File: numbers.py

package info (click to toggle)
sympy 0.7.5-3
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,576 kB
  • ctags: 27,948
  • sloc: python: 213,240; xml: 359; makefile: 117; sh: 53; lisp: 4
file content (3143 lines) | stat: -rw-r--r-- 90,039 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
from __future__ import print_function, division

import decimal
import fractions
import math
import re as regex
from collections import defaultdict

from .core import C
from .containers import Tuple
from .sympify import converter, sympify, _sympify, SympifyError
from .singleton import S, Singleton
from .expr import Expr, AtomicExpr
from .decorators import _sympifyit, deprecated
from .cache import cacheit, clear_cache
from sympy.core.compatibility import (
    as_int, integer_types, long, string_types, with_metaclass, HAS_GMPY,
    SYMPY_INTS)
import mpmath
import mpmath.libmp as mlib
from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed
from mpmath.ctx_mp import mpnumeric
from mpmath.libmp.libmpf import (
    finf as _mpf_inf, fninf as _mpf_ninf,
    fnan as _mpf_nan, fzero as _mpf_zero, _normalize as mpf_normalize,
    prec_to_dps)

rnd = mlib.round_nearest

_LOG2 = math.log(2)


def mpf_norm(mpf, prec):
    """Return the mpf tuple normalized appropriately for the indicated
    precision after doing a check to see if zero should be returned or
    not when the mantissa is 0. ``mpf_normlize`` always assumes that this
    is zero, but it may not be since the mantissa for mpf's values "+inf",
    "-inf" and "nan" have a mantissa of zero, too.

    Note: this is not intended to validate a given mpf tuple, so sending
    mpf tuples that were not created by mpmath may produce bad results. This
    is only a wrapper to ``mpf_normalize`` which provides the check for non-
    zero mpfs that have a 0 for the mantissa.
    """
    sign, man, expt, bc = mpf
    if not man:
        # hack for mpf_normalize which does not do this;
        # it assumes that if man is zero the result is 0
        # (see issue 3540)
        if not bc:
            return _mpf_zero
        else:
            # don't change anything; this should already
            # be a well formed mpf tuple
            return mpf
    rv = mpf_normalize(sign, man, expt, bc, prec, rnd)
    return rv

# TODO: we should use the warnings module
_errdict = {"divide": False}


def seterr(divide=False):
    """
    Should sympy raise an exception on 0/0 or return a nan?

    divide == True .... raise an exception
    divide == False ... return nan
    """
    if _errdict["divide"] != divide:
        clear_cache()
        _errdict["divide"] = divide


def _decimal_to_Rational_prec(dec):
    """Convert an ordinary decimal instance to a Rational."""
    if not dec.is_finite():  # NOTE: this is_finite is not SymPy's
        raise TypeError("dec must be finite, got %s." % dec)
    s, d, e = dec.as_tuple()
    prec = len(d)
    if e >= 0:  # it's an integer
        rv = Integer(int(dec))
    else:
        s = (-1)**s
        d = sum([di*10**i for i, di in enumerate(reversed(d))])
        rv = Rational(s*d, 10**-e)
    return rv, prec


def _literal_float(f):
    """Return True if n can be interpreted as a floating point number."""
    pat = r"[-+]?((\d*\.\d+)|(\d+\.?))(eE[-+]?\d+)?"
    return bool(regex.match(pat, f))

# (a,b) -> gcd(a,b)
_gcdcache = {}

# TODO caching with decorator, but not to degrade performance


def igcd(*args):
    """Computes positive integer greatest common divisor.

    The algorithm is based on the well known Euclid's algorithm. To
    improve speed, igcd() has its own caching mechanism implemented.

    Examples
    ========

    >>> from sympy.core.numbers import igcd
    >>> igcd(2, 4)
    2
    >>> igcd(5, 10, 15)
    5

    """
    a = args[0]
    for b in args[1:]:
        try:
            a = _gcdcache[(a, b)]
        except KeyError:
            a, b = as_int(a), as_int(b)

            if a and b:
                if b < 0:
                    b = -b

                while b:
                    a, b = b, a % b
            else:
                a = abs(a or b)

            _gcdcache[(a, b)] = a
        if a == 1 or b == 1:
            return 1
    return a


def ilcm(*args):
    """Computes integer least common multiple.

    Examples
    ========

    >>> from sympy.core.numbers import ilcm
    >>> ilcm(5, 10)
    10
    >>> ilcm(7, 3)
    21
    >>> ilcm(5, 10, 15)
    30

    """
    if 0 in args:
        return 0
    a = args[0]
    for b in args[1:]:
        a = a*b // igcd(a, b)
    return a


def igcdex(a, b):
    """Returns x, y, g such that g = x*a + y*b = gcd(a, b).

       >>> from sympy.core.numbers import igcdex
       >>> igcdex(2, 3)
       (-1, 1, 1)
       >>> igcdex(10, 12)
       (-1, 1, 2)

       >>> x, y, g = igcdex(100, 2004)
       >>> x, y, g
       (-20, 1, 4)
       >>> x*100 + y*2004
       4

    """
    if (not a) and (not b):
        return (0, 1, 0)

    if not a:
        return (0, b//abs(b), abs(b))
    if not b:
        return (a//abs(a), 0, abs(a))

    if a < 0:
        a, x_sign = -a, -1
    else:
        x_sign = 1

    if b < 0:
        b, y_sign = -b, -1
    else:
        y_sign = 1

    x, y, r, s = 1, 0, 0, 1

    while b:
        (c, q) = (a % b, a // b)
        (a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s)

    return (x*x_sign, y*y_sign, a)


class Number(AtomicExpr):
    """
    Represents any kind of number in sympy.

    Floating point numbers are represented by the Float class.
    Integer numbers (of any size), together with rational numbers (again,
    there is no limit on their size) are represented by the Rational class.

    If you want to represent, for example, ``1+sqrt(2)``, then you need to do::

      Rational(1) + sqrt(Rational(2))
    """
    is_commutative = True
    is_number = True

    __slots__ = []

    # Used to make max(x._prec, y._prec) return x._prec when only x is a float
    _prec = -1

    is_Number = True

    def __new__(cls, *obj):
        if len(obj) == 1:
            obj = obj[0]

        if isinstance(obj, Number):
            return obj
        if isinstance(obj, SYMPY_INTS):
            return Integer(obj)
        if isinstance(obj, tuple) and len(obj) == 2:
            return Rational(*obj)
        if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)):
            return Float(obj)
        if isinstance(obj, string_types):
            val = sympify(obj)
            if isinstance(val, Number):
                return val
            else:
                raise ValueError('String "%s" does not denote a Number' % obj)
            if isinstance(obj, Number):
                return obj
        msg = "expected str|int|long|float|Decimal|Number object but got %r"
        raise TypeError(msg % type(obj).__name__)

    def __divmod__(self, other):
        from .containers import Tuple
        from sympy.functions.elementary.complexes import sign

        try:
            other = Number(other)
        except TypeError:
            msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
            raise TypeError(msg % (type(self).__name__, type(other).__name__))
        if not other:
            raise ZeroDivisionError('modulo by zero')
        if self.is_Integer and other.is_Integer:
            return Tuple(*divmod(self.p, other.p))
        else:
            rat = self/other
        w = sign(rat)*int(abs(rat))  # = rat.floor()
        r = self - other*w
        #w*other + r == self
        return Tuple(w, r)

    def __rdivmod__(self, other):
        try:
            other = Number(other)
        except TypeError:
            msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
            raise TypeError(msg % (type(other).__name__, type(self).__name__))
        return divmod(other, self)

    def __round__(self, *args):
        return round(float(self), *args)

    def _as_mpf_val(self, prec):
        """Evaluation of mpf tuple accurate to at least prec bits."""
        raise NotImplementedError('%s needs ._as_mpf_val() method' %
            (self.__class__.__name__))

    def _eval_evalf(self, prec):
        return Float._new(self._as_mpf_val(prec), prec)

    def _as_mpf_op(self, prec):
        prec = max(prec, self._prec)
        return self._as_mpf_val(prec), prec

    def __float__(self):
        return mlib.to_float(self._as_mpf_val(53))

    def _eval_conjugate(self):
        return self

    def _eval_order(self, *symbols):
        # Order(5, x, y) -> Order(1,x,y)
        return C.Order(S.One, *symbols)

    def _eval_subs(self, old, new):
        if old == -self:
            return -new
        return self  # there is no other possibility

    def _eval_is_bounded(self):
        return True

    def _eval_is_finite(self):
        return True

    @classmethod
    def class_key(cls):
        return 1, 0, 'Number'

    @cacheit
    def sort_key(self, order=None):
        return self.class_key(), (0, ()), (), self

    @_sympifyit('other', NotImplemented)
    def __add__(self, other):
        if isinstance(other, Number):
            if other is S.NaN:
                return S.NaN
            elif other is S.Infinity:
                return S.Infinity
            elif other is S.NegativeInfinity:
                return S.NegativeInfinity
        return AtomicExpr.__add__(self, other)

    @_sympifyit('other', NotImplemented)
    def __sub__(self, other):
        if isinstance(other, Number):
            if other is S.NaN:
                return S.NaN
            elif other is S.Infinity:
                return S.NegativeInfinity
            elif other is S.NegativeInfinity:
                return S.Infinity
        return AtomicExpr.__sub__(self, other)

    @_sympifyit('other', NotImplemented)
    def __mul__(self, other):
        if isinstance(other, Number):
            if other is S.NaN:
                return S.NaN
            elif other is S.Infinity:
                if self.is_zero:
                    return S.NaN
                elif self.is_positive:
                    return S.Infinity
                else:
                    return S.NegativeInfinity
            elif other is S.NegativeInfinity:
                if self.is_zero:
                    return S.NaN
                elif self.is_positive:
                    return S.NegativeInfinity
                else:
                    return S.Infinity
        elif isinstance(other, Tuple):
            return NotImplemented
        return AtomicExpr.__mul__(self, other)

