File: numberfields.py

package info (click to toggle)
sympy 0.7.5-3
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,576 kB
  • ctags: 27,948
  • sloc: python: 213,240; xml: 359; makefile: 117; sh: 53; lisp: 4
file content (1208 lines) | stat: -rw-r--r-- 34,519 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
"""Computational algebraic field theory. """

from __future__ import print_function, division

from sympy import (
    S, C, Expr, Rational,
    Symbol, Add, Mul, sympify, Q, ask, Dummy, Tuple, expand_mul, I, pi
)

from sympy.polys.polytools import (
    Poly, PurePoly, sqf_norm, invert, factor_list, groebner, resultant,
    degree, poly_from_expr, parallel_poly_from_expr, lcm
)

from sympy.polys.polyclasses import (
    ANP, DMP,
)

from sympy.polys.polyerrors import (
    IsomorphismFailed,
    CoercionFailed,
    NotAlgebraic,
    GeneratorsError,
)

from sympy.polys.rootoftools import RootOf

from sympy.polys.specialpolys import cyclotomic_poly

from sympy.polys.polyutils import dict_from_expr, expr_from_dict

from sympy.polys.domains import ZZ, QQ

from sympy.polys.orthopolys import dup_chebyshevt

from sympy.printing.lambdarepr import LambdaPrinter

from sympy.utilities import (
    numbered_symbols, variations, lambdify, public, sift
)

from sympy.core.exprtools import Factors
from sympy.simplify.simplify import _mexpand, _is_sum_surds
from sympy.ntheory import sieve
from sympy.ntheory.factor_ import divisors
from mpmath import pslq, mp

from sympy.core.compatibility import reduce
from sympy.core.compatibility import xrange


def _choose_factor(factors, x, v, dom=QQ, prec=200, bound=5):
    """
    Return a factor having root ``v``
    It is assumed that one of the factors has root ``v``.
    """
    if isinstance(factors[0], tuple):
        factors = [f[0] for f in factors]
    if len(factors) == 1:
        return factors[0]

    points = {x:v}
    symbols = dom.symbols if hasattr(dom, 'symbols') else []
    t = QQ(1, 10)

    for n in range(bound**len(symbols)):
        prec1 = 10
        n_temp = n
        for s in symbols:
            points[s] = n_temp % bound
            n_temp = n_temp // bound

        while True:
            candidates = []
            eps = t**(prec1 // 2)
            for f in factors:
                if abs(f.as_expr().evalf(prec1, points)) < eps:
                    candidates.append(f)
            if candidates:
                factors = candidates
            if len(factors) == 1:
                return factors[0]
            if prec1 > prec:
                break
            prec1 *= 2

    raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % v)


def _separate_sq(p):
    """
    helper function for ``_minimal_polynomial_sq``

    It selects a rational ``g`` such that the polynomial ``p``
    consists of a sum of terms whose surds squared have gcd equal to ``g``
    and a sum of terms with surds squared prime with ``g``;
    then it takes the field norm to eliminate ``sqrt(g)``

    See simplify.simplify.split_surds and polytools.sqf_norm.

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.abc import x
    >>> from sympy.polys.numberfields import _separate_sq
    >>> p= -x + sqrt(2) + sqrt(3) + sqrt(7)
    >>> p = _separate_sq(p); p
    -x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8
    >>> p = _separate_sq(p); p
    -x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20
    >>> p = _separate_sq(p); p
    -x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400

