1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
|
"""
This module contain solvers for all kinds of equations:
- algebraic or transcendental, use solve()
- recurrence, use rsolve()
- differential, use dsolve()
- nonlinear (numerically), use nsolve()
(you will need a good starting point)
"""
from __future__ import print_function, division
from sympy.core.compatibility import (iterable, is_sequence, ordered,
default_sort_key, reduce, xrange)
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.sympify import sympify
from sympy.core import (C, S, Add, Symbol, Wild, Equality, Dummy, Basic,
Expr, Mul, Pow)
from sympy.core.exprtools import factor_terms
from sympy.core.function import (expand_mul, expand_multinomial, expand_log,
Derivative, AppliedUndef, UndefinedFunction, nfloat,
count_ops, Function, expand_power_exp)
from sympy.core.numbers import ilcm, Float
from sympy.core.relational import Relational
from sympy.logic.boolalg import And, Or
from sympy.core.basic import preorder_traversal
from sympy.functions import (log, exp, LambertW, cos, sin, tan, cot, cosh,
sinh, tanh, coth, acos, asin, atan, acot, acosh,
asinh, atanh, acoth, Abs, sign, re, im, arg,
sqrt, atan2)
from sympy.functions.elementary.miscellaneous import real_root
from sympy.simplify import (simplify, collect, powsimp, posify, powdenest,
nsimplify, denom, logcombine)
from sympy.simplify.sqrtdenest import sqrt_depth, _mexpand
from sympy.simplify.fu import TR1, hyper_as_trig
from sympy.matrices import Matrix, zeros
from sympy.polys import (roots, cancel, factor, Poly, together, RootOf,
degree, PolynomialError)
from sympy.functions.elementary.piecewise import piecewise_fold, Piecewise
from sympy.utilities.lambdify import lambdify
from sympy.utilities.misc import filldedent
from sympy.utilities.iterables import uniq, generate_bell, flatten
from mpmath import findroot
from sympy.solvers.polysys import solve_poly_system
from sympy.solvers.inequalities import reduce_inequalities
from sympy.assumptions import Q, ask
from types import GeneratorType
from collections import defaultdict
import warnings
def _ispow(e):
"""Return True if e is a Pow or is exp."""
return isinstance(e, Expr) and (e.is_Pow or e.func is exp)
def denoms(eq, symbols=None):
"""Return (recursively) set of all denominators that appear in eq
that contain any symbol in iterable ``symbols``; if ``symbols`` is
None (default) then all denominators will be returned.
Examples
========
>>> from sympy.solvers.solvers import denoms
>>> from sympy.abc import x, y, z
>>> from sympy import sqrt
>>> denoms(x/y)
set([y])
>>> denoms(x/(y*z))
set([y, z])
>>> denoms(3/x + y/z)
set([x, z])
>>> denoms(x/2 + y/z)
set([2, z])
"""
pot = preorder_traversal(eq)
dens = set()
for p in pot:
den = denom(p)
if den is S.One:
continue
for d in Mul.make_args(den):
dens.add(d)
if not symbols:
return dens
rv = []
for d in dens:
free = d.free_symbols
if any(s in free for s in symbols):
rv.append(d)
return set(rv)
def checksol(f, symbol, sol=None, **flags):
"""Checks whether sol is a solution of equation f == 0.
Input can be either a single symbol and corresponding value
or a dictionary of symbols and values. ``f`` can be a single
equation or an iterable of equations. A solution must satisfy
all equations in ``f`` to be considered valid; if a solution
does not satisfy any equation, False is returned; if one or
more checks are inconclusive (and none are False) then None
is returned.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers import checksol
>>> x, y = symbols('x,y')
>>> checksol(x**4 - 1, x, 1)
True
>>> checksol(x**4 - 1, x, 0)
False
>>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4})
True
To check if an expression is zero using checksol, pass it
as ``f`` and send an empty dictionary for ``symbol``:
>>> checksol(x**2 + x - x*(x + 1), {})
True
None is returned if checksol() could not conclude.
flags:
'numerical=True (default)'
do a fast numerical check if ``f`` has only one symbol.
'minimal=True (default is False)'
a very fast, minimal testing.
'warn=True (default is False)'
show a warning if checksol() could not conclude.
'simplify=True (default)'
simplify solution before substituting into function and
simplify the function before trying specific simplifications
'force=True (default is False)'
make positive all symbols without assumptions regarding sign.
"""
minimal = flags.get('minimal', False)
if sol is not None:
sol = {symbol: sol}
elif isinstance(symbol, dict):
sol = symbol
else:
msg = 'Expecting sym, val or {sym: val}, None but got %s, %s'
raise ValueError(msg % (symbol, sol))
if iterable(f):
if not f:
raise ValueError('no functions to check')
rv = True
for fi in f:
check = checksol(fi, sol, **flags)
if check:
continue
if check is False:
return False
rv = None # don't return, wait to see if there's a False
return rv
if isinstance(f, Poly):
f = f.as_expr()
elif isinstance(f, Equality):
f = f.lhs - f.rhs
if not f:
return True
if sol and not f.has(*list(sol.keys())):
# if f(y) == 0, x=3 does not set f(y) to zero...nor does it not
return None
illegal = set([S.NaN,
S.ComplexInfinity,
S.Infinity,
S.NegativeInfinity])
if any(sympify(v).atoms() & illegal for k, v in sol.items()):
return False
was = f
attempt = -1
numerical = flags.get('numerical', True)
while 1:
attempt += 1
if attempt == 0:
val = f.subs(sol)
if val.atoms() & illegal:
return False
elif attempt == 1:
if val.free_symbols:
if not val.is_constant(*list(sol.keys()), simplify=not minimal):
return False
# there are free symbols -- simple expansion might work
_, val = val.as_content_primitive()
val = expand_mul(expand_multinomial(val))
elif attempt == 2:
if minimal:
return
if flags.get('simplify', True):
for k in sol:
sol[k] = simplify(sol[k])
# start over without the failed expanded form, possibly
# with a simplified solution
val = f.subs(sol)
if flags.get('force', True):
val, reps = posify(val)
# expansion may work now, so try again and check
exval = expand_mul(expand_multinomial(val))
if exval.is_number or not exval.free_symbols:
# we can decide now
val = exval
elif attempt == 3:
val = powsimp(val)
elif attempt == 4:
val = cancel(val)
elif attempt == 5:
val = val.expand()
elif attempt == 6:
val = together(val)
elif attempt == 7:
val = powsimp(val)
else:
# if there are no radicals and no functions then this can't be
# zero anymore -- can it?
pot = preorder_traversal(expand_mul(val))
seen = set()
saw_pow_func = False
for p in pot:
if p in seen:
continue
seen.add(p)
if p.is_Pow and not p.exp.is_Integer:
saw_pow_func = True
elif p.is_Function:
saw_pow_func = True
elif isinstance(p, UndefinedFunction):
saw_pow_func = True
if saw_pow_func:
break
if saw_pow_func is False:
return False
if flags.get('force', True):
# don't do a zero check with the positive assumptions in place
val = val.subs(reps)
nz = val.is_nonzero
if nz is not None:
# issue 2574: nz may be True even when False
# so these are just hacks to keep a false positive
# from being returned
# HACK 1: LambertW (issue 2574)
if val.is_number and val.has(LambertW):
# don't eval this to verify solution since if we got here,
# numerical must be False
return None
# add other HACKs here if necessary, otherwise we assume
# the nz value is correct
return not nz
break
if val == was:
continue
elif val.is_Rational:
return val == 0
if numerical and not val.free_symbols:
return abs(val.n(18).n(12, chop=True)) < 1e-9
was = val
if flags.get('warn', False):
warnings.warn("\n\tWarning: could not verify solution %s." % sol)
# returns None if it can't conclude
# TODO: improve solution testing
def check_assumptions(expr, **assumptions):
"""Checks whether expression `expr` satisfies all assumptions.
`assumptions` is a dict of assumptions: {'assumption': True|False, ...}.
Examples
========
>>> from sympy import Symbol, pi, I, exp
>>> from sympy.solvers.solvers import check_assumptions
>>> check_assumptions(-5, integer=True)
True
>>> check_assumptions(pi, real=True, integer=False)
True
>>> check_assumptions(pi, real=True, negative=True)
False
>>> check_assumptions(exp(I*pi/7), real=False)
True
>>> x = Symbol('x', real=True, positive=True)
>>> check_assumptions(2*x + 1, real=True, positive=True)
True
>>> check_assumptions(-2*x - 5, real=True, positive=True)
False
`None` is returned if check_assumptions() could not conclude.
>>> check_assumptions(2*x - 1, real=True, positive=True)
>>> z = Symbol('z')
>>> check_assumptions(z, real=True)
"""
expr = sympify(expr)
result = True
for key, expected in assumptions.items():
if expected is None:
continue
test = getattr(expr, 'is_' + key, None)
if test is expected:
continue
elif test is not None:
return False
result = None # Can't conclude, unless an other test fails.
return result
def solve(f, *symbols, **flags):
"""
Algebraically solves equations and systems of equations.
Currently supported are:
- univariate polynomial,
- transcendental
- piecewise combinations of the above
- systems of linear and polynomial equations
- sytems containing relational expressions.
Input is formed as:
* f
- a single Expr or Poly that must be zero,
- an Equality
- a Relational expression or boolean
- iterable of one or more of the above
* symbols (object(s) to solve for) specified as
- none given (other non-numeric objects will be used)
- single symbol
- denested list of symbols
e.g. solve(f, x, y)
- ordered iterable of symbols
e.g. solve(f, [x, y])
* flags
'dict'=True (default is False)
return list (perhaps empty) of solution mappings
'set'=True (default is False)
return list of symbols and set of tuple(s) of solution(s)
'exclude=[] (default)'
don't try to solve for any of the free symbols in exclude;
if expressions are given, the free symbols in them will
be extracted automatically.
'check=True (default)'
If False, don't do any testing of solutions. This can be
useful if one wants to include solutions that make any
denominator zero.
'numerical=True (default)'
do a fast numerical check if ``f`` has only one symbol.
'minimal=True (default is False)'
a very fast, minimal testing.
'warning=True (default is False)'
show a warning if checksol() could not conclude.
'simplify=True (default)'
simplify all but cubic and quartic solutions before
returning them and (if check is not False) use the
general simplify function on the solutions and the
expression obtained when they are substituted into the
function which should be zero
'force=True (default is False)'
make positive all symbols without assumptions regarding sign.