    @_sympifyit('other', NotImplemented)
    def __div__(self, other):
        if isinstance(other, Number):
            if other is S.NaN:
                return S.NaN
            elif other is S.Infinity or other is S.NegativeInfinity:
                return S.Zero
        return AtomicExpr.__div__(self, other)

    __truediv__ = __div__

    def __eq__(self, other):
        raise NotImplementedError('%s needs .__eq__() method' %
            (self.__class__.__name__))

    def __ne__(self, other):
        raise NotImplementedError('%s needs .__ne__() method' %
            (self.__class__.__name__))

    def __lt__(self, other):
        raise NotImplementedError('%s needs .__lt__() method' %
            (self.__class__.__name__))

    def __le__(self, other):
        raise NotImplementedError('%s needs .__le__() method' %
            (self.__class__.__name__))

    def __gt__(self, other):
        return _sympify(other).__lt__(self)

    def __ge__(self, other):
        return _sympify(other).__le__(self)

    def __hash__(self):
        return super(Number, self).__hash__()

    def is_constant(self, *wrt, **flags):
        return True

    def as_coeff_mul(self, *deps):
        # a -> c*t
        if self.is_Rational:
            return self, tuple()
        elif self.is_negative:
            return S.NegativeOne, (-self,)
        return S.One, (self,)

    def as_coeff_add(self, *deps):
        # a -> c + t
        if self.is_Rational:
            return self, tuple()
        return S.Zero, (self,)

    def as_coeff_Mul(self, rational=False):
        """Efficiently extract the coefficient of a product. """
        if rational and not self.is_Rational:
            return S.One, self
        return self, S.One

    def as_coeff_Add(self):
        """Efficiently extract the coefficient of a summation. """
        return self, S.Zero

    def gcd(self, other):
        """Compute GCD of `self` and `other`. """
        from sympy.polys import gcd
        return gcd(self, other)

    def lcm(self, other):
        """Compute LCM of `self` and `other`. """
        from sympy.polys import lcm
        return lcm(self, other)

    def cofactors(self, other):
        """Compute GCD and cofactors of `self` and `other`. """
        from sympy.polys import cofactors
        return cofactors(self, other)


class Float(Number):
    """
    Represents a floating point number. It is capable of representing
    arbitrary-precision floating-point numbers.

    Examples
    ========

    >>> from sympy import Float
    >>> Float(3.5)
    3.50000000000000
    >>> Float(3)
    3.00000000000000

    Floats can be created from a string representations of Python floats
    to force ints to Float or to enter high-precision (> 15 significant
    digits) values:

    >>> Float('.0010')
    0.00100000000000000
    >>> Float('1e-3')
    0.00100000000000000
    >>> Float('1e-3', 3)
    0.00100

    Float can automatically count significant figures if a null string
    is sent for the precision; space are also allowed in the string. (Auto-
    counting is only allowed for strings, ints and longs).

    >>> Float('123 456 789 . 123 456', '')
    123456789.123456
    >>> Float('12e-3', '')
    0.012
    >>> Float(3, '')
    3.

    If a number is written in scientific notation, only the digits before the
    exponent are considered significant if a decimal appears, otherwise the
    "e" signifies only how to move the decimal:

    >>> Float('60.e2', '')  # 2 digits significant
    6.0e+3
    >>> Float('60e2', '')  # 4 digits significant
    6000.
    >>> Float('600e-2', '')  # 3 digits significant
    6.00

    Notes
    =====

    Floats are inexact by their nature unless their value is a binary-exact
    value.

    >>> approx, exact = Float(.1, 1), Float(.125, 1)

    For calculation purposes, evalf needs to be able to change the precision
    but this will not increase the accuracy of the inexact value. The
    following is the most accurate 5-digit approximation of a value of 0.1
    that had only 1 digit of precision:

    >>> approx.evalf(5)
    0.099609

    By contrast, 0.125 is exact in binary (as it is in base 10) and so it
    can be passed to Float or evalf to obtain an arbitrary precision with
    matching accuracy:

    >>> Float(exact, 5)
    0.12500
    >>> exact.evalf(20)
    0.12500000000000000000

    Trying to make a high-precision Float from a float is not disallowed,
    but one must keep in mind that the *underlying float* (not the apparent
    decimal value) is being obtained with high precision. For example, 0.3
    does not have a finite binary representation. The closest rational is
    the fraction 5404319552844595/2**54. So if you try to obtain a Float of
    0.3 to 20 digits of precision you will not see the same thing as 0.3
    followed by 19 zeros:

    >>> Float(0.3, 20)
    0.29999999999999998890

    If you want a 20-digit value of the decimal 0.3 (not the floating point
    approximation of 0.3) you should send the 0.3 as a string. The underlying
    representation is still binary but a higher precision than Python's float
    is used:

    >>> Float('0.3', 20)
    0.30000000000000000000

    Although you can increase the precision of an existing Float using Float
    it will not increase the accuracy -- the underlying value is not changed:

    >>> def show(f): # binary rep of Float
    ...     from sympy import Mul, Pow
    ...     s, m, e, b = f._mpf_
    ...     v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False)
    ...     print('%s at prec=%s' % (v, f._prec))
    ...
    >>> t = Float('0.3', 3)
    >>> show(t)
    4915/2**14 at prec=13
    >>> show(Float(t, 20)) # higher prec, not higher accuracy
    4915/2**14 at prec=70
    >>> show(Float(t, 2)) # lower prec
    307/2**10 at prec=10

    The same thing happens when evalf is used on a Float:

    >>> show(t.evalf(20))
    4915/2**14 at prec=70
    >>> show(t.evalf(2))
    307/2**10 at prec=10

    Finally, Floats can be instantiated with an mpf tuple (n, c, p) to
    produce the number (-1)**n*c*2**p:

    >>> n, c, p = 1, 5, 0
    >>> (-1)**n*c*2**p
    -5
    >>> Float((1, 5, 0))
    -5.00000000000000

    An actual mpf tuple also contains the number of bits in c as the last
    element of the tuple:

    >>> _._mpf_
    (1, 5, 0, 3)

    This is not needed for instantiation and is not the same thing as the
    precision. The mpf tuple and the precision are two separate quantities
    that Float tracks.

    """
    __slots__ = ['_mpf_', '_prec']

    is_rational = True
    is_real = True

    is_Float = True

    def __new__(cls, num, prec=15):
        if isinstance(num, string_types):
            num = num.replace(' ', '')
            if num.startswith('.') and len(num) > 1:
                num = '0' + num
            elif num.startswith('-.') and len(num) > 2:
                num = '-0.' + num[2:]
        elif isinstance(num, float) and num == 0:
            num = '0'
        elif isinstance(num, (SYMPY_INTS, Integer)):
            num = str(num)  # faster than mlib.from_int
        elif isinstance(num, mpmath.mpf):
            num = num._mpf_

        if prec == '':
            if not isinstance(num, string_types):
                raise ValueError('The null string can only be used when '
                'the number to Float is passed as a string or an integer.')
            ok = None
            if _literal_float(num):
                try:
                    Num = decimal.Decimal(num)
                except decimal.InvalidOperation:
                    pass
                else:
                    isint = '.' not in num
                    num, dps = _decimal_to_Rational_prec(Num)
                    if num.is_Integer and isint:
                        dps = max(dps, len(str(num).lstrip('-')))
                    ok = True
            if ok is None:
                raise ValueError('string-float not recognized: %s' % num)
        else:
            dps = prec

        prec = mlib.libmpf.dps_to_prec(dps)
        if isinstance(num, float):
            _mpf_ = mlib.from_float(num, prec, rnd)
        elif isinstance(num, str):
            _mpf_ = mlib.from_str(num, prec, rnd)
        elif isinstance(num, decimal.Decimal):
            _mpf_ = mlib.from_str(str(num), prec, rnd)
        elif isinstance(num, Rational):
            _mpf_ = mlib.from_rational(num.p, num.q, prec, rnd)
        elif isinstance(num, tuple) and len(num) in (3, 4):
            if type(num[1]) is str:
                # it's a hexadecimal (coming from a pickled object)
                # assume that it is in standard form
                num = list(num)
                num[1] = long(num[1], 16)
                _mpf_ = tuple(num)
            else:
                if not num[1] and len(num) == 4:
                    # handle normalization hack
                    return Float._new(num, prec)
                else:
                    _mpf_ = mpmath.mpf(
                        S.NegativeOne**num[0]*num[1]*2**num[2])._mpf_
        elif isinstance(num, Float):
            _mpf_ = num._mpf_
            if prec < num._prec:
                _mpf_ = mpf_norm(_mpf_, prec)
        else:
            _mpf_ = mpmath.mpf(num)._mpf_

        # special cases
        if _mpf_ == _mpf_zero:
            pass  # we want a Float
        elif _mpf_ == _mpf_nan:
            return S.NaN

        obj = Expr.__new__(cls)
        obj._mpf_ = _mpf_
        obj._prec = prec
        return obj

    @classmethod
    def _new(cls, _mpf_, _prec):
        # special cases
        if _mpf_ == _mpf_zero:
            return S.Zero  # XXX this is different from Float which gives 0.0
        elif _mpf_ == _mpf_nan:
            return S.NaN

        obj = Expr.__new__(cls)
        obj._mpf_ = mpf_norm(_mpf_, _prec)
        obj._prec = _prec
        return obj

    # mpz can't be pickled
    def __getnewargs__(self):
        return (mlib.to_pickable(self._mpf_),)

    def __getstate__(self):
        return {'_prec': self._prec}

    def _hashable_content(self):
        return (self._mpf_, self._prec)

    def floor(self):
        return C.Integer(int(mlib.to_int(
            mlib.mpf_floor(self._mpf_, self._prec))))

    def ceiling(self):
        return C.Integer(int(mlib.to_int(
            mlib.mpf_ceil(self._mpf_, self._prec))))