    """
    from sympy.simplify.simplify import _split_gcd, _mexpand
    from sympy.utilities.iterables import sift
    def is_sqrt(expr):
        return expr.is_Pow and expr.exp is S.Half
    # p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)]
    a = []
    for y in p.args:
        if not y.is_Mul:
            if is_sqrt(y):
                a.append((S.One, y**2))
            elif y.is_Atom:
                a.append((y, S.One))
            elif y.is_Pow and y.exp.is_integer:
                a.append((y, S.One))
            else:
                raise NotImplementedError
            continue
        sifted = sift(y.args, is_sqrt)
        a.append((Mul(*sifted[False]), Mul(*sifted[True])**2))
    a.sort(key=lambda z: z[1])
    if a[-1][1] is S.One:
        # there are no surds
        return p
    surds = [z for y, z in a]
    for i in range(len(surds)):
        if surds[i] != 1:
            break
    g, b1, b2 = _split_gcd(*surds[i:])
    a1 = []
    a2 = []
    for y, z in a:
        if z in b1:
            a1.append(y*z**S.Half)
        else:
            a2.append(y*z**S.Half)
    p1 = Add(*a1)
    p2 = Add(*a2)
    p = _mexpand(p1**2) - _mexpand(p2**2)
    return p

def _minimal_polynomial_sq(p, n, x):
    """
    Returns the minimal polynomial for the ``nth-root`` of a sum of surds
    or ``None`` if it fails.

    Parameters
    ==========

    p : sum of surds
    n : positive integer
    x : variable of the returned polynomial

    Examples
    ========

    >>> from sympy.polys.numberfields import _minimal_polynomial_sq
    >>> from sympy import sqrt
    >>> from sympy.abc import x
    >>> q = 1 + sqrt(2) + sqrt(3)
    >>> _minimal_polynomial_sq(q, 3, x)
    x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8

    """
    from sympy.simplify.simplify import _is_sum_surds

    p = sympify(p)
    n = sympify(n)
    r = _is_sum_surds(p)
    if not n.is_Integer or not n > 0 or not _is_sum_surds(p):
        return None
    pn = p**Rational(1, n)
    # eliminate the square roots
    p -= x
    while 1:
        p1 = _separate_sq(p)
        if p1 is p:
            p = p1.subs({x:x**n})
            break
        else:
            p = p1

    # _separate_sq eliminates field extensions in a minimal way, so that
    # if n = 1 then `p = constant*(minimal_polynomial(p))`
    # if n > 1 it contains the minimal polynomial as a factor.
    if n == 1:
        p1 = Poly(p)
        if p.coeff(x**p1.degree(x)) < 0:
            p = -p
        p = p.primitive()[1]
        return p
    # by construction `p` has root `pn`
    # the minimal polynomial is the factor vanishing in x = pn
    factors = factor_list(p)[1]

    result = _choose_factor(factors, x, pn)
    return result

def _minpoly_op_algebraic_element(op, ex1, ex2, x, dom, mp1=None, mp2=None):
    """
    return the minimal polynomial for ``op(ex1, ex2)``

    Parameters
    ==========

    op : operation ``Add`` or ``Mul``
    ex1, ex2 : expressions for the algebraic elements
    x : indeterminate of the polynomials
    dom: ground domain
    mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None

    Examples
    ========

    >>> from sympy import sqrt, Add, Mul, QQ
    >>> from sympy.polys.numberfields import _minpoly_op_algebraic_element
    >>> from sympy.abc import x, y
    >>> p1 = sqrt(sqrt(2) + 1)
    >>> p2 = sqrt(sqrt(2) - 1)
    >>> _minpoly_op_algebraic_element(Mul, p1, p2, x, QQ)
    x - 1
    >>> q1 = sqrt(y)
    >>> q2 = 1 / y
    >>> _minpoly_op_algebraic_element(Add, q1, q2, x, QQ.frac_field(y))
    x**2*y**2 - 2*x*y - y**3 + 1