'rational=True (default)'
recast Floats as Rational; if this option is not used, the
system containing floats may fail to solve because of issues
with polys. If rational=None, Floats will be recast as
rationals but the answer will be recast as Floats. If the
flag is False then nothing will be done to the Floats.
'manual=True (default is False)'
do not use the polys/matrix method to solve a system of
equations, solve them one at a time as you might "manually".
'implicit=True (default is False)'
allows solve to return a solution for a pattern in terms of
other functions that contain that pattern; this is only
needed if the pattern is inside of some invertible function
like cos, exp, ....
'particular=True (default is False)'
instructs solve to try to find a particular solution to a linear
system with as many zeros as possible; this is very expensive
'quick=True (default is False)'
when using particular=True, use a fast heuristic instead to find a
solution with many zeros (instead of using the very slow method
guaranteed to find the largest number of zeros possible)
Examples
========
The output varies according to the input and can be seen by example::
>>> from sympy import solve, Poly, Eq, Function, exp
>>> from sympy.abc import x, y, z, a, b
>>> f = Function('f')
* boolean or univariate Relational
>>> solve(x < 3)
And(im(x) == 0, re(x) < 3)
* to always get a list of solution mappings, use flag dict=True
>>> solve(x - 3, dict=True)
[{x: 3}]
>>> solve([x - 3, y - 1], dict=True)
[{x: 3, y: 1}]
* to get a list of symbols and set of solution(s) use flag set=True
>>> solve([x**2 - 3, y - 1], set=True)
([x, y], set([(-sqrt(3), 1), (sqrt(3), 1)]))
* single expression and single symbol that is in the expression
>>> solve(x - y, x)
[y]
>>> solve(x - 3, x)
[3]
>>> solve(Eq(x, 3), x)
[3]
>>> solve(Poly(x - 3), x)
[3]
>>> solve(x**2 - y**2, x, set=True)
([x], set([(-y,), (y,)]))
>>> solve(x**4 - 1, x, set=True)
([x], set([(-1,), (1,), (-I,), (I,)]))
* single expression with no symbol that is in the expression
>>> solve(3, x)
[]
>>> solve(x - 3, y)
[]
* single expression with no symbol given
In this case, all free symbols will be selected as potential
symbols to solve for. If the equation is univariate then a list
of solutions is returned; otherwise -- as is the case when symbols are
given as an iterable of length > 1 -- a list of mappings will be returned.
>>> solve(x - 3)
[3]
>>> solve(x**2 - y**2)
[{x: -y}, {x: y}]
>>> solve(z**2*x**2 - z**2*y**2)
[{x: -y}, {x: y}, {z: 0}]
>>> solve(z**2*x - z**2*y**2)
[{x: y**2}, {z: 0}]
* when an object other than a Symbol is given as a symbol, it is
isolated algebraically and an implicit solution may be obtained.
This is mostly provided as a convenience to save one from replacing
the object with a Symbol and solving for that Symbol. It will only
work if the specified object can be replaced with a Symbol using the
subs method.
>>> solve(f(x) - x, f(x))
[x]
>>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x))
[x + f(x)]
>>> solve(f(x).diff(x) - f(x) - x, f(x))
[-x + Derivative(f(x), x)]
>>> solve(x + exp(x)**2, exp(x), set=True)
([exp(x)], set([(-sqrt(-x),), (sqrt(-x),)]))
>>> from sympy import Indexed, IndexedBase, Tuple, sqrt
>>> A = IndexedBase('A')
>>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1)
>>> solve(eqs, eqs.atoms(Indexed))
{A[1]: 1, A[2]: 2}
* To solve for a *symbol* implicitly, use 'implicit=True':
>>> solve(x + exp(x), x)
[-LambertW(1)]
>>> solve(x + exp(x), x, implicit=True)
[-exp(x)]
* It is possible to solve for anything that can be targeted with
subs:
>>> solve(x + 2 + sqrt(3), x + 2)
[-sqrt(3)]
>>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2)
{y: -2 + sqrt(3), x + 2: -sqrt(3)}
* Nothing heroic is done in this implicit solving so you may end up
with a symbol still in the solution:
>>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y)
>>> solve(eqs, y, x + 2)
{y: -sqrt(3)/(x + 3), x + 2: (-2*x - 6 + sqrt(3))/(x + 3)}
>>> solve(eqs, y*x, x)
{x: -y - 4, x*y: -3*y - sqrt(3)}
* if you attempt to solve for a number remember that the number
you have obtained does not necessarily mean that the value is
equivalent to the expression obtained:
>>> solve(sqrt(2) - 1, 1)
[sqrt(2)]
>>> solve(x - y + 1, 1) # /!\ -1 is targeted, too
[x/(y - 1)]
>>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)]
[-x + y]
* To solve for a function within a derivative, use dsolve.
* single expression and more than 1 symbol
* when there is a linear solution
>>> solve(x - y**2, x, y)
[{x: y**2}]
>>> solve(x**2 - y, x, y)
[{y: x**2}]
* when undetermined coefficients are identified
* that are linear
>>> solve((a + b)*x - b + 2, a, b)
{a: -2, b: 2}
* that are nonlinear
>>> solve((a + b)*x - b**2 + 2, a, b, set=True)
([a, b], set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]))
* if there is no linear solution then the first successful
attempt for a nonlinear solution will be returned
>>> solve(x**2 - y**2, x, y)
[{x: -y}, {x: y}]
>>> solve(x**2 - y**2/exp(x), x, y)
[{x: 2*LambertW(y/2)}]
>>> solve(x**2 - y**2/exp(x), y, x)
[{y: -x*exp(x/2)}, {y: x*exp(x/2)}]
* iterable of one or more of the above
* involving relationals or bools
>>> solve([x < 3, x - 2])
And(im(x) == 0, re(x) == 2)
>>> solve([x > 3, x - 2])
False
* when the system is linear
* with a solution
>>> solve([x - 3], x)
{x: 3}
>>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y)
{x: -3, y: 1}
>>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z)
{x: -3, y: 1}
>>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y)
{x: -5*y + 2, z: 21*y - 6}
* without a solution
>>> solve([x + 3, x - 3])
[]
* when the system is not linear
>>> solve([x**2 + y -2, y**2 - 4], x, y, set=True)
([x, y], set([(-2, -2), (0, 2), (2, -2)]))
* if no symbols are given, all free symbols will be selected and a list
of mappings returned
>>> solve([x - 2, x**2 + y])
[{x: 2, y: -4}]
>>> solve([x - 2, x**2 + f(x)], set([f(x), x]))
[{x: 2, f(x): -4}]
* if any equation doesn't depend on the symbol(s) given it will be
eliminated from the equation set and an answer may be given
implicitly in terms of variables that were not of interest
>>> solve([x - y, y - 3], x)
{x: y}
Notes
=====
assumptions aren't checked when `solve()` input involves
relationals or bools.
When the solutions are checked, those that make any denominator zero
are automatically excluded. If you do not want to exclude such solutions
then use the check=False option:
>>> from sympy import sin, limit
>>> solve(sin(x)/x) # 0 is excluded
[pi]
If check=False then a solution to the numerator being zero is found: x = 0.
In this case, this is a spurious solution since sin(x)/x has the well known
limit (without dicontinuity) of 1 at x = 0:
>>> solve(sin(x)/x, check=False)
[0, pi]
In the following case, however, the limit exists and is equal to the the
value of x = 0 that is excluded when check=True:
>>> eq = x**2*(1/x - z**2/x)
>>> solve(eq, x)
[]
>>> solve(eq, x, check=False)
[0]
>>> limit(eq, x, 0, '-')
0
>>> limit(eq, x, 0, '+')
0
See Also
========
- rsolve() for solving recurrence relationships
- dsolve() for solving differential equations
"""
# make f and symbols into lists of sympified quantities
# keeping track of how f was passed since if it is a list
# a dictionary of results will be returned.
###########################################################################
def _sympified_list(w):
return list(map(sympify, w if iterable(w) else [w]))
bare_f = not iterable(f)
ordered_symbols = (symbols and
symbols[0] and
(isinstance(symbols[0], Symbol) or
is_sequence(symbols[0],
include=GeneratorType)
)
)
f, symbols = (_sympified_list(w) for w in [f, symbols])
implicit = flags.get('implicit', False)
# preprocess equation(s)
###########################################################################
for i, fi in enumerate(f):
if isinstance(fi, Equality):
f[i] = fi.lhs - fi.rhs
elif isinstance(fi, Poly):
f[i] = fi.as_expr()
elif isinstance(fi, (bool, C.BooleanAtom)) or fi.is_Relational:
return reduce_inequalities(f, assume=flags.get('assume'),
symbols=symbols)
# Any embedded piecewise functions need to be brought out to the
# top level so that the appropriate strategy gets selected.
# However, this is necessary only if one of the piecewise
# functions depends on one of the symbols we are solving for.
def _has_piecewise(e):
if e.is_Piecewise:
return e.has(*symbols)
return any([_has_piecewise(a) for a in e.args])
if _has_piecewise(f[i]):
f[i] = piecewise_fold(f[i])
# if we have a Matrix, we need to iterate over its elements again
if f[i].is_Matrix:
bare_f = False
f.extend(list(f[i]))
f[i] = S.Zero
# if we can split it into real and imaginary parts then do so
freei = f[i].free_symbols
if freei and all(s.is_real or s.is_imaginary for s in freei):
fr, fi = f[i].as_real_imag()
if fr and fi and not any(i.has(re, im, arg) for i in (fr, fi)) \
and fr != fi:
if bare_f:
bare_f = False
f[i: i + 1] = [fr, fi]
# preprocess symbol(s)
###########################################################################
if not symbols:
# get symbols from equations
symbols = reduce(set.union, [fi.free_symbols
for fi in f], set())
if len(symbols) < len(f):
for fi in f:
pot = preorder_traversal(fi)
for p in pot:
if not (p.is_number or p.is_Add or p.is_Mul) or \
isinstance(p, AppliedUndef):
flags['dict'] = True # better show symbols
symbols.add(p)
pot.skip() # don't go any deeper
symbols = list(symbols)
# supply dummy symbols so solve(3) behaves like solve(3, x)
for i in range(len(f) - len(symbols)):
symbols.append(Dummy())
ordered_symbols = False
elif len(symbols) == 1 and iterable(symbols[0]):
symbols = symbols[0]
# remove symbols the user is not interested in
exclude = flags.pop('exclude', set())
if exclude:
if isinstance(exclude, Expr):
exclude = [exclude]
exclude = reduce(set.union, [e.free_symbols for e in sympify(exclude)])
symbols = [s for s in symbols if s not in exclude]
# real/imag handling
for i, fi in enumerate(f):
_abs = [a for a in fi.atoms(Abs) if a.has(*symbols)]
fi = f[i] = fi.xreplace(dict(list(zip(_abs,
[sqrt(a.args[0]**2) for a in _abs]))))
if fi.has(*_abs):
if any(s.assumptions0 for a in
_abs for s in a.free_symbols):
raise NotImplementedError(filldedent('''
All absolute
values were not removed from %s. In order to solve
this equation, try replacing your symbols with
Dummy symbols (or other symbols without assumptions).