    @property
    def num(self):
        return mpmath.mpf(self._mpf_)

    def _as_mpf_val(self, prec):
        rv = mpf_norm(self._mpf_, prec)
        # uncomment to see failures
        #if rv != self._mpf_ and self._prec == prec:
        #    print self._mpf_, rv
        return rv

    def _as_mpf_op(self, prec):
        return self._mpf_, max(prec, self._prec)

    def _eval_is_bounded(self):
        if self._mpf_ in (_mpf_inf, _mpf_ninf):
            return False
        return True

    def _eval_is_finite(self):
        if self._mpf_ in (_mpf_inf, _mpf_ninf, _mpf_zero):
            return False
        return True

    def _eval_is_integer(self):
        return self._mpf_ == _mpf_zero

    def _eval_is_negative(self):
        if self._mpf_ == _mpf_ninf:
            return True
        if self._mpf_ == _mpf_inf:
            return False
        return self.num < 0

    def _eval_is_positive(self):
        if self._mpf_ == _mpf_inf:
            return True
        if self._mpf_ == _mpf_ninf:
            return False
        return self.num > 0

    def _eval_is_zero(self):
        return self._mpf_ == _mpf_zero

    def __nonzero__(self):
        return self._mpf_ != _mpf_zero

    __bool__ = __nonzero__

    def __neg__(self):
        return Float._new(mlib.mpf_neg(self._mpf_), self._prec)

    @_sympifyit('other', NotImplemented)
    def __add__(self, other):
        if isinstance(other, Number):
            rhs, prec = other._as_mpf_op(self._prec)
            return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec)
        return Number.__add__(self, other)

    @_sympifyit('other', NotImplemented)
    def __sub__(self, other):
        if isinstance(other, Number):
            rhs, prec = other._as_mpf_op(self._prec)
            return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec)
        return Number.__sub__(self, other)

    @_sympifyit('other', NotImplemented)
    def __mul__(self, other):
        if isinstance(other, Number):
            rhs, prec = other._as_mpf_op(self._prec)
            return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec)
        return Number.__mul__(self, other)

    @_sympifyit('other', NotImplemented)
    def __div__(self, other):
        if isinstance(other, Number) and other != 0:
            rhs, prec = other._as_mpf_op(self._prec)
            return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec)
        return Number.__div__(self, other)

    __truediv__ = __div__

    @_sympifyit('other', NotImplemented)
    def __mod__(self, other):
        if isinstance(other, Rational) and other.q != 1:
            # calculate mod with Rationals, *then* round the result
            return Float(Rational.__mod__(Rational(self), other),
                prec_to_dps(self._prec))
        if isinstance(other, Float):
            r = self/other
            if r == int(r):
                prec = max([prec_to_dps(i)
                    for i in (self._prec, other._prec)])
                return Float(0, prec)
        if isinstance(other, Number):
            rhs, prec = other._as_mpf_op(self._prec)
            return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec)
        return Number.__mod__(self, other)

    @_sympifyit('other', NotImplemented)
    def __rmod__(self, other):
        if isinstance(other, Float):
            return other.__mod__(self)
        if isinstance(other, Number):
            rhs, prec = other._as_mpf_op(self._prec)
            return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec)
        return Number.__rmod__(self, other)

    def _eval_power(self, expt):
        """
        expt is symbolic object but not equal to 0, 1

        (-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) ->
                  -> p**r*(sin(Pi*r) + cos(Pi*r)*I)
        """
        if self == 0:
            if expt.is_positive:
                return S.Zero
            if expt.is_negative:
                return Float('inf')
        if isinstance(expt, Number):
            if isinstance(expt, Integer):
                prec = self._prec
                return Float._new(
                    mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec)
            expt, prec = expt._as_mpf_op(self._prec)
            self = self._mpf_
            try:
                y = mpf_pow(self, expt, prec, rnd)
                return Float._new(y, prec)
            except mlib.ComplexResult:
                re, im = mlib.mpc_pow(
                    (self, _mpf_zero), (expt, _mpf_zero), prec, rnd)
                return Float._new(re, prec) + \
                    Float._new(im, prec)*S.ImaginaryUnit

    def __abs__(self):
        return Float._new(mlib.mpf_abs(self._mpf_), self._prec)

    def __int__(self):
        if self._mpf_ == _mpf_zero:
            return 0
        return int(mlib.to_int(self._mpf_))  # uses round_fast = round_down

    __long__ = __int__

    def __eq__(self, other):
        if isinstance(other, float):
            # coerce to Float at same precision
            o = Float(other)
            try:
                ompf = o._as_mpf_val(self._prec)
            except ValueError:
                return False
            return bool(mlib.mpf_eq(self._mpf_, ompf))
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy != other  -->  not ==
        if isinstance(other, NumberSymbol):
            if other.is_irrational:
                return False
            return other.__eq__(self)
        if isinstance(other, Float):
            return bool(mlib.mpf_eq(self._mpf_, other._mpf_))
        if isinstance(other, Number):
            # numbers should compare at the same precision;
            # all _as_mpf_val routines should be sure to abide
            # by the request to change the prec if necessary; if
            # they don't, the equality test will fail since it compares
            # the mpf tuples
            ompf = other._as_mpf_val(self._prec)
            return bool(mlib.mpf_eq(self._mpf_, ompf))
        return False    # Float != non-Number

    def __ne__(self, other):
        return not self.__eq__(other)

    def __gt__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy > other
        if isinstance(other, NumberSymbol):
            return other.__le__(self)
        if other.is_comparable:
            other = other.evalf()
        if isinstance(other, Number):
            return bool(mlib.mpf_gt(self._mpf_, other._as_mpf_val(self._prec)))
        return Expr.__gt__(self, other)

    def __ge__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy > other  -->  ! <=
        if isinstance(other, NumberSymbol):
            return other.__lt__(self)
        if other.is_comparable:
            other = other.evalf()
        if isinstance(other, Number):
            return bool(mlib.mpf_ge(self._mpf_, other._as_mpf_val(self._prec)))
        return Expr.__ge__(self, other)

    def __lt__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy > other
        if isinstance(other, NumberSymbol):
            return other.__ge__(self)
        if other.is_real and other.is_number:
            other = other.evalf()
        if isinstance(other, Number):
            return bool(mlib.mpf_lt(self._mpf_, other._as_mpf_val(self._prec)))
        return Expr.__lt__(self, other)

    def __le__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy > other  -->  ! <=
        if isinstance(other, NumberSymbol):
            return other.__gt__(self)
        if other.is_real and other.is_number:
            other = other.evalf()
        if isinstance(other, Number):
            return bool(mlib.mpf_le(self._mpf_, other._as_mpf_val(self._prec)))
        return Expr.__le__(self, other)

    def __hash__(self):
        return super(Float, self).__hash__()

    def epsilon_eq(self, other, epsilon="1e-15"):
        return abs(self - other) < Float(epsilon)

    def _sage_(self):
        import sage.all as sage
        return sage.RealNumber(str(self))

# Add sympify converters
converter[float] = converter[decimal.Decimal] = Float

# this is here to work nicely in Sage
RealNumber = Float


class Rational(Number):
    """Represents integers and rational numbers (p/q) of any size.

    Examples
    ========

    >>> from sympy import Rational, nsimplify, S, pi
    >>> Rational(3)
    3
    >>> Rational(1, 2)
    1/2

    Rational is unprejudiced in accepting input. If a float is passed, the
    underlying value of the binary representation will be returned:

    >>> Rational(.5)
    1/2
    >>> Rational(.2)
    3602879701896397/18014398509481984

    If the simpler representation of the float is desired then consider
    limiting the denominator to the desired value or convert the float to
    a string (which is roughly equivalent to limiting the denominator to
    10**12):

    >>> Rational(str(.2))
    1/5
    >>> Rational(.2).limit_denominator(10**12)
    1/5

    An arbitrarily precise Rational is obtained when a string literal is
    passed:

    >>> Rational("1.23")
    123/100
    >>> Rational('1e-2')
    1/100
    >>> Rational(".1")
    1/10
    >>> Rational('1e-2/3.2')
    1/320

    The conversion of other types of strings can be handled by
    the sympify() function, and conversion of floats to expressions
    or simple fractions can be handled with nsimplify:

    >>> S('.[3]')  # repeating digits in brackets
    1/3
    >>> S('3**2/10')  # general expressions
    9/10
    >>> nsimplify(.3)  # numbers that have a simple form
    3/10

    But if the input does not reduce to a literal Rational, an error will
    be raised:

    >>> Rational(pi)
    Traceback (most recent call last):
    ...
    TypeError: invalid input: pi


    Low-level
    ---------

    Access numerator and denominator as .p and .q:

    >>> r = Rational(3, 4)
    >>> r
    3/4
    >>> r.p
    3
    >>> r.q
    4

    Note that p and q return integers (not SymPy Integers) so some care
    is needed when using them in expressions:

    >>> r.p/r.q
    0.75

    See Also
    ========
    sympify, sympy.simplify.simplify.nsimplify
    """
    is_real = True
    is_integer = False
    is_rational = True

    __slots__ = ['p', 'q']

    is_Rational = True

    @cacheit
    def __new__(cls, p, q=None):
        if q is None:
            if isinstance(p, Rational):
                return p

            if isinstance(p, string_types):
                p = p.replace(' ', '')
                try:
                    # we might have a Float
                    neg_pow, digits, expt = decimal.Decimal(p).as_tuple()
                    p = [1, -1][neg_pow]*int("".join(str(x) for x in digits))
                    if expt > 0:
                        # TODO: this branch needs a test
                        return Rational(p*Pow(10, expt), 1)
                    return Rational(p, Pow(10, -expt))
                except decimal.InvalidOperation:
                    f = regex.match('^([-+]?[0-9]+)/([0-9]+)$', p)
                    if f:
                        n, d = f.groups()
                        return Rational(int(n), int(d))
                    elif p.count('/') == 1:
                        p, q = p.split('/')
                        return Rational(Rational(p), Rational(q))
                    else:
                        pass  # error will raise below
            else:
                try:
                    if isinstance(p, fractions.Fraction):
                        return Rational(p.numerator, p.denominator)
                except NameError:
                    pass  # error will raise below

                if isinstance(p, (float, Float)):
                    return Rational(*float(p).as_integer_ratio())

            if not isinstance(p, SYMPY_INTS + (Rational,)):
                raise TypeError('invalid input: %s' % p)
            q = S.One
        else:
            p = Rational(p)
            q = Rational(q)

        if isinstance(q, Rational):
            p *= q.q
            q = q.p
        if isinstance(p, Rational):
            q *= p.q
            p = p.p

        # p and q are now integers
        if q == 0:
            if p == 0:
                if _errdict["divide"]:
                    raise ValueError("Indeterminate 0/0")
                else:
                    return S.NaN
            if p < 0:
                return S.NegativeInfinity
            return S.Infinity
        if q < 0:
            q = -q
            p = -p
        n = igcd(abs(p), q)
        if n > 1:
            p //= n
            q //= n
        if q == 1:
            return Integer(p)
        if p == 1 and q == 2:
            return S.Half
        obj = Expr.__new__(cls)
        obj.p = p
        obj.q = q
        #obj._args = (p, q)
        return obj

    def limit_denominator(self, max_denominator=1000000):
        """Closest Rational to self with denominator at most max_denominator.