    References
    ==========

    [1] http://en.wikipedia.org/wiki/Resultant
    [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638
    "Degrees of sums in a separable field extension".
    """
    from sympy import gcd
    y = Dummy(str(x))
    if mp1 is None:
        mp1 = _minpoly_compose(ex1, x, dom)
    if mp2 is None:
        mp2 = _minpoly_compose(ex2, y, dom)
    else:
        mp2 = mp2.subs({x: y})

    if op is Add:
        # mp1a = mp1.subs({x: x - y})
        (p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y)
        r = p1.compose(p2)
        mp1a = r.as_expr()
    elif op is Mul:
        mp1a = _muly(mp1, x, y)
    else:
        raise NotImplementedError('option not available')

    r = resultant(mp1a, mp2, gens=[y, x])

    deg1 = degree(mp1, x)
    deg2 = degree(mp2, y)
    if op is Add and gcd(deg1, deg2) == 1:
        # `r` is irreducible, see [2]
        return r
    if op is Mul and deg1 == 1 or deg2 == 1:
        # if deg1 = 1, then mp1 = x - a; mp1a = x - y - a;
        # r = mp2(x - a), so that `r` is irreducible
        return r

    r = Poly(r, x, domain=dom)
    _, factors = r.factor_list()
    res = _choose_factor(factors, x, op(ex1, ex2), dom)
    return res.as_expr()


def _invertx(p, x):
    """
    Returns ``expand_mul(x**degree(p, x)*p.subs(x, 1/x))``
    """
    p1 = poly_from_expr(p, x)[0]

    n = degree(p1)
    a = [c * x**(n - i) for (i,), c in p1.terms()]
    return Add(*a)


def _muly(p, x, y):
    """
    Returns ``_mexpand(y**deg*p.subs({x:x / y}))``
    """
    p1 = poly_from_expr(p, x)[0]

    n = degree(p1)
    a = [c * x**i * y**(n - i) for (i,), c in p1.terms()]
    return Add(*a)


def _minpoly_pow(ex, pw, x, dom, mp=None):
    """
    Returns ``minpoly(ex**pw, x)``

    Parameters
    ==========

    ex : algebraic element
    pw : rational number
    x : indeterminate of the polynomial
    dom: ground domain
    mp : minimal polynomial of ``p``

    Examples
    ========

    >>> from sympy import sqrt, QQ, Rational
    >>> from sympy.polys.numberfields import _minpoly_pow, minpoly
    >>> from sympy.abc import x, y
    >>> p = sqrt(1 + sqrt(2))
    >>> _minpoly_pow(p, 2, x, QQ)
    x**2 - 2*x - 1
    >>> minpoly(p**2, x)
    x**2 - 2*x - 1
    >>> _minpoly_pow(y, Rational(1, 3), x, QQ.frac_field(y))
    x**3 - y
    >>> minpoly(y**Rational(1, 3), x)
    x**3 - y

    """
    pw = sympify(pw)
    if not mp:
        mp = _minpoly_compose(ex, x, dom)
    if not pw.is_rational:
        raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
    if pw < 0:
        if mp == x:
            raise ZeroDivisionError('%s is zero' % ex)
        mp = _invertx(mp, x)
        if pw == -1:
            return mp
        pw = -pw
        ex = 1/ex

    y = Dummy(str(x))
    mp = mp.subs({x: y})
    n, d = pw.as_numer_denom()
    res = Poly(resultant(mp, x**d - y**n, gens=[y]), x, domain=dom)
    _, factors = res.factor_list()
    res = _choose_factor(factors, x, ex**pw, dom)
    return res.as_expr()


def _minpoly_add(x, dom, *a):
    """
    returns ``minpoly(Add(*a), dom, x)``
    """
    mp = _minpoly_op_algebraic_element(Add, a[0], a[1], x, dom)
    p = a[0] + a[1]
    for px in a[2:]:
        mp = _minpoly_op_algebraic_element(Add, p, px, x, dom, mp1=mp)
        p = p + px
    return mp


def _minpoly_mul(x, dom, *a):
    """
    returns ``minpoly(Mul(*a), dom, x)``
    """
    mp = _minpoly_op_algebraic_element(Mul, a[0], a[1], x, dom)
    p = a[0] * a[1]
    for px in a[2:]:
        mp = _minpoly_op_algebraic_element(Mul, p, px, x, dom, mp1=mp)
        p = p * px
    return mp