''' % fi))
else:
raise NotImplementedError(filldedent('''
Removal of absolute values from %s failed.''' % fi))
_arg = [a for a in fi.atoms(arg) if a.has(*symbols)]
f[i] = fi.xreplace(dict(list(zip(_arg,
[atan(im(a.args[0])/re(a.args[0])) for a in _arg]))))
# see if re(s) or im(s) appear
irf = []
for s in symbols:
# if s is real or complex then re(s) or im(s) will not appear in the equation;
if s.is_real or s.is_complex:
continue
# if re(s) or im(s) appear, the auxiliary equation must be present
irs = re(s), im(s)
if any(_f.has(i) for _f in f for i in irs):
symbols.extend(irs)
irf.append((s, re(s) + S.ImaginaryUnit*im(s)))
if irf:
for s, rhs in irf:
for i, fi in enumerate(f):
f[i] = fi.xreplace({s: rhs})
if bare_f:
bare_f = False
flags['dict'] = True
f.extend(s - rhs for s, rhs in irf)
# end of real/imag handling
symbols = list(uniq(symbols))
if not ordered_symbols:
# we do this to make the results returned canonical in case f
# contains a system of nonlinear equations; all other cases should
# be unambiguous
symbols = sorted(symbols, key=default_sort_key)
# we can solve for non-symbol entities by replacing them with Dummy symbols
symbols_new = []
symbol_swapped = False
for i, s in enumerate(symbols):
if s.is_Symbol:
s_new = s
else:
symbol_swapped = True
s_new = Dummy('X%d' % i)
symbols_new.append(s_new)
if symbol_swapped:
swap_sym = list(zip(symbols, symbols_new))
f = [fi.subs(swap_sym) for fi in f]
symbols = symbols_new
swap_sym = dict([(v, k) for k, v in swap_sym])
else:
swap_sym = {}
# this is needed in the next two events
symset = set(symbols)
# get rid of equations that have no symbols of interest; we don't
# try to solve them because the user didn't ask and they might be
# hard to solve; this means that solutions may be given in terms
# of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y}
newf = []
for fi in f:
# let the solver handle equations that..
# - have no symbols but are expressions
# - have symbols of interest
# - have no symbols of interest but are constant
# but when an expression is not constant and has no symbols of
# interest, it can't change what we obtain for a solution from
# the remaining equations so we don't include it; and if it's
# zero it can be removed and if it's not zero, there is no
# solution for the equation set as a whole
#
# The reason for doing this filtering is to allow an answer
# to be obtained to queries like solve((x - y, y), x); without
# this mod the return value is []
ok = False
if fi.has(*symset):
ok = True
else:
free = fi.free_symbols
if not free:
if fi.is_Number:
if fi.is_zero:
continue
return []
ok = True
else:
if fi.is_constant():
ok = True
if ok:
newf.append(fi)
if not newf:
return []
f = newf
del newf
# mask off any Object that we aren't going to invert: Derivative,
# Integral, etc... so that solving for anything that they contain will
# give an implicit solution
seen = set()
non_inverts = set()
for fi in f:
pot = preorder_traversal(fi)
for p in pot:
if not isinstance(p, Expr) or isinstance(p, Piecewise):
pass
elif (isinstance(p, bool) or
not p.args or
p in symset or
p.is_Add or p.is_Mul or
p.is_Pow and not implicit or
p.is_Function and not implicit):
continue
elif not p in seen:
seen.add(p)
if p.free_symbols & symset:
non_inverts.add(p)
else:
continue
pot.skip()
del seen
non_inverts = dict(list(zip(non_inverts, [Dummy() for d in non_inverts])))
f = [fi.subs(non_inverts) for fi in f]
non_inverts = [(v, k.subs(swap_sym)) for k, v in non_inverts.items()]
# rationalize Floats
floats = False
if flags.get('rational', True) is not False:
for i, fi in enumerate(f):
if fi.has(Float):
floats = True
f[i] = nsimplify(fi, rational=True)
#
# try to get a solution
###########################################################################
if bare_f:
solution = _solve(f[0], *symbols, **flags)
else:
solution = _solve_system(f, symbols, **flags)
#
# postprocessing
###########################################################################
# Restore masked-off objects
if non_inverts:
def _do_dict(solution):
return dict([(k, v.subs(non_inverts)) for k, v in
solution.items()])
for i in range(1):
if type(solution) is dict:
solution = _do_dict(solution)
break
elif solution and type(solution) is list:
if type(solution[0]) is dict:
solution = [_do_dict(s) for s in solution]
break
elif type(solution[0]) is tuple:
solution = [tuple([v.subs(non_inverts) for v in s]) for s
in solution]
break
else:
solution = [v.subs(non_inverts) for v in solution]
break
elif not solution:
break
else:
raise NotImplementedError(filldedent('''
no handling of %s was implemented''' % solution))
# Restore original "symbols" if a dictionary is returned.
# This is not necessary for
# - the single univariate equation case
# since the symbol will have been removed from the solution;
# - the nonlinear poly_system since that only supports zero-dimensional
# systems and those results come back as a list
#
# ** unless there were Derivatives with the symbols, but those were handled
# above.
if symbol_swapped:
symbols = [swap_sym[k] for k in symbols]
if type(solution) is dict:
solution = dict([(swap_sym[k], v.subs(swap_sym))
for k, v in solution.items()])
elif solution and type(solution) is list and type(solution[0]) is dict:
for i, sol in enumerate(solution):
solution[i] = dict([(swap_sym[k], v.subs(swap_sym))
for k, v in sol.items()])
# undo the dictionary solutions returned when the system was only partially
# solved with poly-system if all symbols are present
if (
solution and
ordered_symbols and
type(solution) is not dict and
type(solution[0]) is dict and
all(s in solution[0] for s in symbols)
):
solution = [tuple([r[s].subs(r) for s in symbols]) for r in solution]
# Get assumptions about symbols, to filter solutions.
# Note that if assumptions about a solution can't be verified, it is still
# returned.
check = flags.get('check', True)
# restore floats
if floats and solution and flags.get('rational', None) is None:
solution = nfloat(solution, exponent=False)
if check and solution:
warning = flags.get('warn', False)
got_None = [] # solutions for which one or more symbols gave None
no_False = [] # solutions for which no symbols gave False
if type(solution) is list:
if type(solution[0]) is tuple:
for sol in solution:
for symb, val in zip(symbols, sol):
test = check_assumptions(val, **symb.assumptions0)
if test is False:
break
if test is None:
got_None.append(sol)
else:
no_False.append(sol)
elif type(solution[0]) is dict:
for sol in solution:
a_None = False
for symb, val in sol.items():
test = check_assumptions(val, **symb.assumptions0)
if test:
continue
if test is False:
break
a_None = True
else:
no_False.append(sol)
if a_None:
got_None.append(sol)
else: # list of expressions
for sol in solution:
test = check_assumptions(sol, **symbols[0].assumptions0)
if test is False:
continue
no_False.append(sol)
if test is None:
got_None.append(sol)
elif type(solution) is dict:
a_None = False
for symb, val in solution.items():
test = check_assumptions(val, **symb.assumptions0)
if test:
continue
if test is False:
no_False = None
break
a_None = True
else:
no_False = solution
if a_None:
got_None.append(solution)
elif isinstance(solution, (Relational, And, Or)):
if len(symbols) != 1:
raise ValueError("Length should be 1")
if warning and symbols[0].assumptions0:
warnings.warn(filldedent("""
\tWarning: assumptions about variable '%s' are
not handled currently.""" % symbols[0]))
# TODO: check also variable assumptions for inequalities
else:
raise TypeError('Unrecognized solution') # improve the checker
solution = no_False
if warning and got_None:
warnings.warn(filldedent("""
\tWarning: assumptions concerning following solution(s)
can't be checked:""" + '\n\t' +
', '.join(str(s) for s in got_None)))
#
# done
###########################################################################
as_dict = flags.get('dict', False)
as_set = flags.get('set', False)
if not as_set and isinstance(solution, list):
# Make sure that a list of solutions is ordered in a canonical way.
solution.sort(key=default_sort_key)
if not as_dict and not as_set:
return solution or []
# return a list of mappings or []
if not solution:
solution = []
else:
if isinstance(solution, dict):
solution = [solution]
elif iterable(solution[0]):
solution = [dict(list(zip(symbols, s))) for s in solution]
elif isinstance(solution[0], dict):
pass
else:
if len(symbols) != 1:
raise ValueError("Length should be 1")
solution = [{symbols[0]: s} for s in solution]
if as_dict:
return solution
assert as_set
if not solution:
return [], set()
k = sorted(list(solution[0].keys()), key=lambda i: i.sort_key())
return k, set([tuple([s[ki] for ki in k]) for s in solution])
def _solve(f, *symbols, **flags):
"""Return a checked solution for f in terms of one or more of the
symbols."""