        >>> from sympy import Rational
        >>> Rational('3.141592653589793').limit_denominator(10)
        22/7
        >>> Rational('3.141592653589793').limit_denominator(100)
        311/99

        """
        # Algorithm notes: For any real number x, define a *best upper
        # approximation* to x to be a rational number p/q such that:
        #
        #   (1) p/q >= x, and
        #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
        #
        # Define *best lower approximation* similarly.  Then it can be
        # proved that a rational number is a best upper or lower
        # approximation to x if, and only if, it is a convergent or
        # semiconvergent of the (unique shortest) continued fraction
        # associated to x.
        #
        # To find a best rational approximation with denominator <= M,
        # we find the best upper and lower approximations with
        # denominator <= M and take whichever of these is closer to x.
        # In the event of a tie, the bound with smaller denominator is
        # chosen.  If both denominators are equal (which can happen
        # only when max_denominator == 1 and self is midway between
        # two integers) the lower bound---i.e., the floor of self, is
        # taken.

        if max_denominator < 1:
            raise ValueError("max_denominator should be at least 1")
        if self.q <= max_denominator:
            return self

        p0, q0, p1, q1 = 0, 1, 1, 0
        n, d = self.p, self.q
        while True:
            a = n//d
            q2 = q0 + a*q1
            if q2 > max_denominator:
                break
            p0, q0, p1, q1 = p1, q1, p0 + a*p1, q2
            n, d = d, n - a*d

        k = (max_denominator - q0)//q1
        bound1 = Rational(p0 + k*p1, q0 + k*q1)
        bound2 = Rational(p1, q1)
        if abs(bound2 - self) <= abs(bound1 - self):
            return bound2
        else:
            return bound1

    def __getnewargs__(self):
        return (self.p, self.q)

    def _hashable_content(self):
        return (self.p, self.q)

    def _eval_is_positive(self):
        return self.p > 0

    def _eval_is_zero(self):
        return self.p == 0

    def __neg__(self):
        return Rational(-self.p, self.q)

    @_sympifyit('other', NotImplemented)
    def __add__(self, other):
        if isinstance(other, Rational):
            return Rational(self.p*other.q + self.q*other.p, self.q*other.q)
        elif isinstance(other, Float):
            return other + self
        else:
            return Number.__add__(self, other)

    @_sympifyit('other', NotImplemented)
    def __sub__(self, other):
        if isinstance(other, Rational):
            return Rational(self.p*other.q - self.q*other.p, self.q*other.q)
        elif isinstance(other, Float):
            return -other + self
        else:
            return Number.__sub__(self, other)

    @_sympifyit('other', NotImplemented)
    def __mul__(self, other):
        if isinstance(other, Rational):
            return Rational(self.p*other.p, self.q*other.q)
        elif isinstance(other, Float):
            return other*self
        else:
            return Number.__mul__(self, other)

    @_sympifyit('other', NotImplemented)
    def __div__(self, other):
        if isinstance(other, Rational):
            if self.p and other.p == S.Zero:
                return S.ComplexInfinity
            else:
                return Rational(self.p*other.q, self.q*other.p)
        elif isinstance(other, Float):
            return self*(1/other)
        else:
            return Number.__div__(self, other)

    __truediv__ = __div__

    @_sympifyit('other', NotImplemented)
    def __mod__(self, other):
        if isinstance(other, Rational):
            n = (self.p*other.q) // (other.p*self.q)
            return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q)
        if isinstance(other, Float):
            # calculate mod with Rationals, *then* round the answer
            return Float(self.__mod__(Rational(other)),
                prec_to_dps(other._prec))
        return Number.__mod__(self, other)

    @_sympifyit('other', NotImplemented)
    def __rmod__(self, other):
        if isinstance(other, Rational):
            return Rational.__mod__(other, self)
        return Number.__rmod__(self, other)

    def _eval_power(self, expt):
        if isinstance(expt, Number):
            if isinstance(expt, Float):
                return self._eval_evalf(expt._prec)**expt
            if expt.is_negative:
                # (3/4)**-2 -> (4/3)**2
                ne = -expt
                if (ne is S.One):
                    return Rational(self.q, self.p)
                if self.is_negative:
                    if expt.q != 1:
                        return -(S.NegativeOne)**((expt.p % expt.q) /
                               S(expt.q))*Rational(self.q, -self.p)**ne
                    else:
                        return S.NegativeOne**ne*Rational(self.q, -self.p)**ne
                else:
                    return Rational(self.q, self.p)**ne
            if expt is S.Infinity:  # -oo already caught by test for negative
                if self.p > self.q:
                    # (3/2)**oo -> oo
                    return S.Infinity
                if self.p < -self.q:
                    # (-3/2)**oo -> oo + I*oo
                    return S.Infinity + S.Infinity*S.ImaginaryUnit
                return S.Zero
            if isinstance(expt, Integer):
                # (4/3)**2 -> 4**2 / 3**2
                return Rational(self.p**expt.p, self.q**expt.p)
            if isinstance(expt, Rational):
                if self.p != 1:
                    # (4/3)**(5/6) -> 4**(5/6)*3**(-5/6)
                    return Integer(self.p)**expt*Integer(self.q)**(-expt)
                # as the above caught negative self.p, now self is positive
                return Integer(self.q)**Rational(
                expt.p*(expt.q - 1), expt.q) / \
                    Integer(self.q)**Integer(expt.p)

        if self.is_negative and expt.is_even:
            return (-self)**expt

        return

    def _as_mpf_val(self, prec):
        return mlib.from_rational(self.p, self.q, prec, rnd)

    def _mpmath_(self, prec, rnd):
        return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd))

    def __abs__(self):
        return Rational(abs(self.p), self.q)

    def __int__(self):
        p, q = self.p, self.q
        if p < 0:
            return -(-p//q)
        return p//q

    __long__ = __int__

    def __eq__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy != other  -->  not ==
        if isinstance(other, NumberSymbol):
            if other.is_irrational:
                return False
            return other.__eq__(self)
        if isinstance(other, Number):
            if isinstance(other, Rational):
                # a Rational is always in reduced form so will never be 2/4
                # so we can just check equivalence of args
                return self.p == other.p and self.q == other.q
            if isinstance(other, Float):
                return mlib.mpf_eq(self._as_mpf_val(other._prec), other._mpf_)
        return False

    def __ne__(self, other):
        return not self.__eq__(other)

    def __gt__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy > other  --> not <
        if isinstance(other, NumberSymbol):
            return other.__le__(self)
        if other.is_real and other.is_number and not isinstance(other, Rational):
            other = other.evalf()
        if isinstance(other, Number):
            if isinstance(other, Rational):
                return bool(self.p*other.q > self.q*other.p)
            if isinstance(other, Float):
                return bool(mlib.mpf_gt(
                    self._as_mpf_val(other._prec), other._mpf_))
            if other is S.NaN:
                return other.__le__(self)
        return Expr.__gt__(self, other)

    def __ge__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy > other  -->  not <=
        if isinstance(other, NumberSymbol):
            return other.__lt__(self)
        if other.is_real and other.is_number and not isinstance(other, Rational):
            other = other.evalf()
        if isinstance(other, Number):
            if isinstance(other, Rational):
                 return bool(self.p*other.q >= self.q*other.p)
            if isinstance(other, Float):
                return bool(mlib.mpf_ge(
                    self._as_mpf_val(other._prec), other._mpf_))
            if other is S.NaN:
                return other.__lt__(self)
        return Expr.__ge__(self, other)

    def __lt__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy > other  --> not <
        if isinstance(other, NumberSymbol):
            return other.__ge__(self)
        if other.is_real and other.is_number and not isinstance(other, Rational):
            other = other.evalf()
        if isinstance(other, Number):
            if isinstance(other, Rational):
                return bool(self.p*other.q < self.q*other.p)
            if isinstance(other, Float):
                return bool(mlib.mpf_lt(
                    self._as_mpf_val(other._prec), other._mpf_))
            if other is S.NaN:
                return other.__ge__(self)
        return Expr.__lt__(self, other)

    def __le__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy > other  -->  not <=
        if isinstance(other, NumberSymbol):
            return other.__gt__(self)
        if other.is_real and other.is_number and not isinstance(other, Rational):
            other = other.evalf()
        if isinstance(other, Number):
            if isinstance(other, Rational):
                return bool(self.p*other.q <= self.q*other.p)
            if isinstance(other, Float):
                return bool(mlib.mpf_le(
                    self._as_mpf_val(other._prec), other._mpf_))
            if other is S.NaN:
                return other.__gt__(self)
        return Expr.__le__(self, other)

    def __hash__(self):
        return super(Rational, self).__hash__()

    def factors(self, limit=None, use_trial=True, use_rho=False,
                use_pm1=False, verbose=False, visual=False):
        """A wrapper to factorint which return factors of self that are
        smaller than limit (or cheap to compute). Special methods of
        factoring are disabled by default so that only trial division is used.
        """
        from sympy.ntheory import factorint

        f = factorint(self.p, limit=limit, use_trial=use_trial,
                      use_rho=use_rho, use_pm1=use_pm1,
                      verbose=verbose).copy()
        f = defaultdict(int, f)
        for p, e in factorint(self.q, limit=limit,
                              use_trial=use_trial,
                              use_rho=use_rho,
                              use_pm1=use_pm1,
                              verbose=verbose).items():
            f[p] += -e

        if len(f) > 1 and 1 in f:
            del f[1]
        if not f:
            f = {1: 1}
        if not visual:
            return dict(f)
        else:
            if -1 in f:
                f.pop(-1)
                args = [S.NegativeOne]
            else:
                args = []
            args.extend([Pow(*i, evaluate=False)
                         for i in sorted(f.items())])
            return Mul(*args, evaluate=False)