def _minpoly_sin(ex, x):
    """
    Returns the minimal polynomial of ``sin(ex)``
    see http://mathworld.wolfram.com/TrigonometryAngles.html
    """
    from sympy.functions.combinatorial.factorials import binomial
    c, a = ex.args[0].as_coeff_Mul()
    if a is pi:
        if c.is_rational:
            n = c.q
            q = sympify(n)
            if q.is_prime:
                # for a = pi*p/q with q odd prime, using chebyshevt
                # write sin(q*a) = mp(sin(a))*sin(a);
                # the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1
                a = dup_chebyshevt(n, ZZ)
                return Add(*[x**(n - i - 1)*a[i] for i in range(n)])
            if c.p == 1:
                if q == 9:
                    return 64*x**6 - 96*x**4 + 36*x**2 - 3

            if n % 2 == 1:
                # for a = pi*p/q with q odd, use
                # sin(q*a) = 0 to see that the minimal polynomial must be
                # a factor of dup_chebyshevt(n, ZZ)
                a = dup_chebyshevt(n, ZZ)
                a = [x**(n - i)*a[i] for i in range(n + 1)]
                r = Add(*a)
                _, factors = factor_list(r)
                res = _choose_factor(factors, x, ex)
                return res

            expr = ((1 - C.cos(2*c*pi))/2)**S.Half
            res = _minpoly_compose(expr, x, QQ)
            return res

    raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)


def _minpoly_cos(ex, x):
    """
    Returns the minimal polynomial of ``cos(ex)``
    see http://mathworld.wolfram.com/TrigonometryAngles.html
    """
    from sympy import sqrt
    c, a = ex.args[0].as_coeff_Mul()
    if a is pi:
        if c.is_rational:
            if c.p == 1:
                if c.q == 7:
                    return 8*x**3 - 4*x**2 - 4*x + 1
                if c.q == 9:
                    return 8*x**3 - 6*x + 1
            elif c.p == 2:
                q = sympify(c.q)
                if q.is_prime:
                    s = _minpoly_sin(ex, x)
                    return _mexpand(s.subs({x:sqrt((1 - x)/2)}))

            # for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p
            n = int(c.q)
            a = dup_chebyshevt(n, ZZ)
            a = [x**(n - i)*a[i] for i in range(n + 1)]
            r = Add(*a) - (-1)**c.p
            _, factors = factor_list(r)
            res = _choose_factor(factors, x, ex)
            return res

    raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)


def _minpoly_exp(ex, x):
    """
    Returns the minimal polynomial of ``exp(ex)``
    """
    c, a = ex.args[0].as_coeff_Mul()
    p = sympify(c.p)
    q = sympify(c.q)
    if a == I*pi:
        if c.is_rational:
            if c.p == 1 or c.p == -1:
                if q == 3:
                    return x**2 - x + 1
                if q == 4:
                    return x**4 + 1
                if q == 6:
                    return x**4 - x**2 + 1
                if q == 8:
                    return x**8 + 1
                if q == 9:
                    return x**6 - x**3 + 1
                if q == 10:
                    return x**8 - x**6 + x**4 - x**2 + 1
                if q.is_prime:
                    s = 0
                    for i in range(q):
                        s += (-x)**i
                    return s

            # x**(2*q) = product(factors)
            factors = [cyclotomic_poly(i, x) for i in divisors(2*q)]
            mp = _choose_factor(factors, x, ex)
            return mp
        else:
            raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
    raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)


def _minpoly_rootof(ex, x):
    """
    Returns the minimal polynomial of a ``RootOf`` object.
    """
    p = ex.expr
    p = p.subs({ex.poly.gens[0]:x})
    _, factors = factor_list(p, x)
    result = _choose_factor(factors, x, ex)
    return result


def _minpoly_compose(ex, x, dom):
    """
    Computes the minimal polynomial of an algebraic element
    using operations on minimal polynomials