if len(symbols) != 1:
soln = None
free = f.free_symbols
ex = free - set(symbols)
if len(ex) != 1:
ind, dep = f.as_independent(*symbols)
ex = ind.free_symbols & dep.free_symbols
if len(ex) == 1:
ex = ex.pop()
try:
# may come back as dict or list (if non-linear)
soln = solve_undetermined_coeffs(f, symbols, ex)
except NotImplementedError:
pass
if soln:
return soln
# find first successful solution
failed = []
got_s = set([])
result = []
for s in symbols:
n, d = solve_linear(f, symbols=[s])
if n.is_Symbol:
# no need to check but we should simplify if desired
if flags.get('simplify', True):
d = simplify(d)
if got_s and any([ss in d.free_symbols for ss in got_s]):
# sol depends on previously solved symbols: discard it
continue
got_s.add(n)
result.append({n: d})
elif n and d: # otherwise there was no solution for s
failed.append(s)
if not failed:
return result
for s in failed:
try:
soln = _solve(f, s, **flags)
for sol in soln:
if got_s and any([ss in sol.free_symbols for ss in got_s]):
# sol depends on previously solved symbols: discard it
continue
got_s.add(s)
result.append({s: sol})
except NotImplementedError:
continue
if got_s:
return result
else:
msg = "No algorithms are implemented to solve equation %s"
raise NotImplementedError(msg % f)
symbol = symbols[0]
check = flags.get('check', True)
# build up solutions if f is a Mul
if f.is_Mul:
result = set()
dens = denoms(f, symbols)
for m in f.args:
soln = _solve(m, symbol, **flags)
result.update(set(soln))
result = list(result)
if check:
result = [s for s in result if
all(not checksol(den, {symbol: s}, **flags) for den in dens)]
# set flags for quick exit at end
check = False
flags['simplify'] = False
elif f.is_Piecewise:
result = set()
for n, (expr, cond) in enumerate(f.args):
candidates = _solve(expr, *symbols, **flags)
for candidate in candidates:
if candidate in result:
continue
cond = (cond == True) or cond.subs(symbol, candidate)
if cond != False:
# Only include solutions that do not match the condition
# of any previous pieces.
matches_other_piece = False
for other_n, (other_expr, other_cond) in enumerate(f.args):
if other_n == n:
break
if other_cond == False:
continue
if other_cond.subs(symbol, candidate) == True:
matches_other_piece = True
break
if not matches_other_piece:
result.add(Piecewise(
(candidate, cond == True or cond.doit()),
(S.NaN, True)
))
check = False
else:
# first see if it really depends on symbol and whether there
# is a linear solution
f_num, sol = solve_linear(f, symbols=symbols)
if not symbol in f_num.free_symbols:
return []
elif f_num.is_Symbol:
# no need to check but simplify if desired
if flags.get('simplify', True):
sol = simplify(sol)
return [sol]
result = False # no solution was obtained
msg = '' # there is no failure message
dens = denoms(f, symbols) # store these for checking later
# Poly is generally robust enough to convert anything to
# a polynomial and tell us the different generators that it
# contains, so we will inspect the generators identified by
# polys to figure out what to do.
# but first remove radicals as this will help Polys
if flags.pop('unrad', True):
try:
# try remove all...
u = unrad(f_num)
except ValueError:
# ...else hope for the best while letting some remain
try:
u = unrad(f, symbol)
except ValueError:
u = None # hope for best with original equation
if u:
flags['unrad'] = False # don't unrad next time
eq, cov, dens2 = u
dens.update(dens2)
if cov:
if len(cov) > 1:
raise NotImplementedError('Not sure how to handle this.')
isym, ieq = cov[0]
# since cov is written in terms of positive symbols, set
# check to False or else 0 would be excluded; the solution
# will be checked below
absent = Dummy()
check = flags.get('check', absent)
flags['check'] = False
sol = _solve(eq, isym, **flags)
inv = _solve(ieq, symbol, **flags)
result = []
for s in sol:
for i in inv:
result.append(i.subs(isym, s))
if check == absent:
flags.pop('check')
else:
flags['check'] = check
else:
result = _solve(eq, symbol, **flags)
if result is False:
# rewrite hyperbolics in terms of exp
f_num = f_num.replace(lambda w: isinstance(w, C.HyperbolicFunction),
lambda w: w.rewrite(exp))
poly = Poly(f_num)
if poly is None:
raise ValueError('could not convert %s to Poly' % f_num)
gens = [g for g in poly.gens if g.has(symbol)]
if len(gens) > 1:
# If there is more than one generator, it could be that the
# generators have the same base but different powers, e.g.
# >>> Poly(exp(x)+1/exp(x))
# Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ')
# >>> Poly(sqrt(x)+sqrt(sqrt(x)))
# Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ')
# If the exponents are Rational then a change of variables
# will make this a polynomial equation in a single base.
def _as_base_q(x):
"""Return (b**e, q) for x = b**(p*e/q) where p/q is the leading
Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3)
"""
b, e = x.as_base_exp()
if e.is_Rational:
return b, e.q
if not e.is_Mul:
return x, 1
c, ee = e.as_coeff_Mul()
if c.is_Rational and c is not S.One: # c could be a Float
return b**ee, c.q
return x, 1
bases, qs = list(zip(*[_as_base_q(g) for g in gens]))
bases = set(bases)
if len(bases) > 1:
funcs = set(b for b in bases if b.is_Function)
trig = set([_ for _ in funcs if
isinstance(_, C.TrigonometricFunction)])
other = funcs - trig
if not other and len(funcs.intersection(trig)) > 1:
newf = TR1(f_num).rewrite(tan)
if newf != f_num:
return _solve(newf, symbol, **flags)
# just a simple case - see if replacement of single function
# clears all symbol-dependent functions, e.g.
# log(x) - log(log(x) - 1) - 3 can be solved even though it has
# two generators.
if funcs:
funcs = list(ordered(funcs)) # put shallowest function first
f1 = funcs[0]
t = Dummy()
# perform the substitution
ftry = f_num.subs(f1, t)
# if no Functions left, we can proceed with usual solve
if not ftry.has(symbol):
cv_sols = _solve(ftry, t, **flags)
cv_inv = _solve(t - f1, symbol, **flags)[0]
sols = list()
for sol in cv_sols:
sols.append(cv_inv.subs(t, sol))
return list(ordered(sols))
msg = 'multiple generators %s' % gens
else: # len(bases) == 1 and all(q == 1 for q in qs):
# e.g. case where gens are exp(x), exp(-x)
u = bases.pop()
t = Dummy('t')
inv = _solve(u - t, symbol, **flags)
if isinstance(u, (Pow, exp)):
# this will be resolved by factor in _tsolve but we might
# as well try a simple expansion here to get things in
# order so something like the following will work now without
# having to factor:
# >>> eq = (exp(I*(-x-2))+exp(I*(x+2)))
# >>> eq.subs(exp(x),y) # fails
# exp(I*(-x - 2)) + exp(I*(x + 2))
# >>> eq.expand().subs(exp(x),y) # works
# y**I*exp(2*I) + y**(-I)*exp(-2*I)
def _expand(p):
b, e = p.as_base_exp()
e = expand_mul(e)
return expand_power_exp(b**e)
ftry = f_num.replace(
lambda w: w.is_Pow or isinstance(w, exp),
_expand).subs(u, t)
if not ftry.has(symbol):
soln = _solve(ftry, t, **flags)
sols = list()
for sol in soln:
for i in inv:
sols.append(i.subs(t, sol))
return list(ordered(sols))
elif len(gens) == 1:
# There is only one generator that we are interested in, but there
# may have been more than one generator identified by polys (e.g.
# for symbols other than the one we are interested in) so recast
# the poly in terms of our generator of interest.
if len(poly.gens) > 1:
poly = Poly(poly, gens[0])
# if we aren't on the tsolve-pass, use roots
if not flags.pop('tsolve', False):
flags['tsolve'] = True
if poly.degree() == 1 and (
poly.gen.is_Pow and
poly.gen.exp.is_Rational and
not poly.gen.exp.is_Integer):
pass
else:
# for cubics and quartics, if the flag wasn't set, DON'T do it
# by default since the results are quite long. Perhaps one
# could base this decision on a certain critical length of the
# roots.
deg = poly.degree()
if deg > 2:
flags['simplify'] = flags.get('simplify', False)
# TODO: Just pass composite=True to roots()
poly = Poly(poly.as_expr(), poly.gen, composite=True)
soln = list(roots(poly, cubics=True, quartics=True,
quintics=True).keys())
if len(soln) < deg:
try:
# get all_roots if possible
soln = list(ordered(uniq(poly.all_roots())))
except NotImplementedError:
pass
gen = poly.gen
if gen != symbol:
u = Dummy()
inversion = _solve(gen - u, symbol, **flags)
soln = list(ordered(set([i.subs(u, s) for i in
inversion for s in soln])))
result = soln
# fallback if above fails
if result is False:
# allow tsolve to be used on next pass if needed
flags.pop('tsolve', None)
try:
result = _tsolve(f_num, symbol, **flags)
except PolynomialError:
result = None
if result is None:
result = False
if result is False:
raise NotImplementedError(msg +
"\nNo algorithms are implemented to solve equation %s" % f)
if flags.get('simplify', True):
result = list(map(simplify, result))
# we just simplified the solution so we now set the flag to
# False so the simplification doesn't happen again in checksol()
flags['simplify'] = False
if check:
# reject any result that makes any denom. affirmatively 0;
# if in doubt, keep it
result = [s for s in result if isinstance(s, RootOf) or
all(not checksol(den, {symbol: s}, **flags)
for den in dens)]
# keep only results if the check is not False
result = [r for r in result if isinstance(r, RootOf) or
checksol(f_num, {symbol: r}, **flags) is not False]
return result
def _solve_system(exprs, symbols, **flags):
check = flags.get('check', True)
if not exprs:
return []
polys = []
dens = set()
failed = []
result = False
manual = flags.get('manual', False)
for j, g in enumerate(exprs):
dens.update(denoms(g, symbols))
i, d = _invert(g, *symbols)
g = d - i
g = exprs[j] = g.as_numer_denom()[0]
if manual:
failed.append(g)
continue
poly = g.as_poly(*symbols, extension=True)
if poly is not None:
polys.append(poly)
else:
failed.append(g)
if not polys:
solved_syms = []
else:
if all(p.is_linear for p in polys):
n, m = len(polys), len(symbols)
matrix = zeros(n, m + 1)
for i, poly in enumerate(polys):
for monom, coeff in poly.terms():
try:
j = monom.index(1)
matrix[i, j] = coeff
except ValueError:
matrix[i, m] = -coeff
# returns a dictionary ({symbols: values}) or None
if flags.pop('particular', False):
result = minsolve_linear_system(matrix, *symbols, **flags)
else:
result = solve_linear_system(matrix, *symbols, **flags)
if result:
# it doesn't need to be checked but we need to see
# that it didn't set any denominators to 0
if any(checksol(d, result, **flags) for d in dens):
result = None
if failed:
if result:
solved_syms = list(result.keys())
else:
solved_syms = []
else:
if len(symbols) > len(polys):
from sympy.utilities.iterables import subsets
free = set.union(*[p.free_symbols for p in polys])
free = list(free.intersection(symbols))
free.sort(key=default_sort_key)
got_s = set([])
result = []
for syms in subsets(free, len(polys)):
try:
# returns [] or list of tuples of solutions for syms
res = solve_poly_system(polys, *syms)
if res:
for r in res:
skip = False
for r1 in r:
if got_s and any([ss in r1.free_symbols
for ss in got_s]):
# sol depends on previously
# solved symbols: discard it
skip = True
if not skip:
got_s.update(syms)
result.extend([dict(list(zip(syms, r)))])
except NotImplementedError:
pass
if got_s:
solved_syms = list(got_s)
else:
raise NotImplementedError('no valid subset found')
else:
try:
result = solve_poly_system(polys, *symbols)
solved_syms = symbols
except NotImplementedError:
failed.extend([g.as_expr() for g in polys])
solved_syms = []
if result:
# we don't know here if the symbols provided were given
# or not, so let solve resolve that. A list of dictionaries
# is going to always be returned from here.
#
# We do not check the solution obtained from polys, either.
result = [dict(list(zip(solved_syms, r))) for r in result]
if failed:
# For each failed equation, see if we can solve for one of the
# remaining symbols from that equation. If so, we update the
# solution set and continue with the next failed equation,
# repeating until we are done or we get an equation that can't
# be solved.
if result:
if type(result) is dict:
result = [result]
else:
result = [{}]
def _ok_syms(e, sort=False):
rv = (e.free_symbols - solved_syms) & legal
if sort:
rv = list(rv)
rv.sort(key=default_sort_key)
return rv
solved_syms = set(solved_syms) # set of symbols we have solved for
legal = set(symbols) # what we are interested in
simplify_flag = flags.get('simplify', None)
do_simplify = flags.get('simplify', True)
# sort so equation with the fewest potential symbols is first
for eq in ordered(failed, lambda _: len(_ok_syms(_))):
newresult = []
bad_results = []
got_s = set([])
u = Dummy()
for r in result:
# update eq with everything that is known so far
eq2 = eq.subs(r)
# if check is True then we see if it satisfies this
# equation, otherwise we just accept it
if check and r:
b = checksol(u, u, eq2, minimal=True)
if b is not None:
# this solution is sufficient to know whether
# it is valid or not so we either accept or
# reject it, then continue
if b:
newresult.append(r)
else:
bad_results.append(r)
continue
# search for a symbol amongst those available that
# can be solved for
ok_syms = _ok_syms(eq2, sort=True)
if not ok_syms:
if r:
newresult.append(r)
break # skip as it's independent of desired symbols
for s in ok_syms:
try:
soln = _solve(eq2, s, **flags)
except NotImplementedError:
continue
# put each solution in r and append the now-expanded
# result in the new result list; use copy since the
# solution for s in being added in-place
if do_simplify:
flags['simplify'] = False # for checksol's sake
for sol in soln:
if got_s and any([ss in sol.free_symbols for ss in got_s]):
# sol depends on previously solved symbols: discard it
continue
if check:
# check that it satisfies *other* equations
ok = False
for p in polys:
if checksol(p, s, sol, **flags) is False:
break
else:
ok = True
if not ok:
continue
# check that it doesn't set any denominator to 0
if any(checksol(d, s, sol, **flags) for d in dens):
continue
# update existing solutions with this new one
rnew = r.copy()
for k, v in r.items():
rnew[k] = v.subs(s, sol)
# and add this new solution
rnew[s] = sol
newresult.append(rnew)
if simplify_flag is not None:
flags['simplify'] = simplify_flag
got_s.add(s)
if not got_s:
raise NotImplementedError('could not solve %s' % eq2)
if got_s:
result = newresult
for b in bad_results:
result.remove(b)
# if there is only one result should we return just the dictionary?
return result
def solve_linear(lhs, rhs=0, symbols=[], exclude=[]):
r""" Return a tuple derived from f = lhs - rhs that is either:
(numerator, denominator) of ``f``
If this comes back as (0, 1) it means
that ``f`` is independent of the symbols in ``symbols``, e.g::
y*cos(x)**2 + y*sin(x)**2 - y = y*(0) = 0
cos(x)**2 + sin(x)**2 = 1
If it comes back as (0, 0) there is no solution to the equation
amongst the symbols given.
If the numerator is not zero then the function is guaranteed
to be dependent on a symbol in ``symbols``.
or
(symbol, solution) where symbol appears linearly in the numerator of
``f``, is in ``symbols`` (if given) and is not in ``exclude`` (if given).
No simplification is done to ``f`` other than and mul=True expansion,
so the solution will correspond strictly to a unique solution.
Examples
========
>>> from sympy.solvers.solvers import solve_linear
>>> from sympy.abc import x, y, z
These are linear in x and 1/x:
>>> solve_linear(x + y**2)
(x, -y**2)
>>> solve_linear(1/x - y**2)
(x, y**(-2))
When not linear in x or y then the numerator and denominator are returned.
>>> solve_linear(x**2/y**2 - 3)
(x**2 - 3*y**2, y**2)
If the numerator is a symbol then (0, 0) is returned if the solution for
that symbol would have set any denominator to 0:
>>> solve_linear(1/(1/x - 2))
(0, 0)
>>> 1/(1/x) # to SymPy, this looks like x ...
x
>>> solve_linear(1/(1/x)) # so a solution is given
(x, 0)
If x is allowed to cancel, then this appears linear, but this sort of
cancellation is not done so the solution will always satisfy the original
expression without causing a division by zero error.
>>> solve_linear(x**2*(1/x - z**2/x))
(x**2*(-z**2 + 1), x)
You can give a list of what you prefer for x candidates:
>>> solve_linear(x + y + z, symbols=[y])
(y, -x - z)
You can also indicate what variables you don't want to consider:
>>> solve_linear(x + y + z, exclude=[x, z])
(y, -x - z)
If only x was excluded then a solution for y or z might be obtained.
"""
from sympy import Equality
if isinstance(lhs, Equality):
if rhs:
raise ValueError(filldedent('''
If lhs is an Equality, rhs must be 0 but was %s''' % rhs))
rhs = lhs.rhs
lhs = lhs.lhs
dens = None
eq = lhs - rhs
n, d = eq.as_numer_denom()
if not n:
return S.Zero, S.One
free = n.free_symbols
if not symbols:
symbols = free
else:
bad = [s for s in symbols if not s.is_Symbol]
if bad:
if len(bad) == 1:
bad = bad[0]
if len(symbols) == 1:
eg = 'solve(%s, %s)' % (eq, symbols[0])
else:
eg = 'solve(%s, *%s)' % (eq, list(symbols))
raise ValueError(filldedent('''
solve_linear only handles symbols, not %s. To isolate
non-symbols use solve, e.g. >>> %s <<<.
''' % (bad, eg)))
symbols = free.intersection(symbols)
symbols = symbols.difference(exclude)
dfree = d.free_symbols
# derivatives are easy to do but tricky to analyze to see if they are going
# to disallow a linear solution, so for simplicity we just evaluate the
# ones that have the symbols of interest
derivs = defaultdict(list)
for der in n.atoms(Derivative):
csym = der.free_symbols & symbols
for c in csym:
derivs[c].append(der)
if symbols:
all_zero = True
for xi in symbols:
# if there are derivatives in this var, calculate them now
if type(derivs[xi]) is list:
derivs[xi] = dict([(der, der.doit()) for der in derivs[xi]])
nn = n.subs(derivs[xi])
dn = nn.diff(xi)
if dn:
all_zero = False
if not xi in dn.free_symbols:
vi = -(nn.subs(xi, 0))/dn
if dens is None:
dens = denoms(eq, symbols)
if not any(checksol(di, {xi: vi}, minimal=True) is True
for di in dens):
# simplify any trivial integral
irep = [(i, i.doit()) for i in vi.atoms(C.Integral) if
i.function.is_number]
# do a slight bit of simplification
vi = expand_mul(vi.subs(irep))
if not d.has(xi) or not (d/xi).has(xi):
return xi, vi
if all_zero:
return S.Zero, S.One
if n.is_Symbol: # there was no valid solution
n = d = S.Zero
return n, d # should we cancel now?
def minsolve_linear_system(system, *symbols, **flags):
r"""
Find a particular solution to a linear system.
In particular, try to find a solution with the minimal possible number
of non-zero variables. This is a very computationally hard prolem.
If ``quick=True``, a heuristic is used. Otherwise a naive algorithm with
exponential complexity is used.
"""
quick = flags.get('quick', False)
# Check if there are any non-zero solutions at all
s0 = solve_linear_system(system, *symbols, **flags)
if not s0 or all(v == 0 for v in s0.values()):
return s0
if quick:
# We just solve the system and try to heuristically find a nice
# solution.
s = solve_linear_system(system, *symbols)
def update(determined, solution):
delete = []
for k, v in solution.items():
solution[k] = v.subs(determined)
if not solution[k].free_symbols:
delete.append(k)
determined[k] = solution[k]
for k in delete:
del solution[k]
determined = {}
update(determined, s)
while s:
# NOTE sort by default_sort_key to get deterministic result
k = max((k for k in s.values()),
key=lambda x: (len(x.free_symbols), default_sort_key(x)))
x = max(k.free_symbols, key=default_sort_key)
if len(k.free_symbols) != 1:
determined[x] = S(0)
else:
val = solve(k)[0]
if val == 0 and all(v.subs(x, val) == 0 for v in s.values()):
determined[x] = S(1)
else:
determined[x] = val
update(determined, s)
return determined
else:
# We try to select n variables which we want to be non-zero.
# All others will be assumed zero. We try to solve the modified system.
# If there is a non-trivial solution, just set the free variables to
# one. If we do this for increasing n, trying all combinations of
# variables, we will find an optimal solution.
# We speed up slightly by starting at one less than the number of
# variables the quick method manages.
from itertools import combinations
from sympy.utilities.misc import debug
N = len(symbols)
bestsol = minsolve_linear_system(system, *symbols, quick=True)
n0 = len([x for x in bestsol.values() if x != 0])
for n in range(n0 - 1, 1, -1):
debug('minsolve: %s' % n)
thissol = None
for nonzeros in combinations(list(range(N)), n):
subm = Matrix([system.col(i).T for i in nonzeros] + [system.col(-1).T]).T
s = solve_linear_system(subm, *[symbols[i] for i in nonzeros])
if s and not all(v == 0 for v in s.values()):
subs = [(symbols[v], S(1)) for v in nonzeros]
for k, v in s.items():
s[k] = v.subs(subs)
for sym in symbols:
if sym not in s:
if symbols.index(sym) in nonzeros:
s[sym] = S(1)
else:
s[sym] = S(0)
thissol = s
break
if thissol is None:
break
bestsol = thissol
return bestsol
def solve_linear_system(system, *symbols, **flags):
r"""
Solve system of N linear equations with M variables, which means
both under- and overdetermined systems are supported. The possible
number of solutions is zero, one or infinite. Respectively, this
procedure will return None or a dictionary with solutions. In the
case of underdetermined systems, all arbitrary parameters are skipped.