    @_sympifyit('other', NotImplemented)
    def gcd(self, other):
        if isinstance(other, Rational):
            if other is S.Zero:
                return other
            return Rational(
                Integer(igcd(self.p, other.p)),
                Integer(ilcm(self.q, other.q)))
        return Number.gcd(self, other)

    @_sympifyit('other', NotImplemented)
    def lcm(self, other):
        if isinstance(other, Rational):
            return Rational(
                self.p*other.p//igcd(self.p, other.p),
                igcd(self.q, other.q))
        return Number.lcm(self, other)

    def as_numer_denom(self):
        return Integer(self.p), Integer(self.q)

    def _sage_(self):
        import sage.all as sage
        return sage.Integer(self.p)/sage.Integer(self.q)

    def as_content_primitive(self, radical=False):
        """Return the tuple (R, self/R) where R is the positive Rational
        extracted from self.

        Examples
        ========

        >>> from sympy import S
        >>> (S(-3)/2).as_content_primitive()
        (3/2, -1)

        See docstring of Expr.as_content_primitive for more examples.
        """

        if self:
            if self.is_positive:
                return self, S.One
            return -self, S.NegativeOne
        return S.One, self


# int -> Integer
_intcache = {}


# TODO move this tracing facility to sympy/core/trace.py  ?
def _intcache_printinfo():
    ints = sorted(_intcache.keys())
    nhit = _intcache_hits
    nmiss = _intcache_misses

    if nhit == 0 and nmiss == 0:
        print()
        print('Integer cache statistic was not collected')
        return

    miss_ratio = float(nmiss) / (nhit + nmiss)

    print()
    print('Integer cache statistic')
    print('-----------------------')
    print()
    print('#items: %i' % len(ints))
    print()
    print(' #hit   #miss               #total')
    print()
    print('%5i   %5i (%7.5f %%)   %5i' % (
        nhit, nmiss, miss_ratio*100, nhit + nmiss)
    )
    print()
    print(ints)

_intcache_hits = 0
_intcache_misses = 0


def int_trace(f):
    import os
    if os.getenv('SYMPY_TRACE_INT', 'no').lower() != 'yes':
        return f

    def Integer_tracer(cls, i):
        global _intcache_hits, _intcache_misses

        try:
            _intcache_hits += 1
            return _intcache[i]
        except KeyError:
            _intcache_hits -= 1
            _intcache_misses += 1

            return f(cls, i)

    # also we want to hook our _intcache_printinfo into sys.atexit
    import atexit
    atexit.register(_intcache_printinfo)

    return Integer_tracer


class Integer(Rational):

    q = 1
    is_integer = True

    is_Integer = True

    __slots__ = ['p']

    def _as_mpf_val(self, prec):
        return mlib.from_int(self.p, prec)

    def _mpmath_(self, prec, rnd):
        return mpmath.make_mpf(self._as_mpf_val(prec))

    # TODO caching with decorator, but not to degrade performance
    @int_trace
    def __new__(cls, i):
        if isinstance(i, string_types):
            i = i.replace(' ', '')
        # whereas we cannot, in general, make a Rational from an
        # arbitrary expression, we can make an Integer unambiguously
        # (except when a non-integer expression happens to round to
        # an integer). So we proceed by taking int() of the input and
        # let the int routines determine whether the expression can
        # be made into an int or whether an error should be raised.
        try:
            ival = int(i)
        except TypeError:
            raise TypeError(
                'Integer can only work with integer expressions.')
        try:
            return _intcache[ival]
        except KeyError:
            # We only work with well-behaved integer types. This converts, for
            # example, numpy.int32 instances.
            obj = Expr.__new__(cls)
            obj.p = ival

            _intcache[ival] = obj
            return obj

    def __getnewargs__(self):
        return (self.p,)

    # Arithmetic operations are here for efficiency
    def __int__(self):
        return self.p

    __long__ = __int__

    def __neg__(self):
        return Integer(-self.p)

    def __abs__(self):
        if self.p >= 0:
            return self
        else:
            return Integer(-self.p)

    def __divmod__(self, other):
        from .containers import Tuple
        if isinstance(other, Integer):
            return Tuple(*(divmod(self.p, other.p)))
        else:
            return Number.__divmod__(self, other)

    def __rdivmod__(self, other):
        from .containers import Tuple
        if isinstance(other, integer_types):
            return Tuple(*(divmod(other, self.p)))
        else:
            try:
                other = Number(other)
            except TypeError:
                msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
                oname = type(other).__name__
                sname = type(self).__name__
                raise TypeError(msg % (oname, sname))
            return Number.__divmod__(other, self)

    # TODO make it decorator + bytecodehacks?
    def __add__(self, other):
        if isinstance(other, integer_types):
            return Integer(self.p + other)
        elif isinstance(other, Integer):
            return Integer(self.p + other.p)
        return Rational.__add__(self, other)

    def __radd__(self, other):
        if isinstance(other, integer_types):
            return Integer(other + self.p)
        return Rational.__add__(self, other)

    def __sub__(self, other):
        if isinstance(other, integer_types):
            return Integer(self.p - other)
        elif isinstance(other, Integer):
            return Integer(self.p - other.p)
        return Rational.__sub__(self, other)

    def __rsub__(self, other):
        if isinstance(other, integer_types):
            return Integer(other - self.p)
        return Rational.__rsub__(self, other)

    def __mul__(self, other):
        if isinstance(other, integer_types):
            return Integer(self.p*other)
        elif isinstance(other, Integer):
            return Integer(self.p*other.p)
        return Rational.__mul__(self, other)

    def __rmul__(self, other):
        if isinstance(other, integer_types):
            return Integer(other*self.p)
        return Rational.__mul__(self, other)

    def __mod__(self, other):
        if isinstance(other, integer_types):
            return Integer(self.p % other)
        elif isinstance(other, Integer):
            return Integer(self.p % other.p)
        return Rational.__mod__(self, other)

    def __rmod__(self, other):
        if isinstance(other, integer_types):
            return Integer(other % self.p)
        elif isinstance(other, Integer):
            return Integer(other.p % self.p)
        return Rational.__rmod__(self, other)

    def __eq__(self, other):
        if isinstance(other, integer_types):
            return (self.p == other)
        elif isinstance(other, Integer):
            return (self.p == other.p)
        return Rational.__eq__(self, other)

    def __ne__(self, other):
        return not self.__eq__(other)

    def __gt__(self, other):
        if isinstance(other, integer_types):
            return (self.p > other)
        elif isinstance(other, Integer):
            return (self.p > other.p)
        return Rational.__gt__(self, other)

    def __lt__(self, other):
        if isinstance(other, integer_types):
            return (self.p < other)
        elif isinstance(other, Integer):
            return (self.p < other.p)
        return Rational.__lt__(self, other)

    def __ge__(self, other):
        if isinstance(other, integer_types):
            return (self.p >= other)
        elif isinstance(other, Integer):
            return (self.p >= other.p)
        return Rational.__ge__(self, other)

    def __le__(self, other):
        if isinstance(other, integer_types):
            return (self.p <= other)
        elif isinstance(other, Integer):
            return (self.p <= other.p)
        return Rational.__le__(self, other)

    def __hash__(self):
        return super(Integer, self).__hash__()

    def __index__(self):
        return self.p

    ########################################

    def _eval_is_odd(self):
        return bool(self.p % 2)

    def _eval_power(self, expt):
        """
        Tries to do some simplifications on self**expt

        Returns None if no further simplifications can be done

        When exponent is a fraction (so we have for example a square root),
        we try to find a simpler representation by factoring the argument
        up to factors of 2**15, e.g.

          - sqrt(4) becomes 2
          - sqrt(-4) becomes 2*I
          - (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7)

        Further simplification would require a special call to factorint on
        the argument which is not done here for sake of speed.