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x, y
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True)
    x**2 - 2*x - 1
    >>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True)
    x**2*y**2 - 2*x*y - y**3 + 1

    """
    if ex.is_Rational:
        return ex.q*x - ex.p
    if ex is I:
        return x**2 + 1
    if hasattr(dom, 'symbols') and ex in dom.symbols:
        return x - ex

    if dom.is_QQ and _is_sum_surds(ex):
        # eliminate the square roots
        ex -= x
        while 1:
            ex1 = _separate_sq(ex)
            if ex1 is ex:
                return ex
            else:
                ex = ex1

    if ex.is_Add:
        res = _minpoly_add(x, dom, *ex.args)
    elif ex.is_Mul:
        f = Factors(ex).factors
        r = sift(f.items(), lambda itx: itx[0].is_rational and itx[1].is_rational)
        if r[True] and dom == QQ:
            ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]])
            r1 = r[True]
            dens = [y.q for _, y in r1]
            lcmdens = reduce(lcm, dens, 1)
            nums = [base**(y.p*lcmdens // y.q) for base, y in r1]
            ex2 = Mul(*nums)
            mp1 = minimal_polynomial(ex1, x)
            # use the fact that in SymPy canonicalization products of integers
            # raised to rational powers are organized in relatively prime
            # bases, and that in ``base**(n/d)`` a perfect power is
            # simplified with the root
            mp2 = ex2.q*x**lcmdens - ex2.p
            ex2 = ex2**Rational(1, lcmdens)
            res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2)
        else:
            res = _minpoly_mul(x, dom, *ex.args)
    elif ex.is_Pow:
        res = _minpoly_pow(ex.base, ex.exp, x, dom)
    elif ex.__class__ is C.sin:
        res = _minpoly_sin(ex, x)
    elif ex.__class__ is C.cos:
        res = _minpoly_cos(ex, x)
    elif ex.__class__ is C.exp:
        res = _minpoly_exp(ex, x)
    elif ex.__class__ is RootOf:
        res = _minpoly_rootof(ex, x)
    else:
        raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
    return res


@public
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic element.

    Parameters
    ==========

    ex : algebraic element expression
    x : independent variable of the minimal polynomial

    Options
    =======

    compose : if ``True`` ``_minpoly_compose`` is used, if ``False`` the ``groebner`` algorithm
    polys : if ``True`` returns a ``Poly`` object
    domain : ground domain

    Notes
    =====

    By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
    are computed, then the arithmetic operations on them are performed using the resultant
    and factorization.
    If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
    The default algorithm stalls less frequently.

    If no ground domain is given, it will be generated automatically from the expression.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, solve, QQ
    >>> from sympy.abc import x, y

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
    x - sqrt(2)
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1
    >>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
    x**3 + x + 3
    >>> minimal_polynomial(sqrt(y), x)
    x**2 - y

    """
    from sympy.polys.polytools import degree
    from sympy.polys.domains import FractionField
    from sympy.core.basic import preorder_traversal

    compose = args.get('compose', True)
    polys = args.get('polys', False)
    dom = args.get('domain', None)

    ex = sympify(ex)
    for expr in preorder_traversal(ex):
        if expr.is_AlgebraicNumber:
            compose = False
            break

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if not dom:
        dom = FractionField(QQ, list(ex.free_symbols)) if ex.free_symbols else QQ
    if hasattr(dom, 'symbols') and x in dom.symbols:
        raise GeneratorsError("the variable %s is an element of the ground domain %s" % (x, dom))

    if compose:
        result = _minpoly_compose(ex, x, dom)
        result = result.primitive()[1]
        c = result.coeff(x**degree(result, x))
        if c.is_negative:
            result = expand_mul(-result)
        return cls(result, x, field=True) if polys else result.collect(x)

    if not dom.is_QQ:
        raise NotImplementedError("groebner method only works for QQ")

    result = _minpoly_groebner(ex, x, cls)
    return cls(result, x, field=True) if polys else result.collect(x)


def _minpoly_groebner(ex, x, cls):
    """
    Computes the minimal polynomial of an algebraic number
    using Groebner bases