This may cause a situation in which an empty dictionary is returned.
In that case, all symbols can be assigned arbitrary values.
Input to this functions is a Nx(M+1) matrix, which means it has
to be in augmented form. If you prefer to enter N equations and M
unknowns then use `solve(Neqs, *Msymbols)` instead. Note: a local
copy of the matrix is made by this routine so the matrix that is
passed will not be modified.
The algorithm used here is fraction-free Gaussian elimination,
which results, after elimination, in an upper-triangular matrix.
Then solutions are found using back-substitution. This approach
is more efficient and compact than the Gauss-Jordan method.
>>> from sympy import Matrix, solve_linear_system
>>> from sympy.abc import x, y
Solve the following system::
x + 4 y == 2
-2 x + y == 14
>>> system = Matrix(( (1, 4, 2), (-2, 1, 14)))
>>> solve_linear_system(system, x, y)
{x: -6, y: 2}
A degenerate system returns an empty dictionary.
>>> system = Matrix(( (0,0,0), (0,0,0) ))
>>> solve_linear_system(system, x, y)
{}
"""
do_simplify = flags.get('simplify', True)
if system.rows == system.cols - 1 == len(symbols):
try:
# well behaved n-equations and n-unknowns
inv = inv_quick(system[:, :-1])
rv = dict(zip(symbols, inv*system[:, -1]))
if do_simplify:
for k, v in rv.items():
rv[k] = simplify(v)
if not all(i.is_zero for i in rv.values()):
# non-trivial solution
return rv
except ValueError:
pass
matrix = system[:, :]
syms = list(symbols)
i, m = 0, matrix.cols - 1 # don't count augmentation
while i < matrix.rows:
if i == m:
# an overdetermined system
if any(matrix[i:, m]):
return None # no solutions
else:
# remove trailing rows
matrix = matrix[:i, :]
break
if not matrix[i, i]:
# there is no pivot in current column
# so try to find one in other columns
for k in xrange(i + 1, m):
if matrix[i, k]:
break
else:
if matrix[i, m]:
# We need to know if this is always zero or not. We
# assume that if there are free symbols that it is not
# identically zero (or that there is more than one way
# to make this zero). Otherwise, if there are none, this
# is a constant and we assume that it does not simplify
# to zero XXX are there better (fast) ways to test this?
# The .equals(0) method could be used but that can be
# slow; numerical testing is prone to errors of scaling.
if not matrix[i, m].free_symbols:
return None # no solution
# A row of zeros with a non-zero rhs can only be accepted
# if there is another equivalent row. Any such rows will
# be deleted.
nrows = matrix.rows
rowi = matrix.row(i)
ip = None
j = i + 1
while j < matrix.rows:
# do we need to see if the rhs of j
# is a constant multiple of i's rhs?
rowj = matrix.row(j)
if rowj == rowi:
matrix.row_del(j)
elif rowj[:-1] == rowi[:-1]:
if ip is None:
_, ip = rowi[-1].as_content_primitive()
_, jp = rowj[-1].as_content_primitive()
if not (simplify(jp - ip) or simplify(jp + ip)):
matrix.row_del(j)
j += 1
if nrows == matrix.rows:
# no solution
return None
# zero row or was a linear combination of
# other rows or was a row with a symbolic
# expression that matched other rows, e.g. [0, 0, x - y]
# so now we can safely skip it
matrix.row_del(i)
if not matrix:
# every choice of variable values is a solution
# so we return an empty dict instead of None
return dict()
continue
# we want to change the order of colums so
# the order of variables must also change
syms[i], syms[k] = syms[k], syms[i]
matrix.col_swap(i, k)
pivot_inv = S.One/matrix[i, i]
# divide all elements in the current row by the pivot
matrix.row_op(i, lambda x, _: x * pivot_inv)
for k in xrange(i + 1, matrix.rows):
if matrix[k, i]:
coeff = matrix[k, i]
# subtract from the current row the row containing
# pivot and multiplied by extracted coefficient
matrix.row_op(k, lambda x, j: simplify(x - matrix[i, j]*coeff))
i += 1
# if there weren't any problems, augmented matrix is now
# in row-echelon form so we can check how many solutions
# there are and extract them using back substitution
if len(syms) == matrix.rows:
# this system is Cramer equivalent so there is
# exactly one solution to this system of equations
k, solutions = i - 1, {}
while k >= 0:
content = matrix[k, m]
# run back-substitution for variables
for j in xrange(k + 1, m):
content -= matrix[k, j]*solutions[syms[j]]
if do_simplify:
solutions[syms[k]] = simplify(content)
else:
solutions[syms[k]] = content
k -= 1
return solutions
elif len(syms) > matrix.rows:
# this system will have infinite number of solutions
# dependent on exactly len(syms) - i parameters
k, solutions = i - 1, {}
while k >= 0:
content = matrix[k, m]
# run back-substitution for variables
for j in xrange(k + 1, i):
content -= matrix[k, j]*solutions[syms[j]]
# run back-substitution for parameters
for j in xrange(i, m):
content -= matrix[k, j]*syms[j]
if do_simplify:
solutions[syms[k]] = simplify(content)
else:
solutions[syms[k]] = content
k -= 1
return solutions
else:
return [] # no solutions
def solve_undetermined_coeffs(equ, coeffs, sym, **flags):
"""Solve equation of a type p(x; a_1, ..., a_k) == q(x) where both
p, q are univariate polynomials and f depends on k parameters.
The result of this functions is a dictionary with symbolic
values of those parameters with respect to coefficients in q.
This functions accepts both Equations class instances and ordinary
SymPy expressions. Specification of parameters and variable is
obligatory for efficiency and simplicity reason.
>>> from sympy import Eq
>>> from sympy.abc import a, b, c, x
>>> from sympy.solvers import solve_undetermined_coeffs
>>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x)
{a: 1/2, b: -1/2}
>>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x)
{a: 1/c, b: -1/c}
"""
if isinstance(equ, Equality):
# got equation, so move all the
# terms to the left hand side
equ = equ.lhs - equ.rhs
equ = cancel(equ).as_numer_denom()[0]
system = list(collect(equ.expand(), sym, evaluate=False).values())
if not any(equ.has(sym) for equ in system):
# consecutive powers in the input expressions have
# been successfully collected, so solve remaining
# system using Gaussian elimination algorithm
return solve(system, *coeffs, **flags)
else:
return None # no solutions
def solve_linear_system_LU(matrix, syms):
"""
Solves the augmented matrix system using LUsolve and returns a dictionary
in which solutions are keyed to the symbols of syms *as ordered*.
The matrix must be invertible.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.solvers import solve_linear_system_LU
>>> solve_linear_system_LU(Matrix([
... [1, 2, 0, 1],
... [3, 2, 2, 1],
... [2, 0, 0, 1]]), [x, y, z])
{x: 1/2, y: 1/4, z: -1/2}
See Also
========
sympy.matrices.LUsolve
"""
if matrix.rows != matrix.cols - 1:
raise ValueError("Rows should be equal to columns - 1")
A = matrix[:matrix.rows, :matrix.rows]
b = matrix[:, matrix.cols - 1:]
soln = A.LUsolve(b)
solutions = {}
for i in range(soln.rows):
solutions[syms[i]] = soln[i, 0]
return solutions
def det_perm(M):
"""Return the det(``M``) by using permutations to select factors.
For size larger than 8 the number of permutations becomes prohibitively
large, or if there are no symbols in the matrix, it is better to use the
standard determinant routines, e.g. `M.det()`.
See Also
========
det_minor
det_quick
"""
args = []
s = True
n = M.rows
try:
list = M._mat
except AttributeError:
list = flatten(M.tolist())
for perm in generate_bell(n):
fac = []
idx = 0
for j in perm:
fac.append(list[idx + j])
idx += n
term = Mul(*fac) # disaster with unevaluated Mul -- takes forever for n=7
args.append(term if s else -term)
s = not s
return Add(*args)
def det_minor(M):
"""Return the ``det(M)`` computed from minors without
introducing new nesting in products.
See Also
========
det_perm
det_quick
"""
n = M.rows
if n == 2:
return M[0, 0]*M[1, 1] - M[1, 0]*M[0, 1]
else:
return sum([(1, -1)[i % 2]*Add(*[M[0, i]*d for d in
Add.make_args(det_minor(M.minorMatrix(0, i)))])
if M[0, i] else S.Zero for i in range(n)])
def det_quick(M, method=None):
"""Return ``det(M)`` assuming that either
there are lots of zeros or the size of the matrix
is small. If this assumption is not met, then the normal
Matrix.det function will be used with method = ``method``.
See Also
========
det_minor
det_perm
"""
if any(i.has(Symbol) for i in M):
if M.rows < 8 and all(i.has(Symbol) for i in M):
return det_perm(M)
return det_minor(M)
else:
return M.det(method=method) if method else M.det()
def inv_quick(M):
"""Return the inverse of ``M``, assuming that either
there are lots of zeros or the size of the matrix
is small.