        """
        from sympy import perfect_power

        if expt is S.Infinity:
            if self.p > S.One:
                return S.Infinity
            # cases -1, 0, 1 are done in their respective classes
            return S.Infinity + S.ImaginaryUnit*S.Infinity
        if expt is S.NegativeInfinity:
            return Rational(1, self)**S.Infinity
        if not isinstance(expt, Number):
            # simplify when expt is even
            # (-2)**k --> 2**k
            if self.is_negative and expt.is_even:
                return (-self)**expt
        if not isinstance(expt, Rational):
            return
        if expt is S.Half and self.is_negative:
            # we extract I for this special case since everyone is doing so
            return S.ImaginaryUnit*Pow(-self, expt)
        if expt.is_negative:
            # invert base and change sign on exponent
            ne = -expt
            if self.is_negative:
                if expt.q != 1:
                    return -(S.NegativeOne)**((expt.p % expt.q) /
                            S(expt.q))*Rational(1, -self)**ne
                else:
                    return (S.NegativeOne)**ne*Rational(1, -self)**ne
            else:
                return Rational(1, self.p)**ne
        # see if base is a perfect root, sqrt(4) --> 2
        x, xexact = integer_nthroot(abs(self.p), expt.q)
        if xexact:
            # if it's a perfect root we've finished
            result = Integer(x**abs(expt.p))
            if self.is_negative:
                result *= S.NegativeOne**expt
            return result

        # The following is an algorithm where we collect perfect roots
        # from the factors of base.

        # if it's not an nth root, it still might be a perfect power
        b_pos = int(abs(self.p))
        p = perfect_power(b_pos)
        if p is not False:
            dict = {p[0]: p[1]}
        else:
            dict = Integer(self).factors(limit=2**15)

        # now process the dict of factors
        if self.is_negative:
            dict[-1] = 1
        out_int = 1  # integer part
        out_rad = 1  # extracted radicals
        sqr_int = 1
        sqr_gcd = 0
        sqr_dict = {}
        for prime, exponent in dict.items():
            exponent *= expt.p
            # remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10)
            div_e, div_m = divmod(exponent, expt.q)
            if div_e > 0:
                out_int *= prime**div_e
            if div_m > 0:
                # see if the reduced exponent shares a gcd with e.q
                # (2**2)**(1/10) -> 2**(1/5)
                g = igcd(div_m, expt.q)
                if g != 1:
                    out_rad *= Pow(prime, Rational(div_m//g, expt.q//g))
                else:
                    sqr_dict[prime] = div_m
        # identify gcd of remaining powers
        for p, ex in sqr_dict.items():
            if sqr_gcd == 0:
                sqr_gcd = ex
            else:
                sqr_gcd = igcd(sqr_gcd, ex)
                if sqr_gcd == 1:
                    break
        for k, v in sqr_dict.items():
            sqr_int *= k**(v//sqr_gcd)
        if sqr_int == self and out_int == 1 and out_rad == 1:
            result = None
        else:
            result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q))
        return result

    def _eval_is_prime(self):
        from sympy.ntheory import isprime

        return isprime(self)

    def as_numer_denom(self):
        return self, S.One

    def __floordiv__(self, other):
        return Integer(self.p // Integer(other).p)

    def __rfloordiv__(self, other):
        return Integer(Integer(other).p // self.p)

# Add sympify converters
for i_type in integer_types:
    converter[i_type] = Integer


class RationalConstant(Rational):
    """
    Abstract base class for rationals with specific behaviors

    Derived classes must define class attributes p and q and should probably all
    be singletons.
    """
    __slots__ = []

    def __new__(cls):
        return AtomicExpr.__new__(cls)


class IntegerConstant(Integer):
    __slots__ = []

    def __new__(cls):
        return AtomicExpr.__new__(cls)


class Zero(with_metaclass(Singleton, IntegerConstant)):
    """The number zero.

    Zero is a singleton, and can be accessed by ``S.Zero``

    Examples
    ========

    >>> from sympy import S, Integer, zoo
    >>> Integer(0) is S.Zero
    True
    >>> 1/S.Zero
    zoo

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Zero
    """

    p = 0
    q = 1
    is_positive = False
    is_negative = False
    is_finite = False
    is_zero = True
    is_composite = False

    __slots__ = []

    @staticmethod
    def __abs__():
        return S.Zero

    @staticmethod
    def __neg__():
        return S.Zero

    def _eval_power(self, expt):
        if expt.is_positive:
            return self
        if expt.is_negative:
            return S.ComplexInfinity
        if expt.is_real is False:
            return S.NaN
        # infinities are already handled with pos and neg
        # tests above; now throw away leading numbers on Mul
        # exponent
        coeff, terms = expt.as_coeff_Mul()
        if coeff.is_negative:
            return S.ComplexInfinity**terms
        if coeff is not S.One:  # there is a Number to discard
            return self**terms

    def _eval_order(self, *symbols):
        # Order(0,x) -> 0
        return self

    def __nonzero__(self):
        return False

    __bool__ = __nonzero__


class One(with_metaclass(Singleton, IntegerConstant)):
    """The number one.

    One is a singleton, and can be accessed by ``S.One``.

    Examples
    ========

    >>> from sympy import S, Integer
    >>> Integer(1) is S.One
    True

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/1_%28number%29
    """

    p = 1
    q = 1

    __slots__ = []

    @staticmethod
    def __abs__():
        return S.One

    @staticmethod
    def __neg__():
        return S.NegativeOne

    def _eval_power(self, expt):
        return self

    def _eval_order(self, *symbols):
        return

    @staticmethod
    def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False,
                verbose=False, visual=False):
        if visual:
            return S.One
        return {1: 1}


class NegativeOne(with_metaclass(Singleton, IntegerConstant)):
    """The number negative one.

    NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``.

    Examples
    ========

    >>> from sympy import S, Integer
    >>> Integer(-1) is S.NegativeOne
    True

    See Also
    ========

    One

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/%E2%88%921_%28number%29

    """

    p = -1
    q = 1

    __slots__ = []

    @staticmethod
    def __abs__():
        return S.One

    @staticmethod
    def __neg__():
        return S.One

    def _eval_power(self, expt):
        if expt.is_odd:
            return S.NegativeOne
        if expt.is_even:
            return S.One
        if isinstance(expt, Number):
            if isinstance(expt, Float):
                return Float(-1.0)**expt
            if expt is S.NaN:
                return S.NaN
            if expt is S.Infinity or expt is S.NegativeInfinity:
                return S.NaN
            if expt is S.Half:
                return S.ImaginaryUnit
            if isinstance(expt, Rational):
                if expt.q == 2:
                    return S.ImaginaryUnit**Integer(expt.p)
                i, r = divmod(expt.p, expt.q)
                if i:
                    return self**i*self**Rational(r, expt.q)
        return


class Half(with_metaclass(Singleton, RationalConstant)):
    """The rational number 1/2.

    Half is a singleton, and can be accessed by ``S.Half``.

    Examples
    ========

    >>> from sympy import S, Rational
    >>> Rational(1, 2) is S.Half
    True

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/One_half
    """

    p = 1
    q = 2

    __slots__ = []

    @staticmethod
    def __abs__():
        return S.Half


class Infinity(with_metaclass(Singleton, Number)):
    r"""Positive infinite quantity.

    In real analysis the symbol `\infty` denotes an unbounded
    limit: `x\to\infty` means that `x` grows without bound.

    Infinity is often used not only to define a limit but as a value
    in the affinely extended real number system.  Points labeled `+\infty`
    and `-\infty` can be added to the topological space of the real numbers,
    producing the two-point compactification of the real numbers.  Adding
    algebraic properties to this gives us the extended real numbers.

    Infinity is a singleton, and can be accessed by ``S.Infinity``,
    or can be imported as ``oo``.

    Examples
    ========

    >>> from sympy import oo, exp, limit, Symbol
    >>> 1 + oo
    oo
    >>> 42/oo
    0
    >>> x = Symbol('x')
    >>> limit(exp(x), x, oo)
    oo

    See Also
    ========

    NegativeInfinity, NaN

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Infinity
    """

    is_commutative = True
    is_positive = True
    is_bounded = False
    is_finite = False
    is_infinitesimal = False
    is_integer = None
    is_rational = None
    is_odd = None

    __slots__ = []

    def __new__(cls):
        return AtomicExpr.__new__(cls)

    def _latex(self, printer):
        return r"\infty"

    @_sympifyit('other', NotImplemented)
    def __add__(self, other):
        if isinstance(other, Number):
            if other is S.NegativeInfinity or other is S.NaN:
                return S.NaN
            elif other.is_Float:
                if other == Float('-inf'):
                    return S.NaN
                else:
                    return Float('inf')
            else:
                return S.Infinity
        return NotImplemented
    __radd__ = __add__

    @_sympifyit('other', NotImplemented)
    def __sub__(self, other):
        if isinstance(other, Number):
            if other is S.Infinity or other is S.NaN:
                return S.NaN
            elif other.is_Float:
                if other == Float('inf'):
                    return S.NaN
                else:
                    return Float('inf')
            else:
                return S.Infinity
        return NotImplemented

    @_sympifyit('other', NotImplemented)
    def __mul__(self, other):
        if isinstance(other, Number):
            if other is S.Zero or other is S.NaN:
                return S.NaN
            elif other.is_Float:
                if other == 0:
                    return S.NaN
                if other > 0:
                    return Float('inf')
                else:
                    return Float('-inf')
            else:
                if other > 0:
                    return S.Infinity
                else:
                    return S.NegativeInfinity
        return NotImplemented
    __rmul__ = __mul__

    @_sympifyit('other', NotImplemented)
    def __div__(self, other):
        if isinstance(other, Number):
            if other is S.Infinity or \
                other is S.NegativeInfinity or \
                    other is S.NaN:
                return S.NaN
            elif other.is_Float:
                if other == Float('-inf') or \
                        other == Float('inf'):
                    return S.NaN
                elif other.is_nonnegative:
                    return Float('inf')
                else:
                    return Float('-inf')
            else:
                if other >= 0:
                    return S.Infinity
                else:
                    return S.NegativeInfinity
        return NotImplemented

    __truediv__ = __div__

    def __abs__(self):
        return S.Infinity

    def __neg__(self):
        return S.NegativeInfinity

    def _eval_power(self, expt):
        """
        ``expt`` is symbolic object but not equal to 0 or 1.

        ================ ======= ==============================
        Expression       Result  Notes
        ================ ======= ==============================
        ``oo ** nan``    ``nan``
        ``oo ** -p``     ``0``   ``p`` is number, ``oo``
        ================ ======= ==============================

        See Also
        ========
        Pow
        NaN
        NegativeInfinity

        """
        if expt.is_positive:
            return S.Infinity
        if expt.is_negative:
            return S.Zero
        if expt is S.NaN:
            return S.NaN

        if expt.is_number:
            return self**expt.evalf()

    def _as_mpf_val(self, prec):
        return mlib.finf

    def _sage_(self):
        import sage.all as sage
        return sage.oo

    def __hash__(self):
        return super(Infinity, self).__hash__()

    def __eq__(self, other):
        return other is S.Infinity

    def __ne__(self, other):
        return other is not S.Infinity

    @_sympifyit('other', NotImplemented)
    def __lt__(self, other):
        if other.is_number and other.is_real is False:
            raise TypeError("Invalid comparison of %s and %s" % (self, other))
        return False

    @_sympifyit('other', NotImplemented)
    def __le__(self, other):
        if other.is_number and other.is_real is False:
            raise TypeError("Invalid comparison of %s and %s" % (self, other))
        return other is S.Infinity

    @_sympifyit('other', NotImplemented)
    def __gt__(self, other):
        if other.is_number and other.is_real is False:
            raise TypeError("Invalid comparison of %s and %s" % (self, other))
        return other is not S.Infinity

    @_sympifyit('other', NotImplemented)
    def __ge__(self, other):
        if other.is_number and other.is_real is False:
            raise TypeError("Invalid comparison of %s and %s" % (self, other))
        return True

    def __mod__(self, other):
        return S.NaN

    __rmod__ = __mod__

oo = S.Infinity


class NegativeInfinity(with_metaclass(Singleton, Number)):
    """Negative infinite quantity.