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False)
    x**2 - 2*x - 1

    """
    from sympy.polys.polytools import degree
    from sympy.core.function import expand_multinomial

    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    def update_mapping(ex, exp, base=None):
        a = next(generator)
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Mul:
            return Mul(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (
                        ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1/exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1/ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        return ex.minpoly.as_expr(x)
    elif ex.is_Rational:
        result = ex.q*x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1/ex.exp).is_Integer:
            n = 1/ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + list(mapping.values())
            G = groebner(F, list(symbols.values()) + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex)
    if inverted:
        result = _invertx(result, x)
        if result.coeff(x**degree(result, x)) < 0:
            result = expand_mul(-result)

    return result


minpoly = minimal_polynomial
__all__.append('minpoly')

def _coeffs_generator(n):
    """Generate coefficients for `primitive_element()`. """
    for coeffs in variations([1, -1], n, repetition=True):
        yield list(coeffs)


@public
def primitive_element(extension, x=None, **args):
    """Construct a common number field for all extensions. """
    if not extension:
        raise ValueError("can't compute primitive element for empty extension")

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly
    if not args.get('ex', False):
        extension = [ AlgebraicNumber(ext, gen=x) for ext in extension ]

        g, coeffs = extension[0].minpoly.replace(x), [1]

        for ext in extension[1:]:
            s, _, g = sqf_norm(g, x, extension=ext)
            coeffs = [ s*c for c in coeffs ] + [1]

        if not args.get('polys', False):
            return g.as_expr(), coeffs
        else:
            return cls(g), coeffs

    generator = numbered_symbols('y', cls=Dummy)

    F, Y = [], []

    for ext in extension:
        y = next(generator)

        if ext.is_Poly:
            if ext.is_univariate:
                f = ext.as_expr(y)
            else:
                raise ValueError("expected minimal polynomial, got %s" % ext)
        else:
            f = minpoly(ext, y)

        F.append(f)
        Y.append(y)

    coeffs_generator = args.get('coeffs', _coeffs_generator)

    for coeffs in coeffs_generator(len(Y)):
        f = x - sum([ c*y for c, y in zip(coeffs, Y)])
        G = groebner(F + [f], Y + [x], order='lex', field=True)

        H, g = G[:-1], cls(G[-1], x, domain='QQ')

        for i, (h, y) in enumerate(zip(H, Y)):
            try:
                H[i] = Poly(y - h, x,
                            domain='QQ').all_coeffs()  # XXX: composite=False
            except CoercionFailed:  # pragma: no cover
                break  # G is not a triangular set
        else:
            break
    else:  # pragma: no cover
        raise RuntimeError("run out of coefficient configurations")

    _, g = g.clear_denoms()

    if not args.get('polys', False):
        return g.as_expr(), coeffs, H
    else:
        return g, coeffs, H


def is_isomorphism_possible(a, b):
    """Returns `True` if there is a chance for isomorphism. """
    n = a.minpoly.degree()
    m = b.minpoly.degree()

    if m % n != 0:
        return False

    if n == m:
        return True

    da = a.minpoly.discriminant()
    db = b.minpoly.discriminant()

    i, k, half = 1, m//n, db//2

    while True:
        p = sieve[i]
        P = p**k

        if P > half:
            break

        if ((da % p) % 2) and not (db % P):
            return False

        i += 1

    return True


def field_isomorphism_pslq(a, b):
    """Construct field isomorphism using PSLQ algorithm. """
    if not a.root.is_real or not b.root.is_real:
        raise NotImplementedError("PSLQ doesn't support complex coefficients")

    f = a.minpoly
    g = b.minpoly.replace(f.gen)

