bool>
                Replace tiny real or imaginary parts in subresults
                by exact zeros (default=False)

            strict=<bool>
                Raise PrecisionExhausted if any subresult fails to evaluate
                to full accuracy, given the available maxprec
                (default=False)

            quad=<str>
                Choose algorithm for numerical quadrature. By default,
                tanh-sinh quadrature is used. For oscillatory
                integrals on an infinite interval, try quad='osc'.

            verbose=<bool>
                Print debug information (default=False)

        """
        # for sake of sage that doesn't like evalf(1)
        if n == 1 and isinstance(self, C.Number):
            from sympy.core.expr import _mag
            rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose)
            m = _mag(rv)
            rv = rv.round(1 - m)
            return rv

        if not evalf_table:
            _create_evalf_table()
        prec = dps_to_prec(n)
        options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop,
               'strict': strict, 'verbose': verbose}
        if subs is not None:
            options['subs'] = subs
        if quad is not None:
            options['quad'] = quad
        try:
            result = evalf(self, prec + 4, options)
        except NotImplementedError:
            # Fall back to the ordinary evalf
            v = self._eval_evalf(prec)
            if v is None:
                return self
            try:
                # If the result is numerical, normalize it
                result = evalf(v, prec, options)
            except NotImplementedError:
                # Probably contains symbols or unknown functions
                return v
        re, im, re_acc, im_acc = result
        if re:
            p = max(min(prec, re_acc), 1)
            #re = mpf_pos(re, p, rnd)
            re = C.Float._new(re, p)
        else:
            re = S.Zero
        if im:
            p = max(min(prec, im_acc), 1)
            #im = mpf_pos(im, p, rnd)
            im = C.Float._new(im, p)
            return re + im*S.ImaginaryUnit
        else:
            return re

    n = evalf

    def _evalf(self, prec):
        """Helper for evalf. Does the same thing but takes binary precision"""
        r = self._eval_evalf(prec)
        if r is None:
            r = self
        return r

    def _eval_evalf(self, prec):
        return

    def _to_mpmath(self, prec, allow_ints=True):
        # mpmath functions accept ints as input
        errmsg = "cannot convert to mpmath number"
        if allow_ints and self.is_Integer:
            return self.p
        if hasattr(self, '_as_mpf_val'):
            return make_mpf(self._as_mpf_val(prec))
        try:
            re, im, _, _ = evalf(self, prec, {})
            if im:
                if not re:
                    re = fzero
                return make_mpc((re, im))
            elif re:
                return make_mpf(re)
            else:
                return make_mpf(fzero)
        except NotImplementedError:
            v = self._eval_evalf(prec)
            if v is None:
                raise ValueError(errmsg)
            if v.is_Float:
                return make_mpf(v._mpf_)
            # Number + Number*I is also fine
            re, im = v.as_real_imag()
            if allow_ints and re.is_Integer:
                re = from_int(re.p)
            elif re.is_Float:
                re = re._mpf_
            else:
                raise ValueError(errmsg)
            if allow_ints and im.is_Integer:
                im = from_int(im.p)
            elif im.is_Float:
                im = im._mpf_
            else:
                raise ValueError(errmsg)
            return make_mpc((re, im))


def N(x, n=15, **options):
    """
    Calls x.evalf(n, \*\*options).

    Both .n() and N() are equivalent to .evalf(); use the one that you like better.
    See also the docstring of .evalf() for information on the options.

    Examples
    ========

    >>> from sympy import Sum, oo, N
    >>> from sympy.abc import k
    >>> Sum(1/k**k, (k, 1, oo))
    Sum(k**(-k), (k, 1, oo))
    >>> N(_, 4)
    1.291

    """
    return sympify(x).evalf(n, **options)