"""
from sympy.matrices import zeros
if any(i.has(Symbol) for i in M):
if all(i.has(Symbol) for i in M):
det = lambda _: det_perm(_)
else:
det = lambda _: det_minor(_)
else:
return M.inv()
n = M.rows
d = det(M)
if d is S.Zero:
raise ValueError("Matrix det == 0; not invertible.")
ret = zeros(n)
s1 = -1
for i in range(n):
s = s1 = -s1
for j in range(n):
di = det(M.minorMatrix(i, j))
ret[j, i] = s*di/d
s = -s
return ret
def tsolve(eq, sym):
SymPyDeprecationWarning(
feature="tsolve()",
useinstead="solve()",
issue=3385,
deprecated_since_version="0.7.2",
).warn()
return _tsolve(eq, sym)
# these are functions that have multiple inverse values per period
multi_inverses = {
sin: lambda x: (asin(x), S.Pi - asin(x)),
cos: lambda x: (acos(x), 2*S.Pi - acos(x)),
}
def _tsolve(eq, sym, **flags):
"""
Helper for _solve that solves a transcendental equation with respect
to the given symbol. Various equations containing powers and logarithms,
can be solved.
There is currently no guarantee that all solutions will be returned or
that a real solution will be favored over a complex one.
Examples
========
>>> from sympy import log
>>> from sympy.solvers.solvers import _tsolve as tsolve
>>> from sympy.abc import x
>>> tsolve(3**(2*x + 5) - 4, x)
[-5/2 + log(2)/log(3), log(-2*sqrt(3)/27)/log(3)]
>>> tsolve(log(x) + 2*x, x)
[LambertW(2)/2]
"""
if 'tsolve_saw' not in flags:
flags['tsolve_saw'] = []
if eq in flags['tsolve_saw']:
return None
else:
flags['tsolve_saw'].append(eq)
rhs, lhs = _invert(eq, sym)
if lhs == sym:
return [rhs]
try:
if lhs.is_Add:
# it's time to try factoring; powdenest is used
# to try get powers in standard form for better factoring
f = factor(powdenest(lhs - rhs))
if f.is_Mul:
return _solve(f, sym, **flags)
if rhs:
f = logcombine(lhs, force=flags.get('force', True))
if f.count(log) != lhs.count(log):
if f.func is log:
return _solve(f.args[0] - exp(rhs), sym, **flags)
return _tsolve(f - rhs, sym)
elif lhs.is_Pow:
if lhs.exp.is_Integer:
if lhs - rhs != eq:
return _solve(lhs - rhs, sym, **flags)
elif sym not in lhs.exp.free_symbols:
return _solve(lhs.base - rhs**(1/lhs.exp), sym, **flags)
elif not rhs and sym in lhs.exp.free_symbols:
# f(x)**g(x) only has solutions where f(x) == 0 and g(x) != 0 at
# the same place
sol_base = _solve(lhs.base, sym, **flags)
if not sol_base:
return sol_base # no solutions to remove so return now
return list(ordered(set(sol_base) - set(
_solve(lhs.exp, sym, **flags))))
elif (rhs is not S.Zero and
lhs.base.is_positive and
lhs.exp.is_real):
return _solve(lhs.exp*log(lhs.base) - log(rhs), sym, **flags)
elif lhs.is_Mul and rhs.is_positive:
llhs = expand_log(log(lhs))
if llhs.is_Add:
return _solve(llhs - log(rhs), sym, **flags)
elif lhs.is_Function and len(lhs.args) == 1 and lhs.func in multi_inverses:
# sin(x) = 1/3 -> x - asin(1/3) & x - (pi - asin(1/3))
soln = []
for i in multi_inverses[lhs.func](rhs):
soln.extend(_solve(lhs.args[0] - i, sym, **flags))
return list(ordered(soln))
rewrite = lhs.rewrite(exp)
if rewrite != lhs:
return _solve(rewrite - rhs, sym, **flags)
except NotImplementedError:
pass
# maybe it is a lambert pattern
if flags.pop('bivariate', True):
# lambert forms may need some help being recognized, e.g. changing
# 2**(3*x) + x**3*log(2)**3 + 3*x**2*log(2)**2 + 3*x*log(2) + 1
# to 2**(3*x) + (x*log(2) + 1)**3
g = _filtered_gens(eq.as_poly(), sym)
up_or_log = set()
for gi in g:
if gi.func is exp or gi.func is log:
up_or_log.add(gi)
elif gi.is_Pow:
gisimp = powdenest(expand_power_exp(gi))
if gisimp.is_Pow and sym in gisimp.exp.free_symbols:
up_or_log.add(gi)
down = g.difference(up_or_log)
eq_down = expand_log(expand_power_exp(eq)).subs(
dict(list(zip(up_or_log, [0]*len(up_or_log)))))
eq = expand_power_exp(factor(eq_down, deep=True) + (eq - eq_down))
rhs, lhs = _invert(eq, sym)
if lhs.has(sym):
try:
poly = lhs.as_poly()
g = _filtered_gens(poly, sym)
return _solve_lambert(lhs - rhs, sym, g)
except NotImplementedError:
# maybe it's a convoluted function
if len(g) == 2:
try:
gpu = bivariate_type(lhs - rhs, *g)
if gpu is None:
raise NotImplementedError
g, p, u = gpu
flags['bivariate'] = False
inversion = _tsolve(g - u, sym, **flags)
if inversion:
sol = _solve(p, u, **flags)
return list(ordered(set([i.subs(u, s)
for i in inversion for s in sol])))
except NotImplementedError:
pass
if flags.pop('force', True):
flags['force'] = False
pos, reps = posify(lhs - rhs)
for u, s in reps.items():
if s == sym:
break
else:
u = sym
try:
soln = _solve(pos, u, **flags)
except NotImplementedError:
return
return list(ordered([s.subs(reps) for s in soln]))
# TODO: option for calculating J numerically
def nsolve(*args, **kwargs):
r"""
Solve a nonlinear equation system numerically::
nsolve(f, [args,] x0, modules=['mpmath'], **kwargs)
f is a vector function of symbolic expressions representing the system.
args are the variables. If there is only one variable, this argument can
be omitted.
x0 is a starting vector close to a solution.
Use the modules keyword to specify which modules should be used to
evaluate the function and the Jacobian matrix. Make sure to use a module
that supports matrices. For more information on the syntax, please see the
docstring of lambdify.
Overdetermined systems are supported.
>>> from sympy import Symbol, nsolve
>>> import sympy
>>> import mpmath
>>> mpmath.mp.dps = 15
>>> x1 = Symbol('x1')
>>> x2 = Symbol('x2')
>>> f1 = 3 * x1**2 - 2 * x2**2 - 1
>>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
>>> print(nsolve((f1, f2), (x1, x2), (-1, 1)))
[-1.19287309935246]
[ 1.27844411169911]
For one-dimensional functions the syntax is simplified:
>>> from sympy import sin, nsolve
>>> from sympy.abc import x
>>> nsolve(sin(x), x, 2)
3.14159265358979
>>> nsolve(sin(x), 2)
3.14159265358979
mpmath.findroot is used, you can find there more extensive documentation,
especially concerning keyword parameters and available solvers.
"""
# interpret arguments
if len(args) == 3:
f = args[0]
fargs = args[1]
x0 = args[2]
elif len(args) == 2:
f = args[0]
fargs = None
x0 = args[1]
elif len(args) < 2:
raise TypeError('nsolve expected at least 2 arguments, got %i'
% len(args))
else:
raise TypeError('nsolve expected at most 3 arguments, got %i'
% len(args))
modules = kwargs.get('modules', ['mpmath'])
if isinstance(f, (list, tuple)):
f = Matrix(f).T
if not isinstance(f, Matrix):
# assume it's a sympy expression
if isinstance(f, Equality):
f = f.lhs - f.rhs
f = f.evalf()
syms = f.free_symbols
if fargs is None:
fargs = syms.copy().pop()
if not (len(syms) == 1 and (fargs in syms or fargs[0] in syms)):
raise ValueError(filldedent('''
expected a one-dimensional and numerical function'''))
# the function is much better behaved if there is no denominator
f = f.as_numer_denom()[0]
f = lambdify(fargs, f, modules)
return findroot(f, x0, **kwargs)
if len(fargs) > f.cols:
raise NotImplementedError(filldedent('''
need at least as many equations as variables'''))
verbose = kwargs.get('verbose', False)
if verbose:
print('f(x):')
print(f)
# derive Jacobian
J = f.jacobian(fargs)
if verbose:
print('J(x):')
print(J)
# create functions
f = lambdify(fargs, f.T, modules)
J = lambdify(fargs, J, modules)
# solve the system numerically
x = findroot(f, x0, J=J, **kwargs)
return x
def _invert(eq, *symbols, **kwargs):
"""Return tuple (i, d) where ``i`` is independent of ``symbols`` and ``d``
contains symbols. ``i`` and ``d`` are obtained after recursively using
algebraic inversion until an uninvertible ``d`` remains. If there are no
free symbols then ``d`` will be zero. Some (but not necessarily all)
solutions to the expression ``i - d`` will be related to the solutions of
the original expression.
