1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#!/usr/bin/env python
"""
This example calculates the Ricci tensor from the metric and does this
on the example of Schwarzschild solution.
If you want to derive this by hand, follow the wiki page here:
https://en.wikipedia.org/wiki/Deriving_the_Schwarzschild_solution
Also read the above wiki and follow the references from there if
something is not clear, like what the Ricci tensor is, etc.
"""
from sympy import (exp, Symbol, sin, dsolve, Function,
Matrix, Eq, pprint, solve)
def grad(f, X):
a = []
for x in X:
a.append(f.diff(x))
return a
def d(m, x):
return grad(m[0, 0], x)
class MT:
def __init__(self, m):
self.gdd = m
self.guu = m.inv()
def __str__(self):
return "g_dd =\n" + str(self.gdd)
def dd(self, i, j):
return self.gdd[i, j]
def uu(self, i, j):
return self.guu[i, j]
class G:
def __init__(self, g, x):
self.g = g
self.x = x
def udd(self, i, k, l):
g = self.g
x = self.x
r = 0
for m in [0, 1, 2, 3]:
r += g.uu(i, m)/2 * (g.dd(m, k).diff(x[l]) + g.dd(m, l).diff(x[k])
- g.dd(k, l).diff(x[m]))
return r
class Riemann:
def __init__(self, G, x):
self.G = G
self.x = x
def uddd(self, rho, sigma, mu, nu):
G = self.G
x = self.x
r = G.udd(rho, nu, sigma).diff(x[mu]) - G.udd(rho, mu, sigma).diff(x[nu])
for lam in [0, 1, 2, 3]:
r += G.udd(rho, mu, lam)*G.udd(lam, nu, sigma) \
- G.udd(rho, nu, lam)*G.udd(lam, mu, sigma)
return r
class Ricci:
def __init__(self, R, x):
self.R = R
self.x = x
self.g = R.G.g
def dd(self, mu, nu):
R = self.R
x = self.x
r = 0
for lam in [0, 1, 2, 3]:
r += R.uddd(lam, mu, lam, nu)
return r
def ud(self, mu, nu):
r = 0
for lam in [0, 1, 2, 3]:
r += self.g.uu(mu, lam)*self.dd(lam, nu)
return r.expand()
def curvature(Rmn):
return Rmn.ud(0, 0) + Rmn.ud(1, 1) + Rmn.ud(2, 2) + Rmn.ud(3, 3)
nu = Function("nu")
lam = Function("lambda")
t = Symbol("t")
r = Symbol("r")
theta = Symbol(r"theta")
phi = Symbol(r"phi")
# general, spherically symmetric metric
gdd = Matrix((
(-exp(nu(r)), 0, 0, 0),
(0, exp(lam(r)), 0, 0),
(0, 0, r**2, 0),
(0, 0, 0, r**2*sin(theta)**2)
))
g = MT(gdd)
X = (t, r, theta, phi)
Gamma = G(g, X)
Rmn = Ricci(Riemann(Gamma, X), X)
def pprint_Gamma_udd(i, k, l):
pprint(Eq(Symbol('Gamma^%i_%i%i' % (i, k, l)), Gamma.udd(i, k, l)))
def pprint_Rmn_dd(i, j):
pprint(Eq(Symbol('R_%i%i' % (i, j)), Rmn.dd(i, j)))
# from Differential Equations example
def eq1():
r = Symbol("r")
e = Rmn.dd(0, 0)
e = e.subs(nu(r), -lam(r))
pprint(dsolve(e, lam(r)))
def eq2():
r = Symbol("r")
e = Rmn.dd(1, 1)
C = Symbol("CC")
e = e.subs(nu(r), -lam(r))
pprint(dsolve(e, lam(r)))
def eq3():
r = Symbol("r")
e = Rmn.dd(2, 2)
e = e.subs(nu(r), -lam(r))
pprint(dsolve(e, lam(r)))
def eq4():
r = Symbol("r")
e = Rmn.dd(3, 3)
e = e.subs(nu(r), -lam(r))
pprint(dsolve(e, lam(r)))
pprint(dsolve(e, lam(r), 'best'))
def main():
print("Initial metric:")
pprint(gdd)
print("-"*40)
print("Christoffel symbols:")
pprint_Gamma_udd(0, 1, 0)
pprint_Gamma_udd(0, 0, 1)
print()
pprint_Gamma_udd(1, 0, 0)
pprint_Gamma_udd(1, 1, 1)
pprint_Gamma_udd(1, 2, 2)
pprint_Gamma_udd(1, 3, 3)
print()
pprint_Gamma_udd(2, 2, 1)
pprint_Gamma_udd(2, 1, 2)
pprint_Gamma_udd(2, 3, 3)
print()
pprint_Gamma_udd(3, 2, 3)
pprint_Gamma_udd(3, 3, 2)
pprint_Gamma_udd(3, 1, 3)
pprint_Gamma_udd(3, 3, 1)
print("-"*40)
print("Ricci tensor:")
pprint_Rmn_dd(0, 0)
e = Rmn.dd(1, 1)
pprint_Rmn_dd(1, 1)
pprint_Rmn_dd(2, 2)
pprint_Rmn_dd(3, 3)
print("-"*40)
print("Solve Einstein's equations:")
e = e.subs(nu(r), -lam(r)).doit()
l = dsolve(e, lam(r))
pprint(l)
lamsol = solve(l, lam(r))[0]
metric = gdd.subs(lam(r), lamsol).subs(nu(r), -lamsol) # .combine()
print("metric:")
pprint(metric)
if __name__ == "__main__":
main()
|