    NegativeInfinity is a singleton, and can be accessed
    by ``S.NegativeInfinity``.

    See Also
    ========

    Infinity
    """

    is_commutative = True
    is_real = True
    is_positive = False
    is_bounded = False
    is_finite = False
    is_infinitesimal = False
    is_integer = None
    is_rational = None

    __slots__ = []

    def __new__(cls):
        return AtomicExpr.__new__(cls)

    def _latex(self, printer):
        return r"-\infty"

    @_sympifyit('other', NotImplemented)
    def __add__(self, other):
        if isinstance(other, Number):
            if other is S.Infinity or other is S.NaN:
                return S.NaN
            elif other.is_Float:
                if other == Float('inf'):
                    return Float('nan')
                else:
                    return Float('-inf')
            else:
                return S.NegativeInfinity
        return NotImplemented
    __radd__ = __add__

    @_sympifyit('other', NotImplemented)
    def __sub__(self, other):
        if isinstance(other, Number):
            if other is S.NegativeInfinity or other is S.NaN:
                return S.NaN
            elif other.is_Float:
                if other == Float('-inf'):
                    return Float('nan')
                else:
                    return Float('-inf')
            else:
                return S.NegativeInfinity
        return NotImplemented

    @_sympifyit('other', NotImplemented)
    def __mul__(self, other):
        if isinstance(other, Number):
            if other is S.Zero or other is S.NaN:
                return S.NaN
            elif other.is_Float:
                if other is S.NaN or other.is_zero:
                    return S.NaN
                elif other.is_positive:
                    return Float('-inf')
                else:
                    return Float('inf')
            else:
                if other.is_positive:
                    return S.NegativeInfinity
                else:
                    return S.Infinity
        return NotImplemented
    __rmul__ = __mul__

    @_sympifyit('other', NotImplemented)
    def __div__(self, other):
        if isinstance(other, Number):
            if other is S.Infinity or \
                other is S.NegativeInfinity or \
                    other is S.NaN:
                return S.NaN
            elif other.is_Float:
                if other == Float('-inf') or \
                    other == Float('inf') or \
                        other is S.NaN:
                    return S.NaN
                elif other.is_nonnegative:
                    return Float('-inf')
                else:
                    return Float('inf')
            else:
                if other >= 0:
                    return S.NegativeInfinity
                else:
                    return S.Infinity
        return NotImplemented

    __truediv__ = __div__

    def __abs__(self):
        return S.Infinity

    def __neg__(self):
        return S.Infinity

    def _eval_power(self, expt):
        """
        ``expt`` is symbolic object but not equal to 0 or 1.

        ================ ======= ==============================
        Expression       Result  Notes
        ================ ======= ==============================
        ``(-oo) ** nan`` ``nan``
        ``(-oo) ** oo``  ``nan``
        ``(-oo) ** -oo`` ``nan``
        ``(-oo) ** e``   ``oo``  ``e`` is positive even integer
        ``(-oo) ** o``   ``-oo`` ``o`` is positive odd integer
        ================ ======= ==============================

        See Also
        ========

        Infinity
        Pow
        NaN

        """
        if isinstance(expt, Number):
            if expt is S.NaN or \
                expt is S.Infinity or \
                    expt is S.NegativeInfinity:
                return S.NaN

            if isinstance(expt, Integer) and expt.is_positive:
                if expt.is_odd:
                    return S.NegativeInfinity
                else:
                    return S.Infinity

            return S.NegativeOne**expt*S.Infinity**expt

    def _as_mpf_val(self, prec):
        return mlib.fninf

    def _sage_(self):
        import sage.all as sage
        return -(sage.oo)

    def __hash__(self):
        return super(NegativeInfinity, self).__hash__()

    def __eq__(self, other):
        return other is S.NegativeInfinity

    def __ne__(self, other):
        return other is not S.NegativeInfinity

    @_sympifyit('other', NotImplemented)
    def __lt__(self, other):
        if other.is_number and other.is_real is False:
            raise TypeError("Invalid comparison of %s and %s" % (self, other))
        return other is not S.NegativeInfinity

    @_sympifyit('other', NotImplemented)
    def __le__(self, other):
        if other.is_number and other.is_real is False:
            raise TypeError("Invalid comparison of %s and %s" % (self, other))
        return True

    @_sympifyit('other', NotImplemented)
    def __gt__(self, other):
        if other.is_number and other.is_real is False:
            raise TypeError("Invalid comparison of %s and %s" % (self, other))
        return False

    @_sympifyit('other', NotImplemented)
    def __ge__(self, other):
        if other.is_number and other.is_real is False:
            raise TypeError("Invalid comparison of %s and %s" % (self, other))
        return other is S.NegativeInfinity


class NaN(with_metaclass(Singleton, Number)):
    """
    Not a Number.

    This represents the corresponding data type to floating point nan, which
    is defined in the IEEE 754 floating point standard, and corresponds to the
    Python ``float('nan')``.

    NaN serves as a place holder for numeric values that are indeterminate.
    Most operations on nan, produce another nan.  Most indeterminate forms,
    such as ``0/0`` or ``oo - oo` produce nan.  Two exceptions are ``0**0``
    and ``oo**0``, which all produce ``1`` (this is consistent with Python's
    float).

    NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported
    as ``nan``.

    Examples
    ========

    >>> from sympy import nan, S, oo
    >>> nan is S.NaN
    True
    >>> oo - oo
    nan
    >>> nan + 1
    nan

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/NaN

    """
    is_commutative = True
    is_real = None
    is_rational = None
    is_integer = None
    is_comparable = False
    is_finite = None
    is_bounded = None
    is_zero = None
    is_prime = None
    is_positive = None
    is_negative = None

    __slots__ = []

    def __new__(cls):
        return AtomicExpr.__new__(cls)

    def _latex(self, printer):
        return r"\mathrm{NaN}"

    @_sympifyit('other', NotImplemented)
    def __add__(self, other):
        return self

    @_sympifyit('other', NotImplemented)
    def __sub__(self, other):
        return self

    @_sympifyit('other', NotImplemented)
    def __mul__(self, other):
        return self

    @_sympifyit('other', NotImplemented)
    def __div__(self, other):
        return self

    __truediv__ = __div__

    def _as_mpf_val(self, prec):
        return _mpf_nan

    def _sage_(self):
        import sage.all as sage
        return sage.NaN

    def __hash__(self):
        return super(NaN, self).__hash__()

    def __eq__(self, other):
        return other is S.NaN

    def __ne__(self, other):
        return other is not S.NaN

    def __gt__(self, other):
        return False

    def __ge__(self, other):
        return False

    def __lt__(self, other):
        return False

    def __le__(self, other):
        return False

nan = S.NaN


class ComplexInfinity(with_metaclass(Singleton, AtomicExpr)):
    r"""Complex infinity.

    In complex analysis the symbol `\tilde\infty`, called "complex
    infinity", represents a quantity with infinite magnitude, but
    undetermined complex phase.

    ComplexInfinity is a singleton, and can be accessed by
    ``S.ComplexInfinity``, or can be imported as ``zoo``.

    Examples
    ========

    >>> from sympy import zoo, oo
    >>> zoo + 42
    zoo
    >>> 42/zoo
    0
    >>> zoo + zoo
    nan
    >>> zoo*zoo
    zoo

    See Also
    ========

    Infinity
    """

    is_commutative = True
    is_bounded = False
    is_real = None
    is_number = True

    __slots__ = []

    def __new__(cls):
        return AtomicExpr.__new__(cls)

    def _latex(self, printer):
        return r"\tilde{\infty}"

    @staticmethod
    def __abs__():
        return S.Infinity

    @staticmethod
    def __neg__():
        return S.ComplexInfinity

    def _eval_power(self, expt):
        if expt is S.ComplexInfinity:
            return S.NaN

        if isinstance(expt, Number):
            if expt is S.Zero:
                return S.NaN
            else:
                if expt.is_positive:
                    return S.ComplexInfinity
                else:
                    return S.Zero

zoo = S.ComplexInfinity


class NumberSymbol(AtomicExpr):

    is_commutative = True
    is_bounded = True
    is_finite = True
    is_number = True

    __slots__ = []

    is_NumberSymbol = True

    def __new__(cls):
        return AtomicExpr.__new__(cls)

    def approximation(self, number_cls):
        """ Return an interval with number_cls endpoints
        that contains the value of NumberSymbol.
        If not implemented, then return None.
        """

    def _eval_evalf(self, prec):
        return Float._new(self._as_mpf_val(prec), prec)

    def __eq__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy != other  -->  not ==
        if self is other:
            return True
        if isinstance(other, Number) and self.is_irrational:
            return False

        return False    # NumberSymbol != non-(Number|self)

    def __ne__(self, other):
        return not self.__eq__(other)

    def __lt__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy > other  --> not <
        if self is other:
            return False
        if isinstance(other, Number):
            approx = self.approximation_interval(other.__class__)
            if approx is not None:
                l, u = approx
                if other < l:
                    return False
                if other > u:
                    return True
            return self.evalf() < other
        if other.is_real and other.is_number:
            other = other.evalf()
            return self.evalf() < other
        return Expr.__lt__(self, other)

    def __le__(self, other):
        try:
            other = _sympify(other)
        except SympifyError:
            return False    # sympy > other  --> not <=
        if self is other:
            return True
        if other.is_real and other.is_number:
            other = other.evalf()
        if isinstance(other, Number):
            return self.evalf() <= other
        return Expr.__le__(self, other)

    def __gt__(self, other):
        return (-self) < (-other)

    def __ge__(self, other):
        return (-self) <= (-other)

    def __int__(self):
        # subclass with appropriate return value
        raise NotImplementedError

    def __long__(self):
        return self.__int__()

    def __hash__(self):
        return super(NumberSymbol, self).__hash__()


class Exp1(with_metaclass(Singleton, NumberSymbol)):
    r"""The `e` constant.

    The transcendental number `e = 2.718281828\dots` is the base of the
    natural logarithm and of the exponential function, `e = \exp(1)`.
    Sometimes called Euler's number or Napier's constant.

    Exp1 is a singleton, and can be accessed by ``S.Exp1``,
    or can be imported as ``E``.

    Examples
    ========

    >>> from sympy import exp, log, E
    >>> E is exp(1)
    True
    >>> log(E)
    1

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/E_%28mathematical_constant%29
    """

    is_real = True
    is_positive = True
    is_negative = False  # XXX Forces is_negative/is_nonnegative
    is_irrational = True

    __slots__ = []

    def _latex(self, printer):
        return r"e"

    @staticmethod
    def __abs__():
        return S.Exp1

    def __int__(self):
        return 2

    def _as_mpf_val(self, prec):
        return mpf_e(prec)

    def approximation_interval(self, number_cls):
        if issubclass(number_cls, Integer):
            return (Integer(2), Integer(3))
        elif issubclass(number_cls, Rational):
            pass

    def _eval_power(self, expt):
        return C.exp(expt)

    def _eval_rewrite_as_sin(self):
        I = S.ImaginaryUnit
        return C.sin(I + S.Pi/2) - I*C.sin(I)

    def _eval_rewrite_as_cos(self):
        I = S.ImaginaryUnit
        return C.cos(I) + I*C.cos(I + S.Pi/2)

    def _sage_(self):
        import sage.all as sage
        return sage.e
E = S.Exp1


class Pi(with_metaclass(Singleton, NumberSymbol)):
    r"""The `\pi` constant.

    The transcendental number `\pi = 3.141592654\dots` represents the ratio
    of a circle's circumference to its diameter, the area of the unit circle,
    the half-period of trigonometric functions, and many other things
    in mathematics.

    Pi is a singleton, and can be accessed by ``S.Pi``, or can
    be imported as ``pi``.

    Examples
    ========

    >>> from sympy import S, pi, oo, sin, exp, integrate, Symbol
    >>> S.Pi
    pi
    >>> pi > 3
    True
    >>> pi.is_irrational
    True
    >>> x = Symbol('x')
    >>> sin(x + 2*pi)
    sin(x)
    >>> integrate(exp(-x**2), (x, -oo, oo))
    sqrt(pi)

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Pi
    """

    is_real = True
    is_positive = True
    is_negative = False
    is_irrational = True

    __slots__ = []

    def _latex(self, printer):
        return r"\pi"

    @staticmethod
    def __abs__():
        return S.Pi

    def __int__(self):
        return 3

    def _as_mpf_val(self, prec):
        return mpf_pi(prec)

    def approximation_interval(self, number_cls):
        if issubclass(number_cls, Integer):
            return (Integer(3), Integer(4))
        elif issubclass(number_cls, Rational):
            return (Rational(223, 71), Rational(22, 7))

    def _sage_(self):
        import sage.all as sage
        return sage.pi
pi = S.Pi


class GoldenRatio(with_metaclass(Singleton, NumberSymbol)):
    r"""The golden ratio, `\phi`.

    `\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number.  Two quantities
    are in the golden ratio if their ratio is the same as the ratio of
    their sum to the larger of the two quantities, i.e. their maximum.

    GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``.

    Examples
    ========

    >>> from sympy import S
    >>> S.GoldenRatio > 1
    True
    >>> S.GoldenRatio.expand(func=True)
    1/2 + sqrt(5)/2
    >>> S.GoldenRatio.is_irrational
    True

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Golden_ratio
    """

    is_real = True
    is_positive = True
    is_negative = False
    is_irrational = True

    __slots__ = []

    def _latex(self, printer):
        return r"\phi"

    def __int__(self):
        return 1

    def _as_mpf_val(self, prec):
         # XXX track down why this has to be increased
        rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10)
        return mpf_norm(rv, prec)

    def _eval_expand_func(self, **hints):
        from sympy import sqrt
        return S.Half + S.Half*sqrt(5)

    def approximation_interval(self, number_cls):
        if issubclass(number_cls, Integer):
            return (S.One, Rational(2))
        elif issubclass(number_cls, Rational):
            pass

    def _sage_(self):
        import sage.all as sage
        return sage.golden_ratio


class EulerGamma(with_metaclass(Singleton, NumberSymbol)):
    r"""The Euler-Mascheroni constant.

    `\gamma = 0.5772157\dots` (also called Euler's constant) is a mathematical
    constant recurring in analysis and number theory.  It is defined as the
    limiting difference between the harmonic series and the
    natural logarithm:

    .. math:: \gamma = \lim\limits_{n\to\infty}
              \left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right)

    EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``.

    Examples
    ========

    >>> from sympy import S
    >>> S.EulerGamma.is_irrational
    >>> S.EulerGamma > 0
    True
    >>> S.EulerGamma > 1
    False

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
    """

    is_real = True
    is_positive = True
    is_negative = False
    is_irrational = None

    __slots__ = []

    def _latex(self, printer):
        return r"\gamma"

    def __int__(self):
        return 0

    def _as_mpf_val(self, prec):
         # XXX track down why this has to be increased
        v = mlib.libhyper.euler_fixed(prec + 10)
        rv = mlib.from_man_exp(v, -prec - 10)
        return mpf_norm(rv, prec)

    def approximation_interval(self, number_cls):
        if issubclass(number_cls, Integer):
            return (S.Zero, S.One)
        elif issubclass(number_cls, Rational):
            return (S.Half, Rational(3, 5))

    def _sage_(self):
        import sage.all as sage
        return sage.euler_gamma


class Catalan(with_metaclass(Singleton, NumberSymbol)):
    r"""Catalan's constant.

    `K = 0.91596559\dots` is given by the infinite series

    .. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}

    Catalan is a singleton, and can be accessed by ``S.Catalan``.

    Examples
    ========

    >>> from sympy import S
    >>> S.Catalan.is_irrational
    >>> S.Catalan > 0
    True
    >>> S.Catalan > 1
    False

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Catalan%27s_constant
    """

    is_real = True
    is_positive = True
    is_negative = False
    is_irrational = None

    __slots__ = []

    def __int__(self):
        return 0

    def _as_mpf_val(self, prec):
        # XXX track down why this has to be increased
        v = mlib.catalan_fixed(prec + 10)
        rv = mlib.from_man_exp(v, -prec - 10)
        return mpf_norm(rv, prec)

    def approximation_interval(self, number_cls):
        if issubclass(number_cls, Integer):
            return (S.Zero, S.One)
        elif issubclass(number_cls, Rational):
            return (Rational(9, 10), S.One)

    def _sage_(self):
        import sage.all as sage
        return sage.catalan


class ImaginaryUnit(with_metaclass(Singleton, AtomicExpr)):
    r"""The imaginary unit, `i = \sqrt{-1}`.

    I is a singleton, and can be accessed by ``S.I``, or can be
    imported as ``I``.

    Examples
    ========

    >>> from sympy import I, sqrt
    >>> sqrt(-1)
    I
    >>> I*I
    -1
    >>> 1/I
    -I

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Imaginary_unit
    """

    is_commutative = True
    is_imaginary = True
    is_bounded = True
    is_finite = True
    is_number = True

    __slots__ = []

    def _latex(self, printer):
        return r"i"

    @staticmethod
    def __abs__():
        return S.One

    def _eval_evalf(self, prec):
        return self

    def _eval_conjugate(self):
        return -S.ImaginaryUnit

    def _eval_power(self, expt):
        """
        b is I = sqrt(-1)
        e is symbolic object but not equal to 0, 1

        I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal
        I**0 mod 4 -> 1
        I**1 mod 4 -> I
        I**2 mod 4 -> -1
        I**3 mod 4 -> -I
        """

        if isinstance(expt, Number):
            if isinstance(expt, Integer):
                expt = expt.p % 4
                if expt == 0:
                    return S.One
                if expt == 1:
                    return S.ImaginaryUnit
                if expt == 2:
                    return -S.One
                return -S.ImaginaryUnit
            return (S.NegativeOne)**(expt*S.Half)
        return

    def as_base_exp(self):
        return S.NegativeOne, S.Half

    def _sage_(self):
        import sage.all as sage
        return sage.I

I = S.ImaginaryUnit


def sympify_fractions(f):
    return Rational(f.numerator, f.denominator)

converter[fractions.Fraction] = sympify_fractions


try:
    if HAS_GMPY == 2:
        import gmpy2 as gmpy
    elif HAS_GMPY == 1:
        import gmpy
    else:
        raise ImportError

    def sympify_mpz(x):
        return Integer(long(x))

    def sympify_mpq(x):
        return Rational(long(x.numerator), long(x.denominator))

    converter[type(gmpy.mpz(1))] = sympify_mpz
    converter[type(gmpy.mpq(1, 2))] = sympify_mpq
except ImportError:
    pass


def sympify_mpmath(x):
    return Expr._from_mpmath(x, x.context.prec)

converter[mpnumeric] = sympify_mpmath


def sympify_complex(a):
    real, imag = list(map(sympify, (a.real, a.imag)))
    return real + S.ImaginaryUnit*imag

converter[complex] = sympify_complex

_intcache[0] = S.Zero
_intcache[1] = S.One
_intcache[-1] = S.NegativeOne

from .power import Pow, integer_nthroot
from .mul import Mul
Mul.identity = One()
from .add import Add
Add.identity = Zero()