Examples
========
>>> from sympy.solvers.solvers import _invert as invert
>>> from sympy import sqrt, cos
>>> from sympy.abc import x, y
>>> invert(x - 3)
(3, x)
>>> invert(3)
(3, 0)
>>> invert(2*cos(x) - 1)
(1/2, cos(x))
>>> invert(sqrt(x) - 3)
(3, sqrt(x))
>>> invert(sqrt(x) + y, x)
(-y, sqrt(x))
>>> invert(sqrt(x) + y, y)
(-sqrt(x), y)
>>> invert(sqrt(x) + y, x, y)
(0, sqrt(x) + y)
If there is more than one symbol in a power's base and the exponent
is not an Integer, then the principal root will be used for the
inversion:
>>> invert(sqrt(x + y) - 2)
(4, x + y)
>>> invert(sqrt(x + y) - 2)
(4, x + y)
If the exponent is an integer, setting ``integer_power`` to True
will force the principal root to be selected:
>>> invert(x**2 - 4, integer_power=True)
(2, x)
"""
eq = sympify(eq)
free = eq.free_symbols
if not symbols:
symbols = free
if not free & set(symbols):
return eq, S.Zero
dointpow = bool(kwargs.get('integer_power', False))
lhs = eq
rhs = S.Zero
while True:
was = lhs
while True:
indep, dep = lhs.as_independent(*symbols)
# dep + indep == rhs
if lhs.is_Add:
# this indicates we have done it all
if indep is S.Zero:
break
lhs = dep
rhs -= indep
# dep * indep == rhs
else:
# this indicates we have done it all
if indep is S.One:
break
lhs = dep
rhs /= indep
# collect like-terms in symbols
if lhs.is_Add:
terms = {}
for a in lhs.args:
i, d = a.as_independent(*symbols)
terms.setdefault(d, []).append(i)
if any(len(v) > 1 for v in terms.values()):
args = []
for d, i in terms.items():
if len(i) > 1:
args.append(Add(*i)*d)
else:
args.append(i[0]*d)
lhs = Add(*args)
# if it's a two-term Add with rhs = 0 and two powers we can get the
# dependent terms together, e.g. 3*f(x) + 2*g(x) -> f(x)/g(x) = -2/3
if lhs.is_Add and not rhs and len(lhs.args) == 2 and \
not lhs.is_polynomial(*symbols):
a, b = ordered(lhs.args)
ai, ad = a.as_independent(*symbols)
bi, bd = b.as_independent(*symbols)
if any(_ispow(i) for i in (ad, bd)):
a_base, a_exp = ad.as_base_exp()
b_base, b_exp = bd.as_base_exp()
if a_base == b_base:
# a = -b
lhs = powsimp(powdenest(ad/bd))
rhs = -bi/ai
else:
rat = ad/bd
_lhs = powsimp(ad/bd)
if _lhs != rat:
lhs = _lhs
rhs = -bi/ai
if ai*bi is S.NegativeOne:
if all(
isinstance(i, Function) for i in (ad, bd)) and \
ad.func == bd.func and len(ad.args) == len(bd.args):
if len(ad.args) == 1:
lhs = ad.args[0] - bd.args[0]
else:
# should be able to solve
# f(x, y) == f(2, 3) -> x == 2
# f(x, x + y) == f(2, 3) -> x == 2 or x == 3 - y
raise NotImplementedError('equal function with more than 1 argument')
elif lhs.is_Mul and any(_ispow(a) for a in lhs.args):
lhs = powsimp(powdenest(lhs))
if lhs.is_Function:
if hasattr(lhs, 'inverse') and len(lhs.args) == 1:
# -1
# f(x) = g -> x = f (g)
#
# /!\ inverse should not be defined if there are multiple values
# for the function -- these are handled in _tsolve
#
rhs = lhs.inverse()(rhs)
lhs = lhs.args[0]
elif lhs.func is atan2:
y, x = lhs.args
lhs = 2*atan(y/(sqrt(x**2 + y**2) + x))
if rhs and lhs.is_Pow and lhs.exp.is_Integer and lhs.exp < 0:
lhs = 1/lhs
rhs = 1/rhs
# base**a = b -> base = b**(1/a) if
# a is an Integer and dointpow=True (this gives real branch of root)
# a is not an Integer and the equation is multivariate and the
# base has more than 1 symbol in it
# The rationale for this is that right now the multi-system solvers
# doesn't try to resolve generators to see, for example, if the whole
# system is written in terms of sqrt(x + y) so it will just fail, so we
# do that step here.
if lhs.is_Pow and (
lhs.exp.is_Integer and dointpow or not lhs.exp.is_Integer and
len(symbols) > 1 and len(lhs.base.free_symbols & set(symbols)) > 1):
rhs = rhs**(1/lhs.exp)
lhs = lhs.base
if lhs == was:
break
return rhs, lhs
def unrad(eq, *syms, **flags):
""" Remove radicals with symbolic arguments and return (eq, cov, dens),
None or raise an error:
None is returned if there are no radicals to remove.
ValueError is raised if there are radicals and they cannot be removed.
Otherwise the tuple, ``(eq, cov, dens)``, is returned where::
``eq``, ``cov``
equation without radicals, perhaps written in terms of
change variables; the relationship to the original variables
is given by the expressions in list (``cov``) whose tuples,
(``v``, ``expr``) give the change variable introduced (``v``)
and the expression (``expr``) which equates the base of the radical
to the power of the change variable needed to clear the radical.
For example, for sqrt(2 - x) the tuple (_p, -_p**2 - x + 2), would
be obtained.
``dens``
A set containing all denominators encountered while removing
radicals. This may be of interest since any solution obtained in
the modified expression should not set any denominator to zero.
``syms``
an iterable of symbols which, if provided, will limit the focus of
radical removal: only radicals with one or more of the symbols of
interest will be cleared.
``flags`` are used internally for communication during recursive calls.
Two options are also recognized::
``take``, when defined, is interpreted as a single-argument function
that returns True if a given Pow should be handled.
``all``, when True, will signify that an attempt should be made to
remove all radicals. ``take``, if present, has priority over ``all``.
Radicals can be removed from an expression if::
* all bases of the radicals are the same; a change of variables is
done in this case.
* if all radicals appear in one term of the expression
* there are only 4 terms with sqrt() factors or there are less than
four terms having sqrt() factors
Examples
========
>>> from sympy.solvers.solvers import unrad
>>> from sympy.abc import x
>>> from sympy import sqrt, Rational
>>> unrad(sqrt(x)*x**Rational(1, 3) + 2)
(x**5 - 64, [], [])
>>> unrad(sqrt(x) + (x + 1)**Rational(1, 3))
(x**3 - x**2 - 2*x - 1, [], [])
>>> unrad(sqrt(x) + x**Rational(1, 3) + 2)
(_p**3 + _p**2 + 2, [(_p, -_p**6 + x)], [])
"""
def _canonical(eq):
# remove constants since these don't change the location of the root
# and expand the expression
eq = factor_terms(eq)
if eq.is_Mul:
eq = Mul(*[f for f in eq.args if not f.is_number])
eq = _mexpand(eq)
# make sign canonical
free = eq.free_symbols
if len(free) == 1:
if (eq.coeff(free.pop()**degree(eq)) < 0) is True:
eq = -eq
elif eq.could_extract_minus_sign():
eq = -eq
return eq
if eq.is_Atom:
return
cov, dens, nwas, rpt = [flags.get(k, v) for k, v in
sorted(dict(dens=None, cov=None, n=None, rpt=0).items())]
if flags.get('take', None):
_take = flags.pop('take')
elif flags.pop('all', None):
_rad = lambda w: w.is_Pow and w.exp.is_Rational and w.exp.q != 1
def _take(d):
return _rad(d) or any(_rad(i) for i in d.atoms(Pow))
if eq.has(S.ImaginaryUnit):
i = Dummy()
flags['take'] = _take
try:
rv = unrad(eq.xreplace({S.ImaginaryUnit: sqrt(i)}), *syms, **flags)
rep = {i: S.NegativeOne}
rv = (_canonical(rv[0].xreplace(rep)),
[tuple([j.xreplace(rep) for j in i]) for i in rv[1]],
[i.xreplace(rep) for i in rv[2]])
return rv
except ValueError as msg:
raise msg
else:
def _take(d):
# see if this is a term that has symbols of interest
# and merits further processing
free = d.free_symbols
if not free:
return False
return not syms or free.intersection(syms)
if dens is None:
dens = set()
if cov is None:
cov = []
eq = powdenest(factor_terms(eq, radical=True))
eq, d = eq.as_numer_denom()
eq = _mexpand(eq)
if _take(d):
dens.add(d)
if not eq.free_symbols:
return eq, cov, list(dens)
poly = eq.as_poly()
# if all the bases are the same or all the radicals are in one
# term, `lcm` will be the lcm of the radical's exponent
# denominators
lcm = 1
rads = set()
bases = set()
for g in poly.gens:
if not _take(g) or not g.is_Pow:
continue
ecoeff = g.exp.as_coeff_mul()[0] # a Rational
if ecoeff.q != 1:
rads.add(g)
lcm = ilcm(lcm, ecoeff.q)
bases.add(g.base)
if not rads:
return
depth = sqrt_depth(eq)
# get terms together that have common generators
drad = dict(list(zip(rads, list(range(len(rads))))))
rterms = {(): []}
args = Add.make_args(poly.as_expr())
for t in args:
if _take(t):
common = set(t.as_poly().gens).intersection(rads)
key = tuple(sorted([drad[i] for i in common]))
else:
key = ()
rterms.setdefault(key, []).append(t)
args = Add(*rterms.pop(()))
rterms = [Add(*rterms[k]) for k in rterms.keys()]
# the output will depend on the order terms are processed, so
# make it canonical quickly
rterms = list(reversed(list(ordered(rterms))))
# continue handling
ok = True
if len(rterms) == 1:
eq = rterms[0]**lcm - (-args)**lcm
elif len(rterms) == 2 and not args:
eq = rterms[0]**lcm - rterms[1]**lcm
elif log(lcm, 2).is_Integer and (not args and
len(rterms) == 4 or len(rterms) < 4):
def _norm2(a, b):
return a**2 + b**2 + 2*a*b
if len(rterms) == 4:
# (r0+r1)**2 - (r2+r3)**2
r0, r1, r2, r3 = rterms
eq = _norm2(r0, r1) - _norm2(r2, r3)
elif len(rterms) == 3:
# (r1+r2)**2 - (r0+args)**2
r0, r1, r2 = rterms
eq = _norm2(r1, r2) - _norm2(r0, args)
elif len(rterms) == 2:
# r0**2 - (r1+args)**2
r0, r1 = rterms
eq = r0**2 - _norm2(r1, args)
elif len(bases) == 1: # change of variables may work
ok = False
covwas = len(cov)
b = bases.pop()
for p, bexpr in cov:
pow = (b - bexpr)
if pow.is_Pow:
pb, pe = pow.as_base_exp()
if pe == lcm and pb == p:
p = pb
break
else:
p = Dummy('p', positive=True)
cov.append((p, b - p**lcm))
eq = poly.subs(b, p**lcm).as_expr()
if not eq.free_symbols.intersection(syms):
ok = True
else:
if len(cov) > covwas:
cov = cov[:-1]
else:
ok = False
new_depth = sqrt_depth(eq)
rpt += 1 # XXX how many repeats with others unchanging is enough?
if not ok or (
nwas is not None and len(rterms) == nwas and
new_depth is not None and new_depth == depth and
rpt > 3):
# XXX: XFAIL tests indicate other cases that should be handled.
raise ValueError('Cannot remove all radicals from %s' % eq)
neq = unrad(eq, *syms, cov=cov, dens=dens, n=len(rterms), rpt=rpt, take=_take)
if neq:
eq = neq[0]
return (_canonical(eq), cov, list(dens))
from sympy.solvers.bivariate import (
bivariate_type, _solve_lambert, _filtered_gens)
|