    n, m, prev = 100, b.minpoly.degree(), None

    for i in range(1, 5):
        A = a.root.evalf(n)
        B = b.root.evalf(n)

        basis = [1, B] + [ B**i for i in xrange(2, m) ] + [A]

        dps, mp.dps = mp.dps, n
        coeffs = pslq(basis, maxcoeff=int(1e10), maxsteps=1000)
        mp.dps = dps

        if coeffs is None:
            break

        if coeffs != prev:
            prev = coeffs
        else:
            break

        coeffs = [S(c)/coeffs[-1] for c in coeffs[:-1]]

        while not coeffs[-1]:
            coeffs.pop()

        coeffs = list(reversed(coeffs))
        h = Poly(coeffs, f.gen, domain='QQ')

        if f.compose(h).rem(g).is_zero:
            d, approx = len(coeffs) - 1, 0

            for i, coeff in enumerate(coeffs):
                approx += coeff*B**(d - i)

            if A*approx < 0:
                return [ -c for c in coeffs ]
            else:
                return coeffs
        elif f.compose(-h).rem(g).is_zero:
            return [ -c for c in coeffs ]
        else:
            n *= 2

    return None


def field_isomorphism_factor(a, b):
    """Construct field isomorphism via factorization. """
    _, factors = factor_list(a.minpoly, extension=b)

    for f, _ in factors:
        if f.degree() == 1:
            coeffs = f.rep.TC().to_sympy_list()
            d, terms = len(coeffs) - 1, []

            for i, coeff in enumerate(coeffs):
                terms.append(coeff*b.root**(d - i))

            root = Add(*terms)

            if (a.root - root).evalf(chop=True) == 0:
                return coeffs

            if (a.root + root).evalf(chop=True) == 0:
                return [ -c for c in coeffs ]
    else:
        return None


@public
def field_isomorphism(a, b, **args):
    """Construct an isomorphism between two number fields. """
    a, b = sympify(a), sympify(b)

    if not a.is_AlgebraicNumber:
        a = AlgebraicNumber(a)

    if not b.is_AlgebraicNumber:
        b = AlgebraicNumber(b)

    if a == b:
        return a.coeffs()

    n = a.minpoly.degree()
    m = b.minpoly.degree()

    if n == 1:
        return [a.root]

    if m % n != 0:
        return None

    if args.get('fast', True):
        try:
            result = field_isomorphism_pslq(a, b)

            if result is not None:
                return result
        except NotImplementedError:
            pass

    return field_isomorphism_factor(a, b)


@public
def to_number_field(extension, theta=None, **args):
    """Express `extension` in the field generated by `theta`. """
    gen = args.get('gen')

    if hasattr(extension, '__iter__'):
        extension = list(extension)
    else:
        extension = [extension]

    if len(extension) == 1 and type(extension[0]) is tuple:
        return AlgebraicNumber(extension[0])

    minpoly, coeffs = primitive_element(extension, gen, polys=True)
    root = sum([ coeff*ext for coeff, ext in zip(coeffs, extension) ])

    if theta is None:
        return AlgebraicNumber((minpoly, root))
    else:
        theta = sympify(theta)

        if not theta.is_AlgebraicNumber:
            theta = AlgebraicNumber(theta, gen=gen)

        coeffs = field_isomorphism(root, theta)

        if coeffs is not None:
            return AlgebraicNumber(theta, coeffs)
        else:
            raise IsomorphismFailed(
                "%s is not in a subfield of %s" % (root, theta.root))

@public
class AlgebraicNumber(Expr):
    """Class for representing algebraic numbers in SymPy. """

    __slots__ = ['rep', 'root', 'alias', 'minpoly']

    is_AlgebraicNumber = True

    def __new__(cls, expr, coeffs=Tuple(), alias=None, **args):
        """Construct a new algebraic number. """
        expr = sympify(expr)

        if isinstance(expr, (tuple, Tuple)):
            minpoly, root = expr

            if not minpoly.is_Poly:
                minpoly = Poly(minpoly)
        elif expr.is_AlgebraicNumber:
            minpoly, root = expr.minpoly, expr.root
        else:
            minpoly, root = minimal_polynomial(
                expr, args.get('gen'), polys=True), expr

        dom = minpoly.get_domain()

        if coeffs != Tuple():
            if not isinstance(coeffs, ANP):
                rep = DMP.from_sympy_list(sympify(coeffs), 0, dom)
                scoeffs = Tuple(*coeffs)
            else:
                rep = DMP.from_list(coeffs.to_list(), 0, dom)
                scoeffs = Tuple(*coeffs.to_list())

            if rep.degree() >= minpoly.degree():
                rep = rep.rem(minpoly.rep)

            sargs = (root, scoeffs)

        else:
            rep = DMP.from_list([1, 0], 0, dom)

            if ask(Q.negative(root)):
                rep = -rep

            sargs = (root, coeffs)

        if alias is not None:
            if not isinstance(alias, Symbol):
                alias = Symbol(alias)
            sargs = sargs + (alias,)

        obj = Expr.__new__(cls, *sargs)

        obj.rep = rep
        obj.root = root
        obj.alias = alias
        obj.minpoly = minpoly

        return obj

    def __hash__(self):
        return super(AlgebraicNumber, self).__hash__()

    def _eval_evalf(self, prec):
        return self.as_expr()._evalf(prec)

    @property
    def is_aliased(self):
        """Returns ``True`` if ``alias`` was set. """
        return self.alias is not None

    def as_poly(self, x=None):
        """Create a Poly instance from ``self``. """
        if x is not None:
            return Poly.new(self.rep, x)
        else:
            if self.alias is not None:
                return Poly.new(self.rep, self.alias)
            else:
                return PurePoly.new(self.rep, Dummy('x'))

    def as_expr(self, x=None):
        """Create a Basic expression from ``self``. """
        return self.as_poly(x or self.root).as_expr().expand()

    def coeffs(self):
        """Returns all SymPy coefficients of an algebraic number. """
        return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ]

    def native_coeffs(self):
        """Returns all native coefficients of an algebraic number. """
        return self.rep.all_coeffs()

    def to_algebraic_integer(self):
        """Convert ``self`` to an algebraic integer. """
        f = self.minpoly

        if f.LC() == 1:
            return self

        coeff = f.LC()**(f.degree() - 1)
        poly = f.compose(Poly(f.gen/f.LC()))

        minpoly = poly*coeff
        root = f.LC()*self.root

        return AlgebraicNumber((minpoly, root), self.coeffs())


class IntervalPrinter(LambdaPrinter):
    """Use ``lambda`` printer but print numbers as ``mpi`` intervals. """

    def _print_Integer(self, expr):
        return "mpi('%s')" % super(IntervalPrinter, self)._print_Integer(expr)

    def _print_Rational(self, expr):
        return "mpi('%s')" % super(IntervalPrinter, self)._print_Rational(expr)

    def _print_Pow(self, expr):
        return super(IntervalPrinter, self)._print_Pow(expr, rational=True)


@public
def isolate(alg, eps=None, fast=False):
    """Give a rational isolating interval for an algebraic number. """
    alg = sympify(alg)

    if alg.is_Rational:
        return (alg, alg)
    elif not ask(Q.real(alg)):
        raise NotImplementedError(
            "complex algebraic numbers are not supported")

    func = lambdify((), alg, modules="mpmath", printer=IntervalPrinter())

    poly = minpoly(alg, polys=True)
    intervals = poly.intervals(sqf=True)

    dps, done = mp.dps, False

    try:
        while not done:
            alg = func()

            for a, b in intervals:
                if a <= alg.a and alg.b <= b:
                    done = True
                    break
            else:
                mp.dps *= 2
    finally:
        mp.dps = dps

    if eps is not None:
        a, b = poly.refine_root(a, b, eps=eps, fast=fast)

    return (